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Dept. of Physics

This dissertation describes the creation of the first matter-wave interferometer using

ytterbium (Yb) atoms. Most of the experiments focus on a contrast interferometer

geometry with a Bose-Einstein condensate (BEC) as source. The recoil frequency

of the 174Yb atom is measured with this interferometer. The recoil frequency of an

atom is part of a set of precision measurements that together give a value for the fine

structure constant.

The experimental results of this dissertation lay the groundwork for a future sub

part-per-billion (ppb) precision measurement of the Yb recoil frequency. The contrast

interferometry technique is extended to substantially longer times scales than those

achieved in previous experiments. A measurement at the ∼ 10 parts-per-million

level is made. Systematic effects and statistical scaling are studied and found to be

compatible with the desired sub-ppb precision for a future measurement.

Such a measurement requires a detailed theoretical study of possible systematic

shifts to the measured value. A substantial portion of this dissertation consists of

this analysis, carried out in sufficient generality as to guide future sub-ppb level

measurements. In addition to a large number of possible systematic shifts due to well-

understood physics, two more complex effects are identified and studied: Diffraction

phases and atom-atom interactions.
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Chapter 1

INTRODUCTION

The present chapter attempts to introduce the main ideas of this thesis, along with

some jargon that is common to precision measurements (foremost amongst them, the

dreaded “systematics”) but may be less commonly heard in labs committed to saner

pursuits.

1.1 “Precision” Measurements

A common cartoon in grade-school science courses explains precision and accuracy in

terms of darts thrown at a dart board. An example is shown in figure 1.1.

One of the key aspects of empirical science is reproducibility. If the same result

cannot be seen in different places and times by different experimenters, then it is of

dubious value for understanding the world. When applied to a single measurement,

the concept of reproducibility is referred to as precision. I would not claim to have

a pen that is 10 cm long if I measure it to be 10 cm one time and 8 cm or 12 cm at

other times. Precision is also used to refer to the quantitative level of reproducibility.

Suppose I have an extremely sensitive measuring instrument that tells me the pen

is 10.000 cm long before lunch. After lunch I measure again and get a reading of

10.002 cm. If I then decide to take 100 readings of the same pen with the same

instrument, I can develop a statistical sample and report the standard deviation

of those measurements. This quantitative accounting for the reproducibility of a

measurement is generally what is meant by the precision of a measurement. In this

thesis, the mass of a single ytterbium (Yb) atom is measured to a precision of 7 parts

per million (ppm), which means that upon repeated runs of the same measurement,
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Figure 1.1: Accuracy vs. Precision. The four dart boards demonstrate the ideas of

accuracy and precision. Striking the bull’s eye corresponds to measuring the quantity

you set out to measure. Tight clusters correspond to high precision or reproducibility.

Points near the bull’s eye correspond to high accuracy. The radius of the black dots

represents the uncertainty in the value from a single measurement.
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the value should fall within 7 ppm of our reported value roughly 68% of the time, i.e.,

the standard deviation of a large set of such measurements would be 7 ppm.

A distinction is made between relative and absolute precision. For example, 7 ppm

is the precision of the mass measurement relative to the actual measured mass. An

absolute precision would be something along the lines of “The mass was measured to

±2× 10−30 kg.”

Accuracy is a more subtle issue and presents the real difficulty in precision mea-

surements. As such, they should probably be called “accuracy measurements,” though

somehow that sounds less appealing. In setting out to measure the mass of a single

Yb atom, one must have an idea what this phrase means. The actual quantity that

comes out of the experiment is the phase of a sine wave fitted to data that looks like

a piece of a sine wave. An operationalist account of this measurement would include

a list of all of the steps going into generating this data. Indeed, chapter 6 will give

just such an account. After extracting the phase of this sine wave, the phase from

one experiment is compared to those of slightly different experiments to extract a fre-

quency from the set of phases. Then using freshman physics, namely E = p2/(2m),

and the connection between frequency and energy in quantum mechanics we arrive

finally at a value for the mass of an Yb atom.

One important point to be taken from this is that a tremendous number of as-

sumptions go into the arrival at a value for mass. Under an operationalist account,

the term “mass” would be defined in terms of experiments having nothing to do with

measuring phases of sine waves. These assumptions must all be tested before the final

measurement can be believed to be accurate. The word “believed” in the previous

sentence points out an essential difference between the dart board cartoon and the

real world. Precision is always something that may be known: take enough measure-

ments and it is purely a question of statistics. Accuracy is never a sure thing. That is

to say, in the real world we cannot see a bull’s eye to know whether we have measured

the thing we wish to measure. In a measurement such as that described in this thesis,
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the use of E = p2/(2m) assumes that the frequency we have measured corresponds

purely to kinetic energy rather than kinetic energy plus a tiny potential energy due

to stray magnetic fields, the earth’s gravitational field, or, most troubling, some effect

we have not considered at all in our stated assumptions.

Effects other than the one we set out to measure that can nonetheless change the

value of our measurement are referred to as systematic effects or just systematics for

short. The design of our experiment, detailed in chapter 5, is largely conceived to

avoid or reduce potential systematic effects. The third main section of this thesis is

devoted purely to the analysis of systematic effects.

1.2 Interferometry

Having spent several pages on the first word of the thesis title, we’ll now move more

quickly through the rest. Interferometry describes the use of quantum interference

effects for purposes of measurement. Quantum interference effects are very sensitive

to the relative phase of the two quantum amplitudes that are interfering with one

another (e.g., the amplitude for an atom to pass through the left or the right slit in

the classic two-slit interference experiment). To use this sensitivity for measurement,

we must create a situation wherein the effect we wish to measure creates such a

relative phase shift. As described above, to measure the mass of an Yb atom, we first

measure its kinetic energy. Thus, if we can make two interfering amplitudes for the

atom with one in motion and one static, we have introduced just the sort of phase

shift we need.

Interferometry is advantageous for measurement because phase can only be mea-

sured modulo 2π. Suppose that you know, based on previous measurements, that

the total phase evolution should be 1000 ± 1 rad. If the exact phase evolution is

1000.000 = 2π × 159 + 0.974, the interferometer is only measuring the 0.974. To

find the strength of the effect to one part in one million, you need only measure the

interference effect to a precision of one part in one thousand, which is a dramatic
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increase in ease of measurement.

As a concrete example, the distance between two objects may be measured through

interferometry with light to precisions much smaller than the wavelength of the light

itself. A change in distance of one thousandth of a wavelength can make a measurable

change in the brightness of an interference fringe. The distance between two objects

separated by 1 mm or 1 km may be measured in this way to the same absolute

precision. However, the relative precision in the latter case is one million times larger,

without any greater complication to the actual measuring process. In fact, the LIGO

experiment does just such a measurement, though to far better precision than one

thousandth of a wavelength, in its search for gravitational waves.

1.3 The Perfect Quantum System?

Rather than light or individual atoms, the experiments described in this thesis leverage

interference in Bose-Einstein condensates (BECs). A BEC is a peculiar state of matter

consisting of a large number of atoms all in identical quantum states. Thus, quantum

effects that might be expected to manifest only at the level of single atoms, such

as interference, can be seen on a macroscopic level. In fact, we can photograph the

interference fringes in certain types of BEC interferometers described in chapter 6.

With a single-atom source this would be impossible. In a sense, one can think of

a BEC as an amplifier of “quantumness,” bringing the counter-intuitive behavior of

single atoms into the macroscopic realm. In fact, BEC is at the heart of such strange.

macroscopic manifestations of quantum mechanics as superfluidity (the flow of liquids,

e.g. liquid helium, without viscosity) and superconductivity (certain materials ability,

at cryogenic temperatures, to carry electrical current with zero resistance).

The use of BECs allows for large signal-to-noise in atom interferometry experi-

ments. Knowing that every atom is in the same quantum state makes it much easier

to suppress noise due to interactions with the environment. This extreme level of

quantum control also facilitates study of potential systematics. On the other hand,
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it introduces a large new systematic not present in single-atom interferometry: The

atom-atom interactions discussed in chapter 9. Fear of this systematic has delayed

the adoption of BECs as sources for precision measurements. I believe the techniques

and results of chapter 9 allow us to stop worrying and love the BEC.

Chapter 2 discusses how we generate BECs in the lab, as well as elaborating on

the nature and usefulness of BECs. Two of the stars of our experiments, Yb and

BECs, will be explained in more depth. Then, chapter 3 delves into the details of

interferometry, both as a manifestation of fundamental aspects of quantum mechan-

ics and as a powerful tool for precision measurement. The background section is

completed in chapter 4 where the connection between an atom’s mass and the fine

structure constant is explained, along with the larger context of fine structure constant

measurements and tests of Quantum Electrodynamics (QED).

Section II contains the central story. The theory of a contrast interferometer, the

workhorse of this thesis, is described in chapter 5. The main experimental results are

presented in chapter 6. While Section II contains the central story, the gritty details of

systematic effects are to be found in Section III. Chapter 7 is devoted to understanding

a variety of potential systematic effects, dealing with physics that is generally well-

understood. Chapters 8 and 9 each examine a more complex/problematic systematic

in detail. Chapter 8 details a systematic effect arising from the laser diffraction pulses,

common to many types of atom interferometer. Chapter 9 shows that atomic inter-

action systematics, a serious concern for any BEC interferometer, may be controlled

and subtracted.
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Part I

BACKGROUND
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Chapter 2

COOLING ATOMS WITH BLINDING HOT LIGHT

Laser cooling of atomic gases began in the early 1980s. The field moved quickly,

overcoming some initial barriers, such as the Doppler limit, accidentally. By the

time the Nobel prize was awarded for laser cooling in 1997, the techniques had been

refined and combined with evaporative cooling in magnetic traps to achieve Bose-

Einstein condensates (BECs) in these dilute atomic gases. A BEC is a new state of

matter achieved at extremely low temperatures in dilute gases, which has properties

useful to precision measurement. Achievement of BEC was awarded the Nobel prize

in 2001.

2.1 The Physics of Laser Cooling

We begin with a broad overview of how a laser cooling and trapping experiment works,

including a heuristic picture of the Magneto-Optical Trap (MOT), one of the key

components of any laser cooling experiment. We will quote well-known mathematical

results on laser cooling and trapping. A more thorough account may be found in

many textbooks, for example that of Foot[31]. A particularly nice derivation using

the Heisenberg equation of motion for the density matrix and master equations for

the probability density functions may be found in the problem book of Basdevant

and Dalibard[8]. For more details on the machine we use for laser cooling, see the

dissertations of Hansen and Khramov[40, 52].

Most of the atoms which are amenable to laser cooling are solids at room tem-

perature. This is true of ytterbium (Yb), the element focused on in this dissertation.

Therefore, the first step of many laser-cooling experiments is to heat the material. For
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Yb, we must raise its temperature above 400◦C to achieve sufficient vapor pressure.

At these temperatures, enough gas phase Yb exists in our oven that a beam emerges

from a small aperture in the front of the oven. The beam passes through several

collimating apertures, which reduce the transverse momentum spread.

In this way, we achieve our first goal. The Yb atoms are in the gas phase and

all moving in roughly the same direction through an ultra-high vacuum (UHV) sys-

tem. UHV will be key to keeping them isolated from outside influence once they are

trapped. While they’re all headed the same way, they are moving quite quickly, with

average speed approximately 340 m/s. For light elements this may be over 1000 m/s.

If we are to trap them with laser light, they must be slowed down. This is achieved

through the use of a Zeeman slower, first demonstrated by Phillips and Metcalf in

1982[82].

The Zeeman slower makes use of radiation pressure to slow the atomic beam.

When an atom encounters a photon resonant with one of its electronic transitions, it

will absorb the photon and then re-emit it in a random direction. After absorbing

many photons from the same direction and re-emitting each into a random direction,

the atom has a net momentum change in the direction the photons were originally

going. So, shining resonant light directly toward the atomic beam should eventually

slow it down, as depicted in figure 2.1 a).

However, as the atom slows down, the frequency it sees changes. For light to be

on resonance when propagating toward high-speed atoms, the light must be below the

resonant frequency in the lab frame, so the Doppler shift can bring it up to resonance.

As the atoms slow, the Doppler shift is weakened, taking the light out of resonance.

For a slowing laser beam to continue to work as the atoms are slowed, something must

compensate this frequency shift. In a Zeeman slower, a magnetic field shifts the value

of the resonance frequency. The field is designed to keep the atoms on resonance as

they slow down, so that a constant radiation pressure may be applied. Figure 2.1 b)

shows a typical profile. As the atoms slow, they cover less ground during the same
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Figure 2.1: Heuristic diagram of Zeeman slower. In a) the idea of slowing by radia-

tion pressure is shown. Photons are symbolized by wavy violet lines and momentum

kicks are symbolized by black arrows. Each absorption gives a momentum kick to the

left. Each emission gives a momentum kick in a random direction. The two processes

are shown in the top two cartoons. The bottom cartoon shows the result of three

absorption/re-emission events, showing how the net momentum kick is largely along

the axis of light propagation. In b) the magnetic field profile used to compensate

Doppler shifts with Zeeman shifts is shown with the positions of the oven and main

trapping chamber indicated below. The main chamber contains a green spot to sym-

bolize the MOT, discussed below. The violet dotted line shows the path of the atomic

beam from the oven to the main chamber.
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change in velocity, so the field must change more quickly as it approaches the end of

the slower.

To understand this more quantitatively, we need to know the force applied to an

atom by the laser. The effective smooth force generated by many discrete photon

scattering events, called the scattering force, is given by

~Fsc = ~~k
Γ

2

ω2
R/2

δ2 + ω2
R/2 + Γ2/4

, (2.1)

where Γ is the natural linewidth of the transition, ωR is the Rabi frequency, and δ is

the detuning of the light from atomic resonance in the atom’s frame of reference. The

linewidth can also be understood as the inverse of the excited state lifetime, in accord

with the time-energy indeterminacy relation1. The Rabi frequency is the coupling

strength between the ground and excited states. The Rabi frequency is related to the

size of the transition matrix element, which itself relates to Γ, and the square root of

the intensity of the laser light2.

The detuning merits careful consideration. Laser cooling essentially depends on

manipulating this detuning, making it a function of position and velocity. For an atom

at rest in empty space, with an energy difference between ground and excited state

of ~ω0, light with angular frequency ω has a detuning δ = ∆ ≡ ω − ω0. If the atom

is moving with velocity ~v, it sees a different value for ω than is seen in the laboratory

reference frame. Namely, it is Doppler shifted by −~v ·~k, where the sign agrees with the

common experience of an observer moving toward a source (~v ·~k < 0) hearing a sound

of higher frequency (pitch) than a stationary observer. Thus, the detuning becomes

δ = ∆ − ~v · ~k. Just as ω may be changed by velocity, a space dependent magnetic

1More explicitly, the natural linewidth is the indeterminacy in the excited state energy ∆E
divided by ~. As such, the expected lifetime comes from the Heisenberg indeterminacy relation:
∆E∆t ≥ ~. If this inequality is saturated, then we find the lifetime ∆t = ~/∆E = 1/Γ. That
the equality should be saturated comes from following this argument backward: If the lifetime
is fixed, then the natural (i.e., unperturbed) energy uncertainty should saturate the uncertainty
principle, as it has nothing to increase it beyond the Fourier transform limit.

2When spontaneous emission is negligible (i.e., when ωR � Γ) the state will oscillate between
ground and excited states with angular frequency ωR.
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field can give ω0 space dependence. Suppose for the moment that the ground state is

insensitive to magnetic fields (this is true for Yb). The Zeeman shift of the excited

state is −~µ · ~B. For a z directed magnetic field, this becomes mzgµBB(~x), where mz

is the projection of the angular momentum on the z axis, g is the gyromagnetic ratio

for the excited state (generally g < 0), and µB is the Bohr magneton. Thus, finally,

δ = ∆− ~v · ~k −mzgµBB(~x).

For designing a Zeeman slower, we want maximum acceleration and so want δ = 0,

for a particular initial velocity, the entire length of the slower. Atoms with initially

lower speed will tend to feel little acceleration until the target class has slowed to

equal their speed, at which point they follow the same path as the target class. For

constant acceleration a, z = (v2
0 − v2)/(2a), with v0 the initial speed of the target

class. This gives v =
√
v2

0 − (2a)z. To compensate for the changing Doppler shift of

the target class then requires a magnetic field with a square root profile as a function

of z, as reflected in figure 2.1 b). A well-tuned Zeeman slower can deliver a sizable

flux of atoms with speeds of 1 m/s or so.

At the end of the slower is the main chamber. Here, the atoms need to be trapped

in a single spot. This is the purpose of the Magneto-Optical Trap (MOT). First

demonstrated in 1987 by Chu and Pritchard, the idea was originally conceived by

Dalibard[86]. Consider first an atom confined to move in only one dimension. A

one-dimensional MOT, for instance in the z direction, would consist of a magnetic

field gradient, passing through zero. Then lights, tuned below resonance in the lab

frame, with opposite projections of angular momentum on the z axis (mz) shine from

each side. The angular momentum projection is equivalent to the handedness of the

circularly polarized light. This setup is shown in figure 2.2 a). The energy levels for

an excited state with angular momentum F = 1 are shown in figure 2.2 b), along

with a green stripe to show the energy of a photon in the lab frame. The width of the

stripe indicates the natural linewidth of the transition. We’ll assume for simplicity

a transition from F = 0 to F = 1. Conveniently, this is the structure of the cooling
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Figure 2.2: Cartoon of a Magneto-Optical Trap. The MOT may be visualized as a

pair of Zeeman slowers each aimed at the same point. An atom moving to the right

will be slowed and stopped to the right of the magnetic field zero.It will receive a

small kick back toward the field zero and eventually be slowed and turned around to

the left of the zero. This allows a sample of cold atoms to accumulate near the field

zero.

transitions for 174Yb, the isotope the experiments described in this dissertation were

carried out with.

A fast-moving atom entering from the left would see the cooling light Doppler

shifted too high in frequency (energy) to transition to the mz = −1 excited state.

However, as it moves to the right the energy of the mz = +1 will drop due to the

changing magnetic field until it is on resonance. The light from the right has the

correct polarization to reach the mz = +1 state, and so the atom will begin scattering

this light. The atom responds the same way that an atom moving through a Zeeman

slower would: As it slows it may move out of resonance, but as the field changes

it will come back into resonance, with this sequence repeating until it finally stops.

Stopping in a place where it is in resonance would cause continued scattering of the

leftward moving light until the atom begins moving to the left itself, quickly coming

out of resonance through the combination of the Zeeman shift and the Doppler shift.
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as it moves to the left, the energy of the mz = −1 state will continue to lower until it

is on resonance with the light shining from left to right (including the small Doppler

shift). This light can address the mz = −1 state and so will slow and stop the atom

again. This process repeats, cooling the atom in each pass and eventually ending with

the cold atom confined to a small region near the point where Bz = 0, denoted z = 0

for convenience in the figure. The final temperature achieved in a MOT comes from

a competition between the dissipative cooling that absorption of red-detuned light

creates and the diffusion in momentum space due to the spontaneous scatter of those

absorbed photons. The minimum attainable temperature of ~Γ/(2kB), achieved with

a detuning of ∆ = Γ/2, is known as the Doppler limit.

The MOT in three dimensions implements this scheme in all three dimensions

simultaneously. The dynamics are then more complex—to my knowledge no useful

analytic approximation for the three dimensional case has been found—but qualita-

tively they follow the straight-forward expectation based on extrapolation from the

one-dimensional case. In our lab, this configuration is implemented with a quadrupole

magnetic field, which gives a magnetic field gradient in each dimension with all three

components zeroed at the same position. Each of three orthogonal axes has laser

beams with the proper circular polarization coming in and retro-reflections of those

beams with opposite polarization coming back out (achieved with a quarter-wave

plate before the retro mirror).

2.2 Ytterbium

While the theoretical results in this dissertation apply to a variety of atoms, the

experiments were all performed using ytterbium-174 (174Yb). Ytterbium has atomic

number 70 and is found at the end of the lanthanide series on the periodic table. This

means it has a completely filled 4f shell in addition to a filled valence 6s shell. This

structure makes it similar to alkaline earth metals, such as calcium and strontium. It

has seven stable isotopes, five bosons and two fermions. Each of the bosons has zero
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Figure 2.3: Ytterbium facts. Yb is found at the end of the lanthanide series on the

periodic table. The top right table shows the stable isotopes of Yb along with their

nuclear spin and natural abundance. Only 168Yb has an abundance low enough to

make laser cooling from an unenriched sample difficult. The fermions are indicated

by cyan highlighting. The level structure relevant to laser cooling Yb is shown in the

lower right.

nuclear spin.

The ground state is a 1S0 state. Since the electrons have neither orbital nor spin

angular momentum, it has no ground-state hyperfine structure. There are two transi-

tions of interest for laser cooling. The 1S0 → 1P1 transition is a strong electric dipole

transition with a width of 28 MHz and a wavelength of 398.9 nm (violet/near UV).

The 1S0 → 3P1 transition, with wavelength 555.8 nm (green), is an intercombination

transition. This refers to an electric dipole transition that violates a selection rule,

but nonetheless occurs because the excited state actually contains a small admixture

of a state that does not violate the selection rule. For the intercombination line of

Yb, spin-orbit coupling mixes the 3P1 and 1P1 states. Mathematically, one sees that

inserting the spin-orbit coupling perturbation term into the dipole matrix element

gives a nonzero amplitude. Since Yb has a large nucleus, the spin-orbit coupling is
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fairly strong, giving a transition width of 180 kHz. The other 3P states, 3P0 and

3P2 are metastable with lifetimes in excess of 10 s. While these are of interest to

many experiments, their strong inelastic scattering rates make them infeasible for

Bose-Einstein condensation, so we will ignore them for now.

For laser cooling, these two very different transitions fit nicely into the two require-

ments of Zeeman slowing and magneto-optical trapping. The strong, violet transition

is used for Zeeman slowing since the fast scattering rate and relatively large per pho-

ton momentum give large acceleration. Our Yb slowers have interaction regions no

more than 30 cm long. The weak, green transition allows for cold MOTs. We have

achieved final temperatures as low as 12 µK for MOTs running on this transition,

about 3 times the Doppler limit of 4.5 µK from Γ = 2π ·180 kHz. In contrast, a MOT

run on the violet transition would have a Doppler temperature around 700 µK.

Early laser cooling and trapping experiments were done exclusively with alkali

metal atoms. Since these remain the dominant species in cold atoms experiments,

we briefly review the differences in cooling alkalis versus Yb for readers who may be

more familiar with alkali atoms.

The violet transition is five to ten times stronger than the D2 lines used for slowing

and cooling alkalis. It is also shorter wavelength (i.e., higher photon momentum).

While this gives a stronger scattering force, Yb’s large mass means the acceleration

is not as much greater as the force might suggest. Frequently the heavier alkalis,

rubidium and cesium, are loaded from a room temperature vapor rather than requiring

an oven and Zeeman slower. Ytterbium’s low vapor pressure precludes this option.

The narrowness of the green transition gives our green Yb MOTs Doppler temper-

atures more than an order of magnitude lower than those of alkalis operated on the

D2 line. However, the alkalis with resolved excited state hyperfine structure (Na, Rb,

and Cs) partially make up for their high Doppler limits through sub-Doppler cool-

ing. For bosonic Yb, this is not an option due to the lack of any hyperfine structure.

Fermionic Yb can in principle benefit from sub-Doppler cooling as well. While hints
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of such cooling in a green MOT have been reported[65], the temperatures achieved

were still well above the Doppler limit and so not evidence of useful sub-Doppler

cooling. Recently, sub-Doppler cooling was observed in a violet MOT[55]. The final

temperature was 200−400 µK. While this is not competitive with the green MOT for

final temperature, it could be a way to increase transfer from an initial violet MOT

into a green MOT.

While the green MOT is desirable for its low temperatures, the weakness of the

transition also reduces the capture velocity of the MOT. Capture velocity is the

largest speed an atom can have and still be slowed quickly enough to be caught in the

MOT. We have found substantial improvement of the MOT capture by modulating

the frequency of the MOT light, artificially broadening the laser to several megahertz,

compared to our detuning of −8 MHz. Generally, one uses light relatively far detuned

from resonance for MOT loading, to increase the capture velocity. Then, before

loading into a conservative trap, the light level is reduced as the detuning is brought

close to resonance, known as compressing the MOT. The far-detuned MOT cannot be

as cold or as dense as the near-resonance MOT, so compression is key to good loading

into conservative traps. In our case, the modulation is ramped to zero during the

final MOT compression phase, allowing us to take full advantage of the low Doppler

temperature for loading into our conservative trap. The end of our compression phase

is generally at a detuning of −2Γ to −Γ/2 and an intensity well below the saturation

intensity of 140 µW/cm2. For comparison, our MOT beams have an intensity around

4 mW/cm2 for the loading phase. These parameters allow us to load about 5 million

atoms into our conservative trap. The importance of the conservative trap is for

evaporative cooling, which we now turn to.

2.3 Evaporative Cooling

While temperatures near 10 µK are quite cold, for our systems they are still about one

and a half to two orders of magnitude above the condensation transition temperature.
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From the MOT, we transfer our gas into a conservative potential and then cool it

further via evaporative cooling.

The concept of evaporative cooling is straight-forward. A thermal distribution of

particle energies in a gas has a long, high-energy tail. The small number of particles

with energies in this tail have a per particle energy far higher than the average for the

gas. Evaporative cooling consists in providing the particles in the high-energy tail a

path out of the sample. The concept was first described[44] and implemented[66] in

magnetically trapped spin-polarized hydrogen.

As the name implies, this is essentially the process at work in cooling a cup

of coffee. The highest energy molecules in the coffee are the ones with sufficient

energy to break the surface tension and be freed as vapor. As such, these evaporating

molecules remove more energy than the average energy per particle. Once the liquid

re-thermalizes (i.e., distributes energies into an equilibrium distribution via collisions),

it will be at a lower temperature due to the lower energy per particle. Luckily, in

coffee the particle energies able to leave the coffee remain constant. As the coffee

cools and fewer particles have such high energies, the cooling rate drops.

For cold atom experiments, unlike coffee, we want to boost the speed of the cooling

process rather than keep it slow. To do this, we progressively reduce the energy

required to escape from the trap. This keeps the loss process (the “evaporation”)

moving at a fairly constant rate, rather than allowing it to stall out as in cooling

coffee. Figure 2.4 depicts this as a sequence of repeated discrete steps. First the

energy required for a particle to leave the trap is reduced. Next, collisions re-establish

the thermal distribution, possibly kicking some extra atoms out in the process. Then,

we repeat. Realistic experiments generally reduce the energy needed to escape (i.e.,

the trap depth) continuously. This process of trap depth reduction is known as

forced evaporative cooling. For this process to work efficiently, it is key that the

particles continue to interact strongly enough to keep the energy distribution nearly

thermal. The density and two-particle interaction strength set the time scale for re-
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Figure 2.4: Forced evaporative cooling. The process of forced evaporative cooling can

be visualized as having two steps. Beginning with a thermal distribution as shown on

the left, the trap depth is reduced, as shown in the middle. This causes the highest

energy atoms (purple here) to be no longer trapped. After these have gone away,

collisions in the trap re-establish a thermal distribution, as shown on the right. In

this process, some extra atoms may be lost (blue here). The trap is now ready for

another reduction in depth. Real experiments generally have a continuous reduction

of trap depth, done slowly enough as to keep the gas nearly thermalized.
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thermalization and with it the rate at which the trap depth may be decreased without

badly lowering efficiency.

The first gaseous Bose-Einstein condensates were produced in rubidium[2] and

sodium[25] using forced evaporative cooling in magnetic traps. The specific path

out of the sample used in these experiments is known as an rf-knife. In a magnetic

trap, atoms in a low-field seeking hyperfine state are trapped near a minimum of the

magnetic field3. The technique uses the larger Zeeman shift seen by higher energy

atoms, due to their ability to move further from the center of the trap. By applying an

rf field with frequency set to only address the most energetic atoms, their spin may be

flipped to an untrapped state, releasing them from the trap. The frequency is steadily

lowered until the gas is cooled to the BEC state. An advantage of this technique as

compared to the other main technique used today is that the trap shape does not

change with time. Thus, density increases steadily as temperature decreases, keeping

the thermalization rate constant, or even causing it to increase, as temperature is

reduced.

The other technique alluded to above is evaporation in an optical dipole trap

(ODT). Since Yb has no ground-state electron angular momentum, magnetic trapping

is not an option. An ODT takes advantage of the polarizability of atoms to trap them

using light tuned to a frequency below an atomic resonance. For such light, referred to

as red detuned, the atomic energy is shifted by−αE2, where α > 0 is the polarizability

and E is the amplitude of the light’s oscillating electric field. Heuristically, one can

imagine the valence electron as a classical oscillator. For frequencies below resonance,

the electron can follow the direction of the electric field as a function of time. Thus,

3A straight-forward way to create a magnetic field minimum in a static configuration is to create
a point with zero field. However, it is key to BEC in magnetic traps that the magnetic field
zero not be accessible to the atoms. In the absence of magnetic field they may easily change
hyperfine state to an untrapped state and be lost from the trap. Real magnetic traps use a blue
detuned laser beam to make the zero crossing inaccessible, move the field zero in a quick orbit
creating a time-average potential, or a zero in two components plus a curved bias field in the third
component.
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the atom has an induced electric dipole moment that is automatically anti-aligned to

the electric field, reducing the atom’s energy.

Our experiments load an ODT with 174Yb from a cold, compressed MOT. The

forcing process for optically trapped atoms involves simply reducing the intensity

∼ E2 of the trapping beam, thereby reducing the depth of the potential. Optical

trapping allows for tighter confinement than magnetic traps. It also allows for trap-

ping of any hyperfine state or atoms with no magnetic moment, unlike magnetic

trapping. However, the reduction of intensity causes the trap to lower in both depth

and confinement. This creates the potential for a forced evaporation ramp to stall at

low temperatures as the thermalization rate can decrease under lowered confinement.

With careful tailoring of the rate of intensity reduction, this problem can generally

be avoided.

More specifically, we use a 1064 nm wavelength fiber laser to create our trap. Our

trap consists of two focused beams—generated by splitting the single laser beam out of

the fiber—crossed at an angle of about 20◦ in the center of the main chamber. The two

beams have orthogonal linear polarizations to inhibit scattering of photons between

the beams. For loading Yb, we have about 10 W in each beam (we found a slightly

uneven splitting of the laser power between the two beams to give a small boost

in loaded number). For interferometry we use an evaporation ramp that lowers the

power in two exponential stages. There is a hold between the stages, with temperature

around 1 µK, to allow any center of mass motion initiated by the first ramp to damp

out. Such motion may be caused by the focal points of the two beams moving in

response to temperature changes in optical elements as the power is ramped down.

The second, slower ramp ends at a per-beam power of ≈ 30 mW, producing a pure

BEC of up to 300,000 atoms. We now turn, finally, to discussing the BEC state.



22

2.4 Bose-Einstein Condensation

A Bose-Einstein condensate is a state of matter in which a macroscopic number of

particles (i.e., a fraction large compared to 1/
√
N) occupy a single quantum state.

We begin by considering a non-interacting gas, as interactions introduce technical

complications unnecessary to understanding the concept of BEC.

As the name implies, the bosonic nature of the particles is critical to the existence

of this state of matter. We will quickly review some key statistical results as they

relate to the BEC transition. The reader seeking more detail or thorough derivations

should consult any standard statistical mechanics text, as I am doing right now[77, 83].

The expected occupation 〈nε〉 of a state with energy ε in a system with chemical

potential µ is 〈nε〉 = (exp[β(ε−µ)]− 1)−1, where β = 1/(kBT ), T is the temperature,

and kB is Boltzmann’s constant. For the simple picture of macroscopic occupation of a

state given above, we see that the expected occupation blows up if µ = ε. Since actual

divergence or negative values should not occur for a physical expected occupation,

the boson’s chemical potential should be below the energy of any state. Macroscopic

occupation is accomplished as µ → ε0, where ε0 is the energy of the ground state of

the potential holding the system.

As a concrete example, consider a large, homogeneous box with volume V . Using

periodic boundary conditions, it may be shown that the density of states is propor-

tional to
√
ε, because the energy is simply p2/(2m) in a flat potential. The density

of states is a good approximation to the discrete energy levels so long as no level has

large occupation. It also gives an incorrect result of zero states at zero energy. For a

room temperature gas, or even one far below room temperature, these deviations are

negligible for calculating the state of the system.

For a given µ, we define the fugacity z ≡ eβµ. Treating the states as continuous

and integrating we find the expected number of particles to be

〈N〉 =
2πV (2mkBT )3/2

h3

∫
dx

x1/2

z−1ex − 1
=

V

λ3
T

g3/2(z) , (2.2)
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where λT = h/
√

2πmkBT is called the thermal de Broglie wavelength and g3/2(z) =∑∞
j=1 z

j/j3/2—known as the Bose-Einstein function of order 3/2—simply comes from

carrying out the integration. Making use of the number density n, this may be

rewritten as

〈n〉λ3
T = g3/2(z) . (2.3)

Since 0 < z < 1, the right hand side of (2.3) is bounded to be no larger than

g3/2(1) = ζ(3/2) = 2.612 . . . . Then, for a given density, there is a temperature below

which (2.2) cannot be correct. Since the equation ignores the ground-state occupation,

the conclusion is that at this temperature a macroscopic fraction of particles begin to

occupy the ground state. This is the critical temperature TC for the BEC transition.

The quantity on the left side of (2.3) is referred to as the phase-space density. The

phase-space density can be understood more clearly if we rewrite it as nλ3
T = (λT/`)

3,

where ` is the inter-particle spacing. When this quantity is much less than one, as is

true for T � TC, λT essentially sets the scale for correlations in the gas. Quantum

interference effects can only meaningfully impact the state of the system to the extent

that correlated particles overlap. The ratio λT/` is proportional to correlation length

divided by inter-particle spacing, the key comparison for determining the relative

importance of quantum interference. Thus, the phase-space density can be seen as

a measure of the importance of quantum effects to the state of the system. As the

transition is approached, λT/`→ 1, allowing many-body correlations to grow (i.e., if

particle 1 is strongly correlated with particle 2 and 2 is strongly correlated with 3,

then 1 and 3 will also be correlated). At this point the correlation length diverges,

being no longer controlled by λT. This physical space picture of growing correlations

leading to macroscopic occupation of the ground state is depicted in the left column

of figure 2.5.

The term “phase-space density” can be clarified by rewriting it in yet another
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Figure 2.5: The condensation transition in position, phase, and momentum spaces.

The three columns show the condensation phase transition in three different repre-

sentations. In each column, the top picture shows a gas just above TC, the middle

picture a gas just below TC and the bottom picture a gas well below TC. The left

column depicts the growth of spatial correlations as the phase-space density grows.

The red curves represent interference between particles in the gas. The thick red

curve shows the interference of many particles in the condensate as it grows. The

middle column shows phase space as energy levels for a gas trapped in a harmonic

oscillator. Each red dot indicates a single particle in a particular energy level. The

right column shows time of flight absorption images as insets and plots of a slice

through the center as blue points. Time of flight imaging essentially displays the

momentum-space density of the gas in the trap. The dashed curves show a Gaussian

fit from the edges of the distribution, which gives the fraction of the cloud effectively

described by Maxwell-Boltzmann (classical) statistics.
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form:

nλ3
T = N

(
V (mkBT/(2π))3/2

~3

)−1

= N

(
VsVp
~3

)−1

=
N

Nstates

, (2.4)

where Vp is the effective volume in momentum space, and Nstates is the number of

states accessible to a particle in the system at the given temperature. The second

equality shows that the phase-space density can literally be seen as the density in

phase space (i.e., particle number divided by the accessible volume of phase space).

Since ~3 is the smallest meaningful volume element in phase space—as seen from

the indeterminacy relation ∆x∆p ≥ ~—the accessible volume over ~3 is effectively

just counting accessible states. A phase space density approaching 1 means that

the granularity of phase-space is becoming important. Again, phase-space density is

measuring the importance of quantum effects.

This idea is shown in the middle column of figure 2.5. Here we consider instead a

gas in a harmonic trap, since the available states then correspond to the evenly spaced

energy eigenstates of the harmonic oscillator4. A red dot indicates a single particle

occupying a particular energy level. As seen in this progression, increasing phase

space density means fewer empty states available and, as TC is approached, more

levels with multiple occupancies. While the exact value of the phase-space density

required for the phase transition is not the same in a harmonic trap as in a flat box

potential, it turns out that if you use the density at the center of the trap (where

density is highest) to calculate the phase space density, then the criterion becomes

the same. This is an example of the “local density approximation.” Essentially, the

transition begins when any part of the sample shows a phase space density above 2.6.

The final depiction in figure 2.5 is a momentum-space representation. The inset

black and white pictures are time of flight absorption images from our lab. Such

a picture is made by turning off the trap and allowing the gas to expand into the

surrounding vacuum. After some time, light resonant with the strong violet transition

4We ignore the degeneracy of excited energy levels in a three-dimensional harmonic oscillator,
such as our cold atom traps, as they do not qualitatively change the argument.
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in Yb is shone at the expanded cloud. A CCD camera takes a picture of the shadow

cast by the cloud. From these pictures we can determine the density by the fraction

of resonant light absorbed. The position of an atom after expanding for a time t is

x0 + v0t, where x0 and v0 are the position and velocity in the trap at the time it is

turned off. For a sufficiently long time t, v0t can be much larger than the variance of

x0 for the sample. This means position in the image actually corresponds to velocity,

or momentum, in the trap. Thus, the pictures actually show the momentum-space

density in the trap just before turn off5. The blue dots show the density in a cross-

section of the image through the center. The dashed curves are Gaussian fits to the

edges of the distribution. This essentially shows the “thermal” component of the gas,

that is, the atoms not in the BEC. Notice also that representative temperatures are

given for the top and middle pictures, which place TC ≈ 250 nK. Since the evaporative

cooling process involves changing the confining potential as the temperature drops,

the values of TC implied by the two pictures do not agree exactly.

The key aspect of the BEC itself, a macroscopic number of atoms in the same

state, is a great advantage for precision interferometry. With a large number of

atoms in the same quantum state, the effect of an applied classical potential will be

the same on each atom. We can, in effect, have a 100,000 atom condensate perform

100,000 identical single-atom experiments. This gives great advantages in signal-to-

noise compared to a thermal atom source where 100,000 similar but not identical

atomic experiments are performed in parallel. The coherence of the BEC source leads

to long coherence times in the interferometer.

The downside of a BEC for precision interferometry is its higher density. We con-

sidered a noninteracting BEC for simplicity above. However, real BECs almost always

have inter-atomic interactions. While the BEC transition still leads to macroscopic

5In a BEC, the effects of interactions are sufficiently strong that the expansion is dominated by
the conversion of interaction energy to kinetic energy rather than the actual in-trap momentum.
Nonetheless, there is a clear visual signature of BEC in the absorption images due to its anisotropic
expansion. A non-interacting BEC would give a very similar picture, just smaller.
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occupation in this case, the state so occupied changes with the number of atoms in

the BEC. As described in Chapter 9, the lowest-energy state can be determined from

a Hamiltonian that takes the atomic interactions into account. So, while the atoms

are all in the same state, knowing the state is more complex than simply finding

the single-particle ground state of the potential. More importantly, the interactions

shift the atomic energy enough to impact the delicate measurements in a precision

interferometry experiment. Chapter 9 is devoted to understanding and subtracting

these effects from the results of a BEC interferometer.
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Chapter 3

ATOM INTERFEROMETRY

3.1 Interference with Light

One of the classic experiments in interference is the Young’s double slit experiment.

A pair of thin apertures are illuminated with coherent light—either from a modern

coherent source such as a laser or, as in the original experiment, from monochromatic

light passed through a single thin aperture upstream, as depicted in figure 3.1. On a

screen downstream from the two slits, a pattern of alternating light and dark bands

appears. If you had no experience with waves (i.e., no knowledge of interference), you

might be surprised to see more than two bright areas produced by only two apertures.

Indeed, the phenomena of interference are definitional of wave behavior as compared

to particle behavior.

In figure 3.1, the waves are represented by wavefronts. These green curves repre-

sent points which have identical phase at a given instant, for instance the crests of

the waves. This picture is intuitive if you have ever watched ripples on the surface of

a lake or river. We expect waves to spread with time in an orderly train. The ripples

on a lake, or the ripples of electromagnetic field that we perceive as light, propagate

according to wave equations. The electric field ~E of some light propagating through

space will follow the equation

∇2Ej −
1

c2

∂2Ej
∂t2

= 0 . (3.1)

The structure of this equation gives the diffraction and interference phenomena we

associate with wave motion.

An alternative picture looks at the paths a particular wavefront could have taken
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Figure 3.1: Young’s double slit. Monochromatic green light incident on the single slit

at the left, diffracts to produce coherent wave fronts, shown as green curves spreading

as they move off to the right. The wavefronts represent crests (maxima of the electric

field) at a particular moment in time. When this light reaches the pair of slits in the

middle, most of it is absorbed, but some diffracts through each of the two slits, again

spreading as it moves away from a slit. At the screen on the right, where two crests

coincide, a bright spot appears. When a crest meets a trough (halfway between two

crests), a dark spot appears. An interference pattern as would be seen on the screen

is exhibited just to the right of the screen.



30

to arrive at the final observation point and adds them together. The idea is depicted in

figure 3.2. When the paths to a point all have the same phase, they add constructively,

giving a bright spot on the screen. In the figure, only two paths are depicted for the

two observation points—one passing through each slit. To calculate the entire pattern,

including the drop in overall intensity as you move away from the center of the screen,

the many paths available through the finite extent of the slits would all need to be

added together. While potentially less intuitive than the image of ripples spreading

as they move, this picture nicely connects the wave theory of light to ray optics. For

instance, the principle rays for finding the image point using a lens are defined so

that where they intersect, all paths from the object point to the image point have

the same phase. In fact, a convex lens is designed precisely so that the rays following

straight paths are delayed in time by the thicker glass in the middle. The shape of the

lens compensates shorter physical path length with longer delay in the glass, allowing

extra phase to accumulate, so the longer paths can interfere constructively at the

image point. This effective path length, in terms of phase accumulation is what is

often referred to as optical path length.

While this picture gives a different sort of intuition, it in fact follows the same

mathematics. The process of adding up all of the paths to determine the amplitude at

the final point becomes, mathematically, a process for calculating the Green’s function

for the wave equation (3.1).

In most interferometers designed for making precise measurements, the number

of paths light can possibly travel to reach the end point is intentionally limited to

two. In this way, one knows exactly what phase shift is introduced on the arm that is

being used for measuring. Because of this, the picture in terms of paths and optical

path length is convenient for analyzing the workings of various interferometers. We

will describe several useful interferometers, particularly those with analogs in atom

interferometry.

In a Mach-Zehnder interferometer, collimated light falls on a beam splitter, which
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Figure 3.2: Path based calculation of Young’s double slit. For two points on the

screen, the paths passing through each of the two slits are shown. If the phases of the

two paths are the same, the waves will interfere constructively, giving a bright spot.

If the phases differ by π, they will interfere destructively, giving a dark spot.
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Figure 3.3: Mach-Zehnder and Michelson interferometers. Figure a) shows the design

of a Mach-Zehnder interferometer. The input light at lower left is split into two paths

by the beam splitter. Mirrors send the two paths into the second beam splitter.

The brightness of the output at ports A and B is determined by the relative phase

accumulated between paths 1 and 2. Figure b) shows a Michelson interferometer.

The input light from the bottom left is again split into two paths. However, in

the Michelson geometry the two paths are returned to the same beam splitter by

mirrors. The brightness at the output port depends on the relative phase accumulated

by the two paths during their round trips. The second output port (necessary for

conservation of energy) is the input port.
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coherently splits the electric field of the incoming light into two components. As de-

picted in figure 3.3 a), one component reflects upward, while the other passes through

continuing to the right. Mirrors then direct the two components toward a second

beam splitter. This beam splitter has two output ports, A and B. Suppose the ini-

tial beam splitter perfectly split the incoming intensity 50-50, giving electric field

magnitudes of E0/
√

2 for each path. If the final beam splitter is also a perfect 50-

50 splitter, then the field at port A will be (E0/2)(1 + e∆θ12A), where ∆θ12A is the

phase difference between paths 1 and 2 on leaving port A. This gives an intensity

IA = E2
0 cos2(∆θ12A/2). By conservation of energy, the intensity at port B must be

IB = E2
0 sin2(∆θ12A/2)1.

Measurements of phase shifts along the paths may, therefore, be made by observ-

ing the output intensities at A and B. As a particularly simple example, suppose you

wish to know the index of refraction of a certain glass. It might be measured roughly

by observing the refraction of light passing through it. To refine the value, a piece

of the glass with known thickness could be placed into path 1 of a Mach-Zehnder

interferometer. The change in output intensities caused by inserting the piece of glass

would tell the change in optical path length caused by the glass, up to addition of in-

teger multiples of π. If the index of refraction were known well enough from refraction

studies to determine the number of integer multiples of π, then the interferometric

measurement would increase the precision of the value substantially. Alternatively, a

wedge of the glass with thickness growing from zero to some known value could be

slowly slid into the path and the number of intensity oscillations used to count the

number of π shifts at the known thickness.

This simple experiment points out two key aspects of interferometry. First, the

2πN ambiguity of phase measurements allows for extremely precise measurement,

1This implies that ∆θ12A − ∆θ12B = ±π. This must always be the case to conserve energy,
though the calculation of the phase shifts of the individual beams due to the beam splitter will
depend upon the design of the beam splitter and polarization of the incoming light.
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if the ambiguity can be removed. The intensity ratio at the two output ports can

be measured well with standard photodiode detectors. A one percent precise mea-

surement of this phase can become a one part in 104 precise measurement by simply

adding in the extra π phase shifts known from a one percent precise measurement

looking at angle of refraction. This idea of “bootstrapping” through interferometry

is key to success in fundamental measurements.

Second, for accurate measurements it is best to compare two experiments in which

only one aspect of one path has been varied. With the glass example this seems

relatively easy. However, simple seeming experiments often hide subtle difficulties.

For example, reflection at the surfaces of the glass may decrease the intensity in path

1 and so spoil the equality of intensities from the two paths. This would shift the

intensity ratio at the two output ports in a way having nothing to do with phase.

Reflections would constitute a systematic shift to the measured value, which does

not relate to the effect you actually wished to measure. Additionally, the extent

to which the well-measured optical path length difference may be converted into an

index of refraction will be limited both by knowledge of the glass’ thickness as well

as how close to perpendicular the surface of the glass is oriented to the incoming

light. This is a systematic shift that may be mitigated through careful alignment or

measured by slowly rotating the block, knowing that the optical path length should be

minimized at perpendicular orientation. Turning precise measurements into accurate

measurements requires long, careful consideration of systematic effects and, ideally,

additional measurements to allow their unambiguous removal.

Another useful interferometer is the Michelson interferometer. As shown in figure

3.3 b), collimated light is shone into one port of a beam splitter. The split light travels

down arms 1 and 2, is reflected back down them to the same port of the beam splitter

from which it came, and then comes out either the same port it came into or out the

fourth, otherwise unused, port of the beam splitter. Generally, the end mirror for one

of the arms will be movable, allowing the optical path length difference between the
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arms to be easily varied.

Suppose the two arms have exactly equal optical path lengths in arriving at the

output port of the beam splitter2. Then, no matter what wavelength of light is shone

into the interferometer, the output port will be bright. Now, suppose the movable

mirror is moved by a distance x. The phases of light from the two arms will now

differ at the output port by 2πx/λ. The phase of the interference at the output port

will depend on the wavelength of the light used. For example, if white light with

wavelengths spanning from 400 − 700 nm was shone in, an x larger than a couple

hundred nanometers would lead to totally different phases across the spectrum. So,

while slowly moving the mirror might allow one oscillation from bright to dark to

be observed, subsequent oscillations would be washed out by the broad spectrum of

the light. Filtering the white down to just green light 550 − 560 nm would allow

observation of roughly 30 oscillations before they became completely washed out.

For a given source of light, the distance x at which the contrast of the oscillations

has dropped by a factor of 1/e is called the coherence length of the source. Its value is

generally ∼ λ2/σλ, where σλ is the standard deviation of the wavelength distribution

in the spectrum. For lasers used in atomic physics experiments, the coherence length

can be more than a kilometer. For this reason, the change from less coherent sources

to lasers had a tremendous impact on optical interferometry. In addition to coherence,

lasers also generally bring far greater brightness, increasing their appeal still further.

For a Michelson interferometer with a mirror that can be smoothly moved over a long

distance, this connection between spectrum and coherence length can be inverted

to measure spectra. Such a device is called a Fourier transform spectrometer. As

a simple example, light from a gas emitting two closely spaced wavelengths, λ and

λ+ ∆λ, will have a coherence with a beat note equal to the inverse of the wavelength

difference. Thus, fringes will wash out and then return to contrast as the mirror

2Again, depending upon the characteristics of the beam splitter, this condition might or might
not be the same as saying the two arms have the same physical length.
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moves over a distance λ2/∆λ. The question of source coherence will be returned to

soon in the context of atom interferometry.

3.2 Interference with Atoms

As first postulated by de Broglie, matter also has a wave-like character, with wave-

length determined by the de Broglie relation λ = h/p. So, interference effects may

be seen with matter waves just as with electromagnetic waves. That we don’t see

such things on a daily basis is part of the difficulty in understanding how classical

mechanics emerges from quantum mechanics. Two aspects of matter waves make ob-

servation of interference effects difficult: Their wavelengths are generally much shorter

than those of visible light, and they interact with one another and their environment

far more readily than light does.

Interferometry with matter waves began not with atoms but with electrons. The

first electron interferometer[64], demonstrated in 1953, used the atomic lattice of thin-

film crystals as diffractive elements. Because of the short wavelength of electrons in

an electron beam, directly creating elements analogous to beam splitters and mirrors

was out of the question. Instead, many-order diffraction from three thin films was

used. Apertures were added to eliminate all but the desired paths through the inter-

ferometer. Twenty years later, a neutron interferometer was demonstrated[87]. This

used a single crystal of silicon etched to have three “blades” at which Bragg diffraction

occurred, simulating the effect of beam splitters and mirrors. This produced a Mach-

Zehnder interferometer for neutrons. This demonstration included inserting material

into one arm and observing modulation of the populations at the two output ports,

exactly analogous to our description above of the index of refraction experiment with

light. The analog of “bright” for matter waves is high density, or high count rate if

particles are being detected one at a time.

Atoms also have the possibility for internal state interferometry. In fact, it may be

argued that Ramsey spectroscopy is an atom interferometer[22]. In a Ramsey spec-
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troscopy experiment, the paths 1 and 2 are not different spatial paths, but rather,

different internal states. The initial π/2 pulse is like a beam splitter, setting up a

coherent superposition between two internal states the same way that a beam splitter

sets up a coherent superposition between two spatial states. After some free evolu-

tion, the second π/2 pulse acts as another beam splitter, now with inputs from both

the 1 and 2 paths. Whether the atom comes out in state 1 or 2 depends on the phase

evolution between the two beam splitters, just as in an optical Mach-Zehnder inter-

ferometer. These connections are important, as they allow ideas to flow more easily

between spectroscopy and interferometry. Indeed, we will return to the conceptual

connections in chapter 6, when we introduce a momentum-space Ramsey interferom-

eter. For the purposes of this thesis, when we speak of an atom interferometer, we

will be referring to a matter wave, not internal state, interferometer.

Despite another nearly twenty year gap between the first neutron interferome-

ter and the first atom interferometers, 1991 saw demonstrations of four different

atomic matter wave interferometers: A simple double-slit experiment using mate-

rial slits[16], a Mach-Zehnder interferometer using material diffraction gratings[50], a

Mach-Zehnder interferometer using stimulated Raman laser pulses as beam-splitters

and mirrors[49], and a Sagnac interferometer made by rotating a Ramsey spectroscopy

experiment. Material slits were made by cutting slits into thin gold foils, forming the

exact same apparatus as described for the Young’s double slit experiment above. Ma-

terial gratings are the natural extension of thin membranes (silicon nitride in this

case) with many precision etched slits in them; these are just transmission diffrac-

tion gratings but with shorter spatial periods than necessary for optical transmission

gratings.

The use of light pulses, as in the third atom interferometer, is a new facet of

atom interferometry. Though, in a certain sense it is the most natural approach: Just

as matter is used to split, reflect, and recombine light for optical experiments, light

may be used to split, reflect, and recombine matter waves for atomic experiments.
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The third interferometer uses two counter propagating laser beams, with a frequency

difference equal to the 23Na hyperfine splitting, to drive stimulated Raman transitions.

Since such a transition involves absorbing a photon from one beam and stimulatedly

emitting into the other, the atom picks up a net momentum kick of twice the single

photon momentum in the course of the Raman process. A π/2 pulse puts each

atom in an equal superposition of the two hyperfine states, but it also entangles the

momentum state with the internal state. Alternatively, this pulse may be thought of

as a 50-50 beam splitter that happens to tag the two paths by internal state (roughly

analogous to a polarizing beam splitter for light). It turns out that analogs of these

Raman processes may be carried out for transitions in a single internal state. That

is, counter-propagating laser beams may be used to drive two-photon transitions that

leave the internal state unchanged but give the two-photon momentum kick. Such

pulses can be tailored to act as beam splitters of any splitting ratio, including fully

reflective mirrors. These sort of pulses will be considered in significant detail in section

5.2.

Rather than giving a detailed account of all that is possible with atom interfer-

ometry, we refer the reader to the excellent review of Cronin et al[22]. This contains

an exhaustive list of various styles of atom interferometer, as well as a table of avail-

able tools for implementing atomic analogs of many optical components. Instead, we

return briefly to see how ideas mentioned in discussing light interference appear in

atom interference.

For the Young’s double-slit experiment, we considered two different descriptions.

Each has a direct carry over to atom interference. The quantity of interest for atoms

is the wave function ψ, which must be squared to find the atomic probability density

at a point, just as the electric field must be squared to find the light intensity at

a point. The wave function may be propagated as a spreading wave just like light

waves. The wave equation for the electric field is here replaced with the Schrödinger
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equation

∇2ψ − 1

i~/(2m)

∂ψ

∂t
= 0 , (3.2)

for the wave function of a particle with mass m. In fact, for spinless particles the anal-

ogy can be made even stronger, as the Schrödinger equation is just a non-relativistic

limit of the Klein-Gordon equation

∇2ψ − 1

c2

∂2ψ

∂t2
= m2ψ . (3.3)

The other description made use of optical paths to build up the amplitude at a

specific point. This optical path description becomes the path integral description

for matter waves. Here rather than the simple 2πx/λ for light, the phase of the

matter wave evolves according to the action (i.e., the time integral of the Lagrangian)

of the particle. As with light, the two descriptions are equivalent, with the path

integral representing a particular way to build the Green’s function for the Schrödinger

operator[91].

Finally, let us return to the question of coherence length. For an optical interferom-

eter, the coherence length of the source light is set by the distribution of wavelengths

emitted by the source. White light has a coherence length on the scale of a micron,

while nearly monochromatic light such as that emitted by a laser can have a coherence

length of a kilometer or more. Similar considerations follow for atom interferometry.

Through the de Broglie relation, we see that wavelength distribution maps directly to

momentum or velocity distribution. So, the coherence length relates to the tempera-

ture of the source. Techniques for cooling an atomic gas, such as those described in

chapter 2, can be used to increase the coherence length of atom interferometers. The

limit of cooling bosons into a BEC corresponds, in both brightness and coherence, to

use of lasers in optical experiments. We turn now to the question of how BECs have,

and potentially could, impact matter wave interferometry.
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3.3 BECs in Interferometry

The first observation of interference in a BEC came from the Ketterle group in 1997[4].

This constituted the first direct observation of the long-range coherence that defines

the BEC state. A magnetically trapped cloud was split in two by a blue-detuned light

sheet before evaporation to the BEC had completed, thus producing two independent

condensates at the end of evaporative cooling. The fact that a single interference

pattern was formed across the entire cloud demonstrates the long-range first-order

coherence (i.e., that a macroscopic wave function describes the condensate well) of

each individual condensate, just as interference between two laser beams demonstrates

the first-order coherence of the individual lasers.

The Phillips group at NIST made further measurements of the first-order coher-

ence of a BEC, both in a trap and after some expansion time following trap turn-

off[38]3. Each of these measurements matched the predictions of mean-field theory4.

The in trap measurement gave the amplitude of the condensate wave function. The

post-expansion measurement revealed the loss of coherence across the condensate due

to the expansion process. The experiments made use of a momentum-space Ramsey

interferometer: a pair of short diffraction pulses with a variable time between pulses.

As the phase of the moving state evolved relative to the stationary state, the second

pulse acted as a continuation of the first pulse or a cancellation of the first pulse (or

anything in between depending on the exact phase). In addition to measuring the

coherence of the BEC, such a measurement is also a rudimentary recoil frequency

measurement, as will be discussed further in 6.1.2.

Having mapped the in-trap condensate wavefunction’s amplitude, given its con-

stant phase, and having seen the effects of phase curvature in the expanded conden-

sates, the Phillips group next mapped the phase curvature of expanded condensates[94].

3These measurements complimented non-interferometric measurements of the coherence such as
Bragg spectroscopy[96].

4Mean-field theory is described in section 9.2.
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This was accomplished with a modified Mach-Zehnder interferometer. The final re-

combination pulse was fired at times slightly off from the point of perfect overlap. This

created a fringe pattern whose spacing changed as they varied the spatial offset of the

two condensate branches at the time of the recombination pulse. With this technique

they measured both the evolution of phase curvature during condensate expansion

and the extra velocity kick given to the branches as they separate. These effects are

relevant to the experiments described in this dissertation, as will be discussed in 9.5.

From these early experiments demonstrating properties of the BEC state, inter-

ferometry has moved on to using condensates as sources for external measurements.

We highlight a few of the key results in the field.

The Ketterle group continued to explore interferometers using double-well geome-

tries. They refined their methods, eventually switching to an optical dipole trap for

coherently splitting a single condensate into two independent parts with a double-well

trap5[92]. This produced deterministic phase differences, allowing phase shifts to be

applied to one part and then measured by observing the resultant phase shift of the

fringes.

Finally, the Ketterle group moved to magnetic traps on an atom chip (i.e., a small

flat device with wires deposited on the surface). After some initial difficulties[93], they

found a repeatable trap splitting process using radio frequency dressing of a single-

well trap to create the double-well potential[48]. This splitting process produced

demonstrable number squeezing due to the repulsive atom-atom interactions. In this

same work they demonstrated a confined interferometer on the chip with a Sagnac-like

geometry.

The Sackett group at UVA demonstrated a confined Michelson interferometer[32].

Their experiments have been carried out in a magnetic waveguide—essentially just

5The double-well was produced by simply driving the ODT accousto-optic modulator with two
radio frequencies. This turned the single-well ODT into two as the two frequencies give slightly
different deflections and therefore create two foci very close to one another.
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a magnetic trap with low trap frequencies, one of which is particularly low and so

treated as the axial direction in the waveguide. They have demonstrated several in-

terferometer geometries in their confined waveguide, e.g. a Sagnac interferometer[13].

Magnetic waveguide interferometers tend to be limited by fluctuations and deviations

from perfect harmonicity in the magnetic field induced potential.

A large collaboration, spearheaded by Ernst Rasel from Hannover, hopes to per-

form BEC interferometry in space. In the near term, they have demonstrated long

experimental times on the order of one second in microgravity using a 100 m drop

tower[75]. The use of “delta kicked cooling,” that is, turning off the trap and then

turning it back on after one quarter of the trap frequency to reduce momentum width,

has helped signal quality for such long interferometer times.

The Kasevich group recently demonstrated interferometric contrast with a mo-

mentum splitting of 102~k[19]. While ≈ 18% contrast was maintained, technical

noise destroyed any interferometric information, i.e., there was a visibility of zero.

With their 10 m high interferometry chamber, this could lead to dramatic arm sep-

arations and extremely high precisions in the future, if the technical noise can be

rooted out.

Significant advances in the use of BECs for accelerometry and gravimetry have

been made by the group of John Close at ANU. Utilizing a Mach-Zehnder geometry

and large-momentum transfer (LMT) beam splitters—a combination of Bragg pulses

and Bloch oscillations—they explored the role of source coherence in an atom interfer-

ometer for gravimetry[26]. They found markedly better fringe visibility with a BEC

source compared to a thermal source with the same longitudinal momentum width.

Additionally, they demonstrated a similar interferometer in an optical waveguide

(one beam from their crossed ODT) in which they achieved measurable fringe visibil-

ity even at momentum splittings of 80~k[67, 68]. The optical waveguide provides a

much smoother and more repeatable potential than the magnetic waveguides used by

other groups. Using this trap, they made further study of the role of source coherence,
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comparing a BEC to various thermal sources with nearly identical longitudinal mo-

mentum distributions. They again find a noticeable drop-off in fringe visibility for the

thermal sources, as well as loss of coherence on much shorter time scales. However,

the data do not seem convincing that this is strictly related to coherence rather than

simply to the differences in transverse kinetic energy in the various sources6. For a

dual species 85Rb −87 Rb BEC interferometer in the optical waveguide, they find a

substantial phase shift due to interspecies interactions. Interaction shifts will likely

be a strong effect in eventual high-precision experiments in such a waveguide, as the

transverse confinement tends to keep atomic density relatively high.

A recent result from the Close group demonstrates a strong increase in fringe

visibility and coherence time by use of bright solitons, as compared to non-interacting

BECs, or those with weak interactions (attractive or repulsive)[69]. While the use

of solitons may in the future be a boon to precision measurement, far more study

is needed. However, this work does bring us full circle in the consideration of BEC

interferometry. Initial BEC interferometers were used to study the properties of the

BEC state. Now, potentially more exotic many-body states can be studied similarly

and perhaps evolve into tools for ever finer precision measurements.

6While this could conceivably be considered to be a part of “coherence,” the transverse momentum
spread is not generally a concern for coherence in optical interferometry, nor does it relate directly
to the questions of long-range, first-order coherence discussed earlier.
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Chapter 4

THE α AND THE ωREC

This chapter details the larger context in which recoil measurements should be

seen. Recoil measurements use a mass measurement to determine the fine structure

constant. The particular importance of the fine structure constant is detailed. Af-

terward, the history of recoil measurements is sketched. Finally, the importance of

recoil measurements in testing fundamental physics is explained.

4.1 The Fine Structure Constant

The fine structure constant, denoted α, is defined (in SI units):

α =
e2

4πε0~c
, (4.1)

where e is the charge on the electron, ε0 is the permittivity of free space, and c is

the speed of light. The CODATA recommended value is α = 0.0072973525698(24),

though it is more often written in terms of its inverse, α−1 = 137.035999074(44).

As the name suggests, this combination of constants got its own name in the course

of trying to understand the fine structure splittings in the spectrum of hydrogen.

Specifically, in 1916, Arnold Sommerfeld introduced a theory of elliptical orbits in the

Bohr theory of the atom and calculated relativistic corrections to the energies of such

orbits. In the course of these studies he defined the fine structure constant, which

he called a “new abbreviation.”[76] Sommerfeld interpreted this new constant as the

ratio of the speed of an electron in the first Bohr orbit to the speed of light.

From these humble beginnings, the fine structure constant has grown to immense

importance in physics. It occurs in many fields of physics, including atomic, condensed

matter, and high energy particle physics.
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In atomic physics, it controls the hierarchy of energy splittings observed in the

hydrogen atom[34]. The Bohr energy of the n = 1 level in hydrogen is 1
2
α2mec

2.

The fine structure, arising from a kinematic relativistic correction and the spin-orbit

coupling, has size two powers of α smaller α4mec
2. Yet another power smaller, α5mec

2,

is the Lamb shift, which arises from quantization of the electric field.

In condensed matter physics, many effects are related to the fine structure con-

stant. In the quantum Hall effect, a strong (generally multiple Tesla) magnetic field

is applied perpendicular to a two-dimensional electron gas (e.g., in a MOSFET). The

system exhibits quantized conductance with values equal to 2nα/(µ0c), where n is

an integer and µ0 is the magnetic permeability of free space[54]. Since µ0 and c are

defined quantities in SI units, a measurement of the Hall resistance in SI units leads

directly to a value for the fine structure constant.

In quantum field theory, the fine structure constant is the coupling constant for

electromagnetic interactions. As such, any perturbative expansion in quantum elec-

trodynamics (QED) is an expansion in powers of α. Desire to understand the Lamb

shift, mentioned above, gave much of the impetus for developing consistent calcula-

tional tools in QED, which lead to the 1965 Nobel prize for Tomonaga, Schwinger,

and Feynman. The gyromagnetic ratio for the electron is a fundamental physical

property connected to α through QED, about which we will say more soon.

The fine structure constant has also taken on a quasi-mythical role for many

physicists. As a pure number with no units, its value seems to be a fundamental

structure of the universe. The values of other fundamental constants appearing in

the standard model, for instance particle masses, are referenced to some human-

devised unit; at best their ratios could have similar fundamental character. Some

point out its clear significance as a combination of the fundamental constants relevant

to relativity (c), quantum mechanics (~), and electromagnetism (e)[34]. Wolfgang

Pauli carried such a deep obsession with understanding the meaning of this number

that his psychoanalytic sessions with Carl Jung often centered around it. He believed
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that understanding the reason it takes the value it does should be the impetus for the

next great revolution in physics[78]. In a similar vein, Richard Feynman commented

that “all good theoretical physicists put this number [α−1] up on their wall and worry

about it.[30]”

Lest the reader be swept along in these mystical feelings that somehow this number

represents a deep truth about existence, we should consider the following. In QED,

whose great success gives α much of its prestige, the fine structure constant is, in fact,

not constant. Rather, vacuum polarization corrections show that its value is actually

a function of momentum transfer[80]. The α defined above is simply the coupling

constant for QED in the limit of zero momentum transfer (i.e., α(q2 = 0)), which

makes it sound less profound. One could even argue that the only reason we ascribe

such great significance to α is that our daily lives are lived at such low energies that

we can’t perceive its non-constant nature.

Whether or not the next great revolution in physics reveals α to be of deep signif-

icance, we can see that since our daily lives are ruled by electromagnetic interactions

at low energy, it is certainly important to physics as a human pursuit. The fact that

it appears so often in three major fields of physics means we have opportunities to

measure it to extremely high precision using vastly different experimental and theo-

retical tools. The extent to which these different measurements yield the same value

constitutes a strong test of the consistency of physics over many domains.

4.2 History of Recoil Measurements

Atomic recoil measurements look to measure the ratio of an atomic mass to Planck’s

constant h/mX where X will represent some particular atom. Such measurements are

interesting for several reasons. Most simply, combined with an independent measure-

ment of Planck’s constant, an extremely active area of research at present, it gives

the mass of the atom itself. High precision mass measurements (either m or h/m)

can potentially be useful as inputs for other measurements, particularly gravitational
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measurements (e.g., measuring g with atomic Bloch oscillations[84]).

Second, measures of h/m for two different atomic species can be compared to

ratios of mass for the same pair determined by ion trap measurements. This allows a

useful cross-check of systematics for each type of measurement. This is particularly

powerful since atomic recoil measurements and ion balance measurements have largely

unrelated systematics.

However, the most important motivation is measurement of the fine structure

constant. Such measurement makes use of the formula

α2 =
2R∞
c

h

me

=
2R∞
c

h

mX

mX

me

, (4.2)

where R∞ = mee
4/(8ε20h

3c) is the Rydberg constant with infinitely massive nucleus,

and me is the mass of an electron. The formula was first suggested in 1978 by Wöger1.

As mentioned above, mX can stand for the mass of any atom but in fact any test

mass at all may be substituted. The first measurements of this kind found the ratio

for a neutron h/mn by using Bragg reflection from pure crystals of silicon in 1986[56].

This measurement was refined several times reaching a precision of 7.3 × 10−8 in

1999[58], which remains the highest precision measurement for a neutron[71]. These

measurements depend critically on values of the lattice spacing in pure silicon crystals.

However, the possibility that the spacing at the crystal surface—the actual spacing

relevant to the Bragg reflections used in these measurements—could be different from

the bulk value makes these measurements unreliable at their level of statistical preci-

sion.

The first precise measurement of h/m for an atom was made by the Chu group in

1993 on cesium (Cs) atoms[99], with a precision of 10−7 but no claim as to accuracy.

This measurement used a laser cooled cloud that was subsequently velocity selected

1The original publication by Wöger is not available to me, so I didn’t feel it appropriate to list
it as a regular citation. The paper of Krüger et al.[57] gives a citation to Wöger W., In Probleme
bei der Darstellung elektrischer Einheiten, PTB-Bericht PTB-E- 12, Braunschweig, Physikalisch-
Technische Bundesanstalt, 1979, 149-163.
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using a Doppler sensitive Raman transition. This experiment made use of atom

interferometry. The diffractive elements were produced by two counter-propagating

laser beams driving Raman transitions. It used two pairs of π/2 pulses to generate a

pair of interferometers moving in opposite directions. This geometry is referred to as

a Ramsey-Bordé interferometer[88]. The signal was atomic population in each of the

two hyperfine levels connected by the Raman beams, as a function of detuning between

the beams for the second pulse pair. This signal oscillates with a fringe spacing of

1/T where T is the evolution time between the two pulse pairs. The recoil frequency

is determined by comparing the positions of fringes for the two interferometers, whose

frequency differences will differ by 4ωrec. The experiment improved on this by adding

extra π pulses of alternating orientation to increase this separation to 60~krec. This

experiment was subsequently improved to achieve a precision of 5 ppb and an accuracy

of 15 ppb[100].

A second group, led by Biraben at CNRS, announced a result for rubidium (Rb)

in 2004 with a precision of 4 × 10−7[9]. This experiment was subsequently refined

to a precision of 9 ppb and an accuracy of 13 ppb. This experiment is quite similar

to that of the Chu group. The key difference is that instead of alternating π pulses

for acceleration, the Biraben group uses Bloch oscillations. These consist of loading

the interferometer into a “moving standing wave” and then accelerating this standing

wave. In practice this is achieved with two counter propagating laser beams with a

frequency difference held fixed during an adiabatic intensity turn on followed by a

linear increase of the frequency difference to provide the acceleration. This technique

can be more easily scaled to very high momentum, achieving 1000 recoil momenta

in their most recent paper[11], compared to a maximum of 120 reported with alter-

nating π pulses. It also keeps the atoms in the same hyperfine state throughout the

acceleration, simplifying the analysis of systematic effects.

A less substantial difference was the use of Raman π pulses rather than pairs

of π/2 pulses. This was changed in later experiments, which used the Chu group’s
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plan of π/2 pulse pair, acceleration, π/2 pulse pair. This allowed an improvement

of accuracy to 1.3 ppb[11]. Since the formula for obtaining α from h/m contains a

square root, the accuracy in their reported value for α is half as large. This brings the

α measurement within a factor of three in accuracy compared to the most accurate

current measurement using the electron g − 2, described in the next section.

Due to their similarity in design, these two sets of experiments share many charac-

teristics. Both obtain the recoil frequency by measuring Doppler sensitive transitions

in atoms that have been given a known relative momentum. That is, they essen-

tially compare speed and momentum to determine mass: v = p/m = k~/m, with k

the atom’s wavenumber. Since speed scales linearly with momentum, the precision of

these measurements improves proportionally with N , the number of two-photon recoil

kicks separating the two interferometers. Increasing T narrows their fringe patterns,

thus improving the precision if the fringe peak position is found comparably well.

An interferometer that measured energy rather than speed was demonstrated in

2002 in the Pritchard group[36]. This new style of measurement was referred to as a

contrast interferometer (CI). As contrast interferometry is the subject of much of this

thesis, we will wait for a detailed description until chapter 5. One of the key points to

distinguish it from the experiments discussed above is that it actually measured the

recoil frequency directly. The recoil frequency ωrec is the frequency associated with

the kinetic energy of an atom:

E =
p2

2m
=⇒ ωrec =

~k2

2m
. (4.3)

Since the frequency is quadratic in p, the precision scales as N2. This has the potential

to rapidly improve precision of such a measurement, as will be discussed in detail in

??.

Another technique which measures energy rather than speed is the grating echo

interferometer. This technique has achieved precision of 37 ppb but with accuracy

only at the level of 6 ppm[7]. Though this is an energy measurement, the scheme
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cannot support additional momentum kicks to accelerate the arms, and so it cannot

take advantage of the N2 scaling available to the contrast interferometer. It is a tem-

poral Talbot-Lau interferometer, using a pair of Kapitza-Dirac pulses separated by a

time T as gratings. Just as a spatial Talbot-Lau interferometer obtains a matter-wave

density image of the second grating at the Talbot distance, the grating echo interfer-

ometer sees such an image at the Talbot time, and determines that time precisely by

Bragg reflecting light from the imaged grating.

As mentioned above, the current most accurate recoil measurement is that of the

Biraben group. As of 2012, their future plans included moving to a BEC source to

combat wave front curvature, their largest systematic uncertainty, and changing the

interferometer geometry to allow acceleration within the Ramsey-Bordé interferome-

ters. The work of the Chu group has passed to the hands of the Müller group. One im-

portant innovation is the insertion of accelerations between the Ramsey-Bordé arms,

allowing them to take advantage of an N2 scaling. Recently, they have demonstrated

a frequency standard locked to the recoil frequency as a possible future definition of

the kilogram[59]. This lock had a precision of 1.8 ppb and an accuracy of 4 ppb.

4.3 g − 2 and Tests of QED

The most precise determination of α comes from measurement of the anomalous

part, g−2, of the electron gyromagnetic ratio g[39]. The anomalous part is so named

because it represents the deviation from the prediction of the Dirac equation. This

equation takes into account quantum mechanics and special relativity with regard to

the electron but fails to account for the quantum mechanics of the electromagnetic

field. Its prediction for the magnetic moment of the electron is ~µe = −2µB
~S/~ where

~S is the electron spin and µB = e~/(2me) is the Bohr magneton. More generally, the

magnetic moment is written ~µe = −gµB
~S/~

In Dirac theory the energy ∆E for an electron spin flip in a certain magnetic field
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~B is identical to the cyclotron frequency fc = e| ~B|/(2πme) times Planck’s constant:

∆E = −∆~µ · ~B = gDirac
e~| ~B|
2me

= ~
e| ~B|
me

= hfc . (4.4)

The measurement uses this fact to effectively subtract out the 2 from g allowing a

direct frequency measurement of g− 2 ∼ 10−3, thus saving three orders of magnitude

in line splitting. This is accomplished by noting that with the equivalence in (4.4),

the nc = 1,ms = −1/2 and nc = 0,ms = 1/2 states are degenerate. Therefore, the

non-zero transition frequency fa between the states corresponds exactly to (g−2)fc/2,

giving g − 2 = 2fa/fc
2.

The actual experiments are done by trapping a single electron in a cylindrical

Penning trap. The electron’s motion in the trap is cooled to sub-Kelvin temperatures.

The cyclotron and spin-flip excitations are successively driven and then detected.

Transitions are detected using quantum non-demolition techniques. A single electron

can be trapped and interrogated for days at a time.

As mentioned in section 4.1, perturbative expansions in quantum electrodynamics

are expansions in α. The calculation of g − 2, representing small corrections due to

the quantum nature of the electromagnetic field, is just such a calculation. Measuring

g − 2 and then inverting the QED calculation gives a value for α. However, here we

run into a dilemma: Do we trust the theory of QED enough to believe a value of α

determined in this fashion? QED has been a remarkably successful theory, however

the g − 2 calculation is the most complex one undertaken in QED. The theory has,

therefore, not been validated to the level of precision needed to reliably deduce α from

g − 2 to the same accuracy as the g − 2 measurement.

Here we find the far stronger motivation for a recoil measurement than the simple

dream of knowing α to one more decimal place. Even Pauli would likely admit that to

be of dubious value to human understanding, unless that extra decimal place helped

2Small corrections to this formula due to weak axial confinement, relativistic effects, and the
particular electromagnetic mode structure of the cavity must be accounted for to reach sub-ppb
accuracy.
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to test the revolution in physics he hoped for. The importance of measuring α to ever

higher accuracy is that it allows us to test theories containing it as a parameter to ever

higher accuracy. In comparing g−2 to an independent value of α, we find a means to

test QED to unprecedented levels, and even to test other parts of the standard model

at lower energies than possible through other means. To see just how, we will briefly

outline the g − 2 calculation.

The actual mechanics of the calculation involve use of Feynman diagrams. While

it is often easy to speak of such diagrams as though they somehow represent physical

processes with “virtual” particles, it should be borne in mind that they are really

just calculational tools that simplify the use of perturbation theory in quantum field

theories.

Figure 4.1 shows the Feynman diagrams for the lowest order contributions to the

calculation of g. The zero-order diagram on the left represents the Dirac equation for

a free electron in a classical electromagnetic field. The diagram on the right represents

the correction from second-order perturbation theory for the quantum nature of the

electromagnetic field. The details of the calculation for the second-order diagram fill

about eight pages in an introductory quantum field theory textbook[80]. However,

the complexity of the calculations grows like the factorial of the order in perturbation

theory because both the number of diagrams and the complexity of calculating each

individual diagram grows rapidly. The full analytic calculation of the sixth-order

contribution was a Herculean task spanning nearly thirty years[70, 60]. The eighth-

order corrections are completely out of reach of analytic computation and must be

evaluated on super computers using complex computer codes.

The current best experimental value for g − 2 necessitates a calculation at tenth

order in perturbation theory. At this level, contributions from loops involving muons

and hadrons also become important. Figure 4.2 shows the importance of various

perturbative contributions to the calculation of g − 2. Hadronic loops cannot be

calculated directly due to the nonperturbative nature of QCD at low energies. Instead,
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Figure 4.1: Low order contributions to g. These diagrams represent the zero- and

one-loop contributions to the electron gyromagnetic ratio. The diagram on the left

shows a single vertex connecting the horizontal electron line to the wavy photon line.

The photon line having an external end point represents it having a real source, in

this case a real magnetic field. This diagram gives the Dirac equation value g = 2. All

subsequent diagrams add perturbative corrections. The diagram on the right gives

the correction, α/π, from second order perturbation theory. (Second order because

the expansion is technically in e or
√
α, i.e., one factor of the charge for each copy of

the interaction Hamiltonian.)
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they are derived from low energy electron to hadron scattering data and structural

properties of quantum field theories.

These experiments then test the standard model in several ways. The actual

contributions of hadron and muon loops are testing the physics of these theories in

a low-energy regime no other experiment can. In addition, the tenth-order (i.e., five-

loop QED) calculation has recently been completed[5]. The value of the tenth-order

coefficient, A10 = 9.2 ± 0.6, was, in fact, nearly three times larger than the error

bound indicated in figure 4.2, which at the time was considered quite conservative.

The largeness of this coefficient may be significant. The perturbative expansion in

QED is not a strictly converging expansion but rather an asymptotic expansion akin to

a saddle point expansion. Thus, at some order it is expected to breakdown. Generally,

the breakdown of an asymptotic expansion is signaled by a sudden rise in the size of

the coefficients. Thus, understanding and testing the tenth-order contribution may

be especially important to the understanding of QED.

Finally, testing the QED contributions to the electron g−2 is indirectly important

for searches for beyond the standard model physics. Due to the muon’s much larger

mass (mµ/me ≈ 200), the muon g − 2 is quite sensitive to potential new physics at

energy scales similar to those studied with the Large Hadron Collider. The current

3.6σ discrepancy between theory and experiment for the muon g − 2 has raised a

number of interesting questions about new physics and our understanding of hadronic

physics[35]. The electron g − 2 tests of QED theory essentially remove QED as a

potential source of the discrepancy, allowing focus on more interesting possibilities.
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Figure 4.2: Contributions to g − 2 by loop content. This figure is adapted from [11].

The bars show the relative size of contributions to g− 2 from diagrams with loops of

the described content. The bars labeled (α/π)n indicate diagrams containing n loops

with no components other than photon and electron lines. The me/mµ, a(hadron),

and me/mτ bars show the contribution from two-loop diagrams containing muons,

hadrons, and taus, respectively, rather than electrons. The bar labeled a(weak) rep-

resents one-loop diagrams involving the W± or Z0 bosons. The red bars indicate the

relative uncertainties of the values. The dashed line indicates the precision of the g−2

derived from the value of h/mRb. The three points plotted below show the measured

ae = (g − 2)/2 from Harvard[39], and the ae derived from h/mRb with and without

the muon and hadron contributions.
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Part II

CONTRAST INTERFEROMETRY
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Chapter 5

THE LIGHT PULSE CONTRAST INTERFEROMETER:
THEORY

This chapter describes the contrast interferometer, the focus of this thesis. Both

the geometry and the readout mechanism differ from those of more standard atom

interferometers. As standing wave laser pulses are key elements of the contrast inter-

ferometer, the theory of such pulses is described in detail.

5.1 Geometry and Readout Mechanism

The first contrast interferometer was described by Gupta et al[36], though it bears

some resemblance to earlier techniques[14]. The contrast interferometer is a three

arm interferometer. Figure 5.1 shows the design schematically. We will focus on a

contrast interferometer using a BEC source though, as discussed in section 6.6, use

of a BEC is not necessary for contrast interferometry.

5.1.1 Basics

With a BEC source, the first step after turning off the trap is to allow the condensate

to expand to reduce density. After some fixed expansion time, a standing-wave laser

pulse, the splitting pulse, diffracts the condensate. The details of the optical standing

wave gratings will be discussed in the next section. For the present discussion, it is

sufficient to think of them as causing stimulated two-photon transitions that change

the momentum of an atom in the electronic ground state by ±2~krec without causing

a real electronic excitation. The splitting pulse will generally be tailored to populate

three momentum states—0 and ±2~krec in the laboratory frame—though other states
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Figure 5.1: Schematic of a contrast interferometer. The left gives a space-time

schematic of a contrast interferometer’s three arms. The arms are split at time 0

by a laser pulse, and at time T a second laser pulse turns the moving arms around.

At the time 2T after the initial splitting pulse, the three arms again overlap. On the

right is a representation of how the atomic density grating formed at this time rises

and falls in contrast with a period of 2π/(8ωrec). The readout light is reflected by a

high contrast grating but passes through a zero contrast grating.

may have small populations as well. We will call the time of the splitting pulse t = 0.

Over a time period T , the ±1 arms—so-called for their orders of diffraction or

equivalently their momenta in units of 2~krec—propagate freely away from the 0 arm.

At time t = T , a second standing-wave laser pulse, the mirror pulse, reverses the

momenta of the ±1 arms. This pulse may be shaped so as to reverse these momenta

without affecting the 0 arm.

Finally, the ±1 arms are allowed to return to overlap with the 0 arm. This perfect
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overlap occurs at t = 2T . This point of perfect overlap, called the closing time of the

interferometer, is where the signal is generated.

First, consider the atomic density near the closing time if only the 0 and 1 arms

existed. The wave function for a single atom would be

ψ(x) = A0

(
~x, t
)
e−iθ0(t) + A1

(
~x− (2T − t)~v, t

)
e−i(2~krec·~x+4ωrect+θ1(t)) ,

where Ai(~x, t) describes the spatial extent of the wave packet for arm i, θi(t) collects

any accumulated phases other than those related to the wavenumber and frequency,

and ~v = −2~~krec/m. (The minus sign for arm 1 is due to this occurring after the

mirror pulse.)

In a frame of reference moving at velocity ~v/2, this wave function generates a

standing wave of atomic density for times near 2T . Thus, in the lab frame this

corresponds to a sinusoidal density modulation moving at velocity ~v/2. Due to the

similarity of this density modulation to the structure of a diffraction grating, we will

refer to it as a density grating. A similar consideration for an interferometer with

only arms 0 and −1 concludes that this pair would produce a similar density grating

but this time moving at velocity −~v in the lab frame.

Heuristically, one may picture the full, three-arm interferometer as containing

both of these density gratings moving past one another. At some time their density

peaks will align, making a single, stronger density grating. At a slightly later time one

grating’s density maxima will coincide with the other’s density minima, leading to a

uniform density distribution. We describe these two times as having density gratings

with high contrast and zero contrast, respectively.

More quantitatively, we can consider an atom’s wave function in the three arm

interferometer:

ψ(x) = A0e
−iθ0(t) + A1e

−i(2~krec·~x+4ωrect+θ1(t)) + A−1e
−i(−2~krec·~x+4ωrect+θ−1(t)) . (5.1)

The arguments for the amplitudes have been suppressed, but those of A−1 are identical

to those of A1 but with the sign of ~v changed. For times near 2T we may essentially
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ignore the spatial dependence of the Ai’s, since the extent of a condensate is much

greater than the spacing between density peaks in one grating of 2π/krec = λlaser/2.

The density then takes the form

|ψ|2 =|A0|2 + |A1|2 + |A−1|2

+ 2A0A1 [cos (2krecx+ 4ωrect+ θ1 − θ0) + cos (2krecx− 4ωrect− θ−1 + θ0)]

+ 2A2
1 cos (4krecx+ θ1 − θ−1) , (5.2)

where we’ve used the fact that the splitting pulse generally enforces a reflection sym-

metry making A1 = A−1. The second line of (5.2) may be rewritten using trig

identities as

2A0A1 cos (2krecx) cos

(
4ωrect+

θ1 + θ−1

2
− θ0

)
. (5.3)

The final signal to be measured is the time dependent contrast described above.

Equation (5.3) gives an explicit form for this time dependence. However, this contrast

has a spatial scale of λlaser/2, which generally means that it is too small-scale to be

reliably imaged. So, the readout must rely on a different technique.

The exactness of the spatial scale suggests the proper technique. Namely, since

the density grating has spacing λlaser/2, it makes an ideal Bragg reflector for the light

that made the initial diffraction pulses. Further, the contrast of the grating translates

directly into how good a Bragg reflector it makes. Therefore, if a traveling wave of

light with the same wavelength as the diffraction beams is shone from one side some

of the light will be back-reflected along the incoming path, and the magnitude of

the reflected amplitude will exactly track the contrast of the density grating. This is

represented on the right side of figure 5.1 by the green arrows, which show reflection

for the high contrast grating and no reflection for the uniform density distribution.

This signal seems promising, however there are unknown time dependencies hiding

in the θi’s. These contain contributions from any of a number of possible sources but

we may approximate that they do not depend on the amount of free propagation T 1.

1That this is a reasonable approximation will be justified in section 5.1.2.
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In this case, the slope of a phase at t = 2T , which we will call θ2T , versus T curve

should be simply 8ωrec. The complete data-taking procedure is to find θ2T at two or

more values of T , extract the slope, and divide by 8.

5.1.2 Advantages of Contrast Interferometry

The readout procedure for the contrast interferometer is one key advantage, as it gives

an entire interference fringe, in fact many fringes, in a single run of the interferometer.

An example is shown in figure 5.2. In a traditional number-counting interferometer,

external perturbations that shift the phase from run to run lead to loss of visibility

of the signal. For a contrast interferometer, such perturbations have no effect on

visibility but rather cause easily measured changes of the signal phase from one run to

the next. This makes it possible to compare these phase changes to other parameters

(e.g., exact diffraction pulse intensity profile) so that the source of the perturbations

may be found. Other properties of the signal, such as coherence length, can also be

assessed on a run by run basis. This could potentially be used as a diagnostic for

certain systematic effects in the future.

A second key advantage arises from the three-arm geometry. This leads to the

signal depending on the combination of phases indicated in (5.3):

θ1 + θ−1

2
− θ0 . (5.4)

Let δE(~x) denote the energy shift an atom would feel at a particular point in space.

The position of the j arm of the interferometer at a given time is ~xj = ~x0 + j(∆~x).

Since θj = ~−1
∫
dt δE(~xj), equation (5.4) can be rewritten as

1

~

∫ 2T

0

dt
δE(~x1) + δE(~x−1)

2
− δE(~x0) . (5.5)

In a CI experiment, the arm separation ∆~x will be much smaller than the distance

from the center of the interferometer to the walls of the vacuum chamber, which is the

closest potential source of external fields. Therefore, it should be possible to expand
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Figure 5.2: Example contrast signal. The figure shows the contrast signal from a

single run of the contrast interferometer (PMT signal in volts versus time since the

splitting pulse in milliseconds). Above the signal are cartoons of the atomic density,

taken from figure 5.1, for the peaks and troughs of the signal.
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δE around the point ~x0 in equation 5.5. Choosing coordinates such that ∆~x points

in the x direction, the expansion reduces it to

− 1

2~

∫ 2T

0

dt
∂2δE

∂x2

∣∣∣∣
~x=~x0

(∆~x)2 +O
(
(∆~x)4) . (5.6)

The key point is that the combination of phases controlling the readout signal causes

constant energy offsets and gradients of energy to cancel. For instance, a contrast

interferometer is insensitive to gravitational acceleration, since g is the gradient of the

gravitational potential energy, while a two-arm interferometer is sensitive to g. Only

the curvature of the gravitational potential energy (i.e., gradients of g) can affect a

CI.

A third advantage of a CI is that the readout process does not require externally

applied gratings. Just as the final beam splitter in a Mach-Zehnder interferometer

turns phase difference between the two arms into differing brightness at the two

output ports, in traditional atom interferometer designs some external grating is used

to turn the phase difference into a population difference between two states. Any small

movement of the external grating changes the measured phase. For example, in a light

pulse interferometer, vibrations of the mirrors can change the position of the standing-

wave optical grating between the initial splitting pulse (i.e., phase imprinting) and the

final recombination pulse (i.e., phase readout). Vibrations rapidly damp out visibility

in such an interferometer.

For the contrast interferometer, the two density gratings serve to read out each

other’s phase. Therefore, vibrations become almost completely irrelevant for the

signal2. Similarly, accelerations do not affect the interferometer.

While it has also been claimed that the CI is insensitive to rotations[36], this is

not strictly true. A rotation between splitting and mirror pulses can cause the axis

2Vibrations of high enough frequency to substantially move an optical grating during a single
pulse can affect the relative strength of the grating. This can have an effect on phase shifts due
to the optical gratings. In practice, standard optical setups for cold atoms experiments provide
sufficient damping of such high frequency vibrations.
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for momentum transfer to differ enough between pulses to change the recoil frequency

measured. This effect is discussed in section 7.1.

5.2 Optical Standing-Wave Gratings

Before delving into the technical details of atom-light interactions, we will briefly

discuss a heuristic picture of optical standing-wave gratings that provides useful in-

tuition.

When an atom in an optical grating transitions from ~p = 0 to ~p = 2~krec, we

can think of this as a coherent two-photon transition: absorption from one beam

plus stimulated emission into the other. Such a transition must conserve energy and

momentum. Since the atom picks up kinetic energy in such a transition, there must

be a frequency difference between the absorbed photon and the emitted photon.

In practice, this frequency difference can arise in two ways. One is for the light in

each beam to have sufficiently broad bandwidth to support absorption and stimulated

emission differing in frequency by 4ωrec. In such a laser pulse, the bandwidth sym-

metrically supports the transitions 0→ 2~krec and 0→ −2~krec. Large bandwidth is

usually achieved with a short pulse (e.g., a Fourier transform limited pulse of length

< 1/(4ωrec) allows the transitions listed above).

The other method is to introduce a relative frequency shift between two counter-

propagating beams with narrow bandwidth. This method breaks reflection symmetry

and so gives control over whether to allow 0 → 2~krec or 0 → −2~krec. Narrow

bandwidth (∆ω < ωrec) requires relatively long pulses (length > 1/ωrec ).

Standing-wave pulses also allow for transitions of more than two photons. A short,

intense pulse can support transitions such as 0 → 10~krec, though such transitions

are unwanted for contrast interferometry. As the splitting pulse is generally a short,

high bandwidth pulse, care must be taken to tailor it to suppress transitions to higher

momenta.

The mirror pulse is, in this picture, a four photon transition. The mirror pulse is
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a low-bandwidth pulse with no frequency shift between the two beams. Therefore, it

can only support transitions that do not require the atom to change energy, that is,

transitions of the form p→ −p.

5.2.1 Atom-Light Interactions

The interaction of atoms and light can be viewed at many levels of sophistication.

As seen in Foot’s textbook[31], a purely classical approach treating an atom as a

charged, damped harmonic oscillator interacting with electromagnetic waves captures

surprisingly many facets of reality: We find both the dipole force and the scattering

force and may derive the correct line shape as a function of frequency. Only as the

intensity of the light reaches the saturation intensity, or when coherent excitations

are considered, does a semi-classical description become necessary. As we will be

concerned with both, we will develop a semi-classical model to deal with condensate

splitting and mirror pulses. A fully quantum mechanical treatment becomes necessary

only for describing the back-action of the final readout pulse, where the granular

nature of the light as a collection of photons becomes important.

The books of Cohen-Tannoudji et al.[20, 21] give extremely clear and detailed

accounts of both semi-classical and fully quantum mechanical descriptions of quantum

electrodynamics applied to atoms. We will attempt to cover only the bare minimum,

collecting arguments scattered through several chapters of [20].

To properly include electromagnetic fields into quantum mechanics, we need the

vector potential ~A as well as the scalar potential φ. We also must account for the fact

that these have too many degrees of freedom—that they may be gauge transformed

without any effect on the predicted physics. For a semi-classical treatment, we may

simply choose a gauge and then stay consistently within it. For atomic physics, the

Coulomb gauge, ∇ · ~A ≡ 0, is particularly easy to work with. This ease follows from

the way it separates the static Coulomb fields that give an atom its unperturbed

structure and the radiation fields that we send from outside to manipulate the atom.
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Considering the implication of this gauge choice for Gauss’ law, ∇ · ~E = ρ/ε0, we

see that the vector potential has no contribution to the static electric field. In fact,

the scalar potential follows the expectation based upon the present positions of any

charged particles, as though they were static. This is mathematically equivalent to

the vector potential having no longitudinal component (i.e., in momentum space the

condition becomes ~k · ~A ≡ 0).

The Hamiltonian is modified by replacing the physical momentum ~p with the

canonical momentum ~p − q ~A, where q is the charge of the electron. There is also a

term directly coupling the spin to the magnetic field, but we will exclude it, as it will

be irrelevant to the atom-light coupling. The Hamiltonian takes the form

∑
j

[
( ~̂pj)

2

2m
− q

m
~̂pj · ~A

(
~̂xj

)
+

q2

2m

(
~A
(
~̂xj

))2

+ qφ
(
~̂xj

)]
, (5.7)

where j indexes a sum over all the electrons of the atom. (We assume the nucleus to be

static.) In cold atom experiments, we wish to use light to manipulate atoms without

markedly changing their properties. As such, q| ~A| will be much smaller than q|φ|,

which by the Virial theorem implies it will likewise be much smaller than ~p2/2m.

Thus, the first three terms of (5.7) have a hierarchy of scale making the second a

perturbation to the first and the third negligibly small for our purposes. Grouping

the first and last terms we have the Hamiltonian for the atom’s free-space structure,

with the second term acting as a perturbation.

For visible light incident on an atom, the wavelength of the radiation is dramat-

ically longer than the size scale of the atom itself (separated by three to four orders

of magnitude). Thus, to a good approximation, the vector potential may be replaced

by its value at the atom’s center of mass, ~xCM. Then, (5.7) has the form, before

expanding the square, of (~p−q ~A)2/(2m) where ~A is now simply a (spatially) constant

offset to the momentum. It then seems natural to use the momentum translation
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operator to remove the offset. That translation operator takes the form

T̂ (t) = exp

(
−iq

~
∑
j

~̂xj · ~A
(
~̂xCM, t

))
,

where we’ve made the time dependence of the vector potential explicit because the

time dependence affects the transformation of the Hamiltonian under this operator.

Using the relation

Ĥ ′(t) = T̂ (t)Ĥ(t)T̂ †(t) + i~
dT̂

dt
T̂ †(t)

we find the transformed Hamiltonian to have the form∑
j

[
( ~̂pj)

2

2m
+ qφ

(
~̂xj

)]
− ~̂d · ~E

(
~̂xCM, t

)
, (5.8)

where ~̂d = q
∑

j ~̂xj is the electric dipole operator and ~E = ∂ ~A/∂t is the externally

applied electric field (i.e., excluding the strong Coulomb fields within the atom, which

φ accounts for). Again, we find a Hamiltonian with a form that separates the free-

space atomic structure terms, in brackets, from an externally applied perturbation.

A peculiar facet of the application of the dipole approximation to cold atoms

bears mention. We assumed above that in dealing with visible light there is a strong

separation of scales—a few Bohr radii, a0 ≈ 0.05 nm, versus optical wavelengths

λ ≈ 500 nm—allowing us to replace the vector potential with its value at the atom’s

center of mass. However, for a BEC, the center-of-mass wave function will generally

extend over larger length scales than the optical wavelength. We find ourselves in

the peculiar position of arguing that the relative wave function is localized on scales

much smaller than λ while the center of mass wave function is delocalized over scales

substantially larger than λ. This does work mathematically. However, the fact that

one can equally-well write the wave function in terms of the position of each individual

electron, in which case each electrons’ wave function is delocalized over a many-λ wide

region, but the dipole approximation holds correctly at each of those points, causes

me some level of consternation.
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5.2.2 Modeling Diffraction

With the electric dipole Hamiltonian in hand, we turn now to the practical question of

calculating how near-resonant light can diffract an atom. We move to the interaction

picture, separating out the interaction Hamiltonian Ĥdipole = −q ~E(~̂xCM)·
∑

j ~̂xj. Using

light of a frequency that interacts predominantly with only one pair of atomic levels,

we can truncate the Hilbert space by ignoring all other levels. We thus reduce to a

two-state model of an atom coupled to a light field. This entails inserting complete

sets of the eigenstates of the unperturbed atomic Hamiltonian, |n〉:

~E · ~̂r =
∞∑
i=1

∞∑
j=1

|i〉 〈i| | ~E · ~̂r |j〉 〈j| =
∑

i,j∈{g,e}

~E · ~µij |i〉 〈j|

= ~E · ~µge |e〉 〈g|+ ~E∗ · ~µge
∗ |g〉 〈e| , (5.9)

where for electronic wave functions ψ(~r):

~µij =

∫
d3r ψ∗i (~r) ~r ψj(~r) .

As we are reducing the Hilbert space for the electronic states, we should also mention

the form of the unperturbed Hamiltonian with this reduction. As these are eigenstates

of the unperturbed Hamiltonian, it takes the simple form ~ω0 |e〉 〈e|+ (~̂pCM)2/(2M),

where M is the mass of the atom and the second term implicitly includes the identity

operator on the internal electronic states (just as the other terms implicitly include

the identity operator on position states). We define the so-called Rabi frequency

ωR ≡ ~E0·~µge/~, which implicitly contains the center-of-mass position operator through

the electric field amplitude ~E0. With this definition we may write the Hamiltonian as

Ĥ ′ =
(~̂pCM)2

2M
+~ω0 |e〉 〈e|+

~ωR

2
ei
~krec·~̂xCM−iωt |e〉 〈g|+~ω∗R

2
e−i

~krec·~̂xCM+iωt |g〉 〈e| . (5.10)

The electric field may be separated into the phase term ei
~krec·~̂xCM−iωt and the slowly

varying amplitude ~E0(~̂xCM, t). The difference in energy between ground and excited

states, ~ω0 ∼ 1 eV, is a dramatically larger energy scale than the kinetic energy of
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the atoms ∼ 10−10 eV, which will eventually be our concern. As such, we would like

to separate the extremely fast electronic dynamics from the atomic center-of-mass

dynamics. For the case of tuning near resonance, ω, the frequency of the light, and

ω0 will be of similar scale. It turns out there is a single unitary transformation that

removes each of these high frequencies from the problem. Consider the operator

T̂ (ω) ≡ |g〉 〈g|+ eiωt |e〉 〈e| .

Applying this to our full Hamiltonian, we transform it into

Ĥ ′ =
(~̂pCM)2

2M
− ~δ |e〉 〈e|+ ~ωR

2
ei
~krec·~̂xCM |e〉 〈g|+ ~ω∗R

2
e−i

~krec·~̂xCM |g〉 〈e| . (5.11)

This form for the Hamiltonian will be important to the analysis here and in chapter

8. It is interesting to note that if we instead apply the related operator T̂ (ω0), we get

a slightly different form for the Hamiltonian:

Ĥ =
(~̂pCM)2

2M
+

~ωR

2
ei
~krec·~̂xCMe−iδt |e〉 〈g|+ ~ω∗R

2
e−i

~krec·~̂xCMeiδt |g〉 〈e| . (5.12)

This essentially moves the detuning from an energy offset on the excited state to

a modulating frequency for the coupling between ground and excited states. Such

trading may be useful for simplifying particular calculations.

For describing diffraction, we generally consider light far-enough detuned from

resonance that the excited state is never substantially populated. It would be nice

to be able to eliminate the excited state from our analysis altogether. A common

approach is to consider equation (5.11), treating the last two terms as perturba-

tions: V = (~ωR/2)ei
~krec·~̂xCM |e〉 〈g| + (~ω∗R/2)e−i

~krec·~̂xCM |g〉 〈e|. Since these don’t give

a ground state to ground state matrix element until second order in perturbation the-

ory, the standard technique is to find the matrix element in second order perturbation

theory and then replace these two terms with that matrix element. This gives

V̂ ′ = ~
|ωR|2

4δ
|g〉 〈g| . (5.13)
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This result is unchanged if we include the spatial dependence of the electric field

(ei
~krec·~xCM in the current case) in ωR. The effect of this perturbation—a detuning and

intensity dependent shift of energy for ground-state atoms—is often called the AC

Stark effect.

One might question the idea that these terms may be treated as a perturbation,

since we will be interested in cases with ωR � ωrec, where ωrec is the natural energy

scale for the kinetic term. There are two regimes in which this approximation is

valid. The first is ωrec, δ � ωR, in which case the last two terms do constitute a small

perturbation. The other regime is δ � ωR � ωrec. In this case we can instead treat

the kinetic term as a negligible perturbation. If we drop the kinetic term, we can

then treat the last two terms as a perturbation in this truncated Hamiltonian.

The particular case of interest to us involves the electric field formed by two

counter-propagating beams traveling in the ±x directions and linearly polarized in

the z direction. This gives an electric field E0ẑ(e−ikx + eikx) which gives a final form

V̂ ′ = ~
ωR(t)2

4δ

(
2 + e−i(2k)x̂ + ei(2k)x̂

)
= ~

ωR(t)2

2δ

(
1 + cos(2kx̂)

)
. (5.14)

Notice that we have dropped the “rec” subscript, which is implicit in k being the

wave vector of the light.

The first form in (5.14) is useful in the first case (ωrec, δ � ωR), known as the

Bragg regime. The second form is useful in the second case (δ � ωR � ωrec), known

as the Raman-Nath regime. We treat the Bragg regime first.

The operator ei(2k)x is a translation operator in momentum space, taking p →

p + ~(2k). Since the first term in parentheses is a constant, representing an overall

offset in energy which cannot affect the dynamics, it may be discarded3. This leaves

a Hamiltonian that may be easily written using the momentum-state basis:

Ĥ =

∫
dp

{
p2

2m
|p〉 〈p|+ ~

ω2
R

4δ

(
|p+ 2~k〉 〈p|+ |p− 2~k〉 〈p|

)}
. (5.15)

3For real beams which are not perfect plane-waves, this term would introduce a spatially depen-
dent energy offset, similar to an optical dipole trap.
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To simplify future expressions, we define the two-photon Rabi frequency ω
(2)
R ≡

ω2
R/(2δ).

At the beginning of 5.2 we discussed a picture in terms of two-photon transitions

where pulse bandwidth and conservation of energy determined which momentum

states were accessible. In this picture, the Bragg regime corresponds to a strict

enforcement of conservation of energy for atoms (i.e., low bandwidth pulse). To

have any appreciable effect, the length τ of a pulse must satisfy ω
(2)
R τ ∼ 1. In the

Bragg regime, ω
(2)
R � ωrec implies that the pulse will be long enough that its Fourier-

limited bandwidth is much smaller than the recoil frequency, and therefore is unable

to support transitions that change the magnitude of atomic momentum.

This insight allows us to treat the particular case of two-photon transitions be-

tween p = ~k and p = −~k. Restricting to these two states, the Hamiltonian reduces

to a two-by-two matrix:

H =

 ωrec
ω
(2)
R

2

ω
(2)
R

2
ωrec

 (5.16)

with eigenvalues λ = ωrec ± ω(2)
R and eigenvectors

1√
2

 1

±1

 . (5.17)

From this we can determine the time evolution operator U(ti, tf). Since the forms

for the eigenvalues and eigenvectors are independent of ω
(2)
R , we can consider the

problem with an arbitrary time-dependence to the laser intensity (as long as it remains

in the Bragg regime):

U(ti, tf) =

 1 1

1 −1

 e
∫
dt ωrec+ω

(2)
R /2 0

0 e
∫
dt ωrec+ω

(2)
R /2

 1 1

1 −1


= eiωrect

 cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2)

 , (5.18)
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where θ =
∫ tf
ti
dt ω

(2)
R (t) is referred to as the area of the pulse (i.e., the area under an

intensity vs. time plot, with appropriate constants to render it dimensionless). As for

the standard Rabi problem, we see that a state beginning in an unperturbed eigenstate

(e.g., |~k〉) will oscillate in probability between the two unperturbed eigenstates with

frequency ω
(2)
R .

To what extent are we introducing errors by neglecting states other than |±~k〉?

Essentially, this is controlled by the extent to which those other states are mixed into

the |±~k〉 states by the interaction. Since the Bragg regime has the optical coupling as

a small perturbation, we may answer this question straightforwardly in perturbation

theory. If we begin in the |~k〉 state, the most important neglected state is |3~k〉, as

all other states are suppressed by larger orders in perturbation theory (and all except

|−3~k〉 are also suppressed by larger energy differences in the denominator). We find

the first-order result

〈3~k|~k〉 =
ω

(2)
R

16ωrec

. (5.19)

This weak mixing gives another perspective on the idea of conservation of energy.

For weak coupling, a long, low-bandwidth pulse is needed. It also means the energy

differences between recoil states are quite large compared to the coupling. So those

states described in the previous picture as not allowed by conservation of energy for

low bandwidth pulses, are not mixed with the initial states because of the large energy

denominators. This gives us a systematic means for improving the conservation of

energy argument away from the limit of infinitely weak pulse with infinite length,

where it is exact.

The mirror pulse in our experiments causes a transition between |2~k〉 and |−2~k〉.

This four-photon transition can be understood through the same procedure as the two-

photon transitions discussed above. Namely, for atoms beginning in one of these two

energy-degenerate states, we may eliminate the middle state, |0~k〉, with exactly the

same steps as we used to eliminate the electronically excited states for the two-photon

transition. We find a coupling strength of (ω
(2)
R /2)2/(4ωrec), leading us to define the
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four-photon Rabi frequency:

ω
(4)
R ≡

ω4
R

23δ2(4ωrec)
. (5.20)

The analysis of the new effective two-state system follows identically to that carried

out for the two-photon transition.

The middle expression of (5.14), which we applied to the Bragg case, is essentially

a momentum-space picture, when the exponentials are seen as momentum transla-

tion operators. The third expression of (5.14) gives a physical-space picture of a

sinusoidally varying potential energy. In the Raman-Nath regime, we have said that

the kinetic energy may be ignored. Therefore, the Schrödinger equation takes on a

particularly simple form:

i~
∂ψ

∂t
= V (x)ψ = ~ω(2)

R (t) cos(2kx) . (5.21)

This may be integrated directly, giving

ψ(x, t) = exp

[
i

(∫ t

0

dt′ ω
(2)
R (t′)

)
cos(2kx)

]
ψ(x, 0) . (5.22)

For a zero-momentum initial state this reduces to

eiθ cos(2kx) =
∞∑

n=−∞

inJn(θ)ei(2nk)x , (5.23)

where θ is again the area of the pulse. The equality in (5.23) may be derived straight

forwardly from the generating function, exp(x(t − 1/t)), for the Bessel functions of

the first kind[3]. In the Raman-Nath regime, the potential writes a particular phase

structure onto the atoms. The decomposition into plane-waves with Bessel function

amplitudes allows us to easily see the long-time dynamics generated by this phase

imprinting.

As with the picture of the Bragg regime as a two-state transition enforced by

energy conservation, the Raman-Nath regime is only exact for extreme pulses (i.e.,

arbitrarily high intensity, arbitrarily short pulses) and cannot be straight-forwardly
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improved with the derivation given. Attempting to simply add the kinetic energy

back in the position-space picture is problematic because the derivative representa-

tion needed in position-space makes this a singular perturbation. We will skip the

derivation, as it is not terribly important to our present purposes, but by using the

second expression from (5.14), the same form of plane waves with Bessel function co-

efficients may be derived. In this momentum-space picture the kinetic energy is not a

singular perturbation, and so the Raman-Nath approximation may be systematically

corrected. For our purposes it is only necessary to know that the corrections are sup-

pressed as powers of ωrec/ω
(2)
R , so that we may assess the validity of this approximation

for real pulses used in experiments.
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Chapter 6

THE LIGHT PULSE CONTRAST INTERFEROMETER:
EXPERIMENTS

This chapter discusses, in detail, contrast interferometry experiments. The struc-

ture of the interferometry setup, various calibration procedures, and how to find a CI

signal are detailed. Then two key innovations—decoupling the diffraction and readout

paths and the ability to radically alter detuning thanks to the narrowness of the in-

tercombination line—are discussed. Finally, new results are presented in the areas of

precision interferometry and the study of many-body phenomena. It is worth noting

that these experiments, performed with 174Yb are the first reported interferometers

using ytterbium atoms.

6.1 Building the Interferometer

Figure 6.1 shows absorption images of our contrast interferometry sequence. Key ex-

perimental parameters are introduced below in the text but collected for convenience

in the figure caption. For diffraction pulses and readout light, we utilized light de-

tuned . 1000Γ from the 174Yb 1S0 → 3P1 intercombination transition at 556 nm.

This transition has a line width of Γ = 2π × 182 kHz.

To get this light, we took the zero order from the Yb MOT acousto-optic modulator

(AOM) and sent it, double passed, through a 200 MHz AOM. With our setup, this

light would be detuned from the transition by ≈ −392 MHz before passing through

the AOM. For the early experiments, the light would leave the second pass through

the AOM ≈ −126 MHz detuned from the transition, where we use “≈” because

slightly different settings were used at various times. Actual control of the detuning
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Figure 6.1: My CI. The sequence of absorption images shows the various stages of the

contrast interferometer, which are shown schematically in figure 5.1. These depict a

T = 11 ms interferometer with a 2 ms expansion prior to the splitting pulse. The

splitting pulse was a 1.5 µs long square pulse. The mirror pulse was a Gaussian with

temporal half-width 35 µs. Though its effects are not detectable here, readout light

was a weak 160 µs square pulse. Diffractive pulses used a detuning of +700Γ from

the 1S0 →3 P1 transition in 174Yb, while the readout light was detuned by +50Γ from

the same transition.
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was accurate to better than 50 kHz, as determined by absorption imaging with this

light. The detunings were eventually varied quite a lot, as described in section 6.5.3.

From there the light was coupled into a single-mode fiber and sent to the interfer-

ometry breadboard described below. We achieved power out of the fiber of 40 mW,

corresponding to a total efficiency including AOM and fiber coupling of 20 − 25%.

We utilized a shutter in front of the fiber so that the AOM could be kept on at full

power until about 3 ms before the diffraction pulses were applied. Keeping the AOM

warmed up in this fashion seemed to improve the repeatability of the pulses.

6.1.1 Optical Setup

The Yb contrast interferometer described in this thesis was built in the existing Yb/Li

mixture machine, described in Hansen et al.[42], and in extreme detail in two other

theses[40, 52]. I was deeply involved in the mixture experiments[45, 41, 53, 42].

Particularly relevant to the current discussion, I was involved in achieving the first

Yb BECs in the machine and in steadily improving Yb cooling techniques to produce

BECs of 3.0× 105 atoms, the largest ever reported.

With Yb BECs already generated in the machine, additions needed to be made to

allow for standing-wave diffraction pulses and for detecting the back-reflection of the

readout light. As the machine’s optical access was already spoken for by the mixture

experiment, one of the MOT axes was modified to allow diffraction and readout along

this axis after the MOT was extinguished. The mirror that coupled the MOT light

into the chamber was replaced by a computer-controlled flipper mirror. Likewise,

the retro-reflection mirror for this axis was replaced with an identical flipper mirror.

Initially, the flipper mirror on the retro side was used to send the light to a quarter-

wave plate and another mirror for the actual retro-reflection. This decision was made

due to the lack of fine adjustment knobs on the flipper mount. Thus, alignment could

be made on the rigidly mounted retro mirror. With time, space on the interferometry

bread board became more valuable and this design was scrapped in favor of attaching
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the flipper mount to a second mount with fine adjustment screws and placing the

quarter-wave plate into the collar in contact with the mirror surface. With these

designs, the mirrors flipped out of the way after the MOT was extinguished, during

the evaporative cooling phase. This opened the axis for interferometry.

The interferometry bread board is shown in its final configuration in figure 6.2.

The initial design included optics for shaping and directing the diffraction light as well

as an optical path for detecting the back reflection signal. Later refinements appearing

in the figure include greater polarization control of the diffraction light, a separate

fiber for the readout light along with optics to shape and direct that light, and a port

for detecting the intensity of the diffraction light. In the interests of brevity, we will

simply discuss this depicted final state of the interferometry breadboard.

Before describing the board in detail, several generic design considerations are

worth mentioning. Once the beam is expanded to its desired size at the atoms,

it is important not to artificially distort the wavefronts by aperturing the beam.

Aperturing can occur in several ways. An actual physical impediment is the general

usage for aperture. For instance, using a one inch diameter lens clips any part of the

beam that extends outside the area of the lens. Similarly, a one inch diameter mirror

can only reflect light impinging on its surface, and so it makes a virtual aperture.

Therefore, two inch diameter optics and careful alignment to the centers of all optics

are import to avoid aperturing. The effective size of a mirror is reduced by the cosine

of the angle the light’s propagation direction makes to the mirror’s normal vector,

that is, the angle of incidence from geometric optics. Therefore, efforts were made

in the layout of the optics to minimize the angle of incidence in each reflection. In

considering sizes of optics, it is good to bear in mind that the beam waist is a radius,

not a diameter, and that to avoid diffraction the beam should always have a clearance

of several waists to either side of the beam’s center.

The other general consideration is that somewhere in the setup there must be a

beam splitter for separating the diffraction path or outgoing readout light from the
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Figure 6.2: Interferometry breadboard. The top gives a schematic for the interfer-

ometry breadboard, discussed in detail in the text. The bottom is a photograph of

the board, with several components labeled to aid in connecting the schematic to the

photo. The photodiode and PMT have been removed before taking the photo but

their positions are labeled.
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back reflection signal. Any optics between this beam splitter and the atoms (including

viewports) are potential sources of back reflections that act as backgrounds to the

readout signal. Thus, it is advisable to have the diffraction beams and readout light

enter the chamber at a nonzero angle of incidence to the viewports. Similarly, lenses

should be tilted slightly off axis. Back reflections can be easily traced through the

setup by turning up the beam powers and turning off the lights, so these adjustments

may be made in a straight forward manner once the setup is built.

The diffraction light comes from a fiber at the top right corner of the breadboard.

Lenses (labeled A in the figure) collimate the light. Since collection of the readout

signal calls for a lens as close to the viewport as possible, the light is in fact not

collimated through most of the setup. Rather, the next lens, C1, the light encounters

is the first lens of a telescope completed by the lens near the viewport, C2. This is

helpful as it keeps the beam smaller than the final waist (4 mm) through most of the

setup, reducing the potential for aperturing. A quarter-wave plate, B1, between A

and C1 linearizes the polarization coming from the fiber.

Next, the light reaches a set of three mirrors designed for steering the beam.

While two would suffice for sufficient flexibility in steering the beam, three were

used to minimize the angle of incidence. A half-wave plate, B2, between the first

two mirrors sets the polarization to maximally transmit through the polarizing beam

splitter D. The half-wave plate E is used to rotate the polarization for maximum

diffraction efficiency. Due to birefringence in the viewports, the diffraction efficiency

is a function of the polarization sent to the chamber. In this final configuration, the

polarizing beam splitter also functions to separate the diffraction light and the back

reflection signal.

The final piece before the chamber is a collimating lens, C2, the second half of

the telescope that begins with C1. While the beam could be collimated anywhere,

as mentioned above this lens also serves to image the atoms to maximize the back

reflection light collected. Properly imaging the atoms also aids in finding the signal
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initially. The flipper mirror, F, will be out of the path during the interferometer run.

Finally, the light enters the viewport, G.

The optics on the far side of the chamber are much simpler. They consist essen-

tially of a single lens and a retroflection mirror at the focal point of the lens, forming

a 1:1 telescope. The telescope is essential because the retro-reflection must be blocked

during the readout step. Otherwise it would completely swamp the back reflection

signal from the atoms. This requires a fast shutter, which is placed near the focus to

minimize the shutter size and time needed to block the light completely. The decision

to use a single lens was largely a concession to the confined space of the MOT bread-

board onto which the retro optics had to fit. As will be discussed in section 6.1.2,

this is strongly recommended against for future designs.

Next, we have the optics for imaging the back-reflection signal. The back reflection

from the atoms will be collimated by the lens C2. The polarization of the readout light

is set so the signal will reflect out of the polarizing beam splitter toward H, which is a

10% reflecting beam splitter. The 90% of the signal that passes through it is focused by

C3, which together with C2 forms an imaging system for the atoms with magnification

-1. The iris I is placed at the focal point of C3 to block unwanted back reflections

from optics and stray light from elsewhere in the room. Next the light passes through

a second telescope, J, making a complete imaging system (including C2 and C3) with

a magnification of five. This makes high quality images of the back-reflection signal

possible. A second iris, L, is placed near the focal point of J to further block stray

light from reaching the photomultiplier tube (PMT), which is positioned at the image

point of J. A fast mechanical shutter, K, is placed before the PMT to block the back

reflection of the diffraction light during splitting and mirror pulses. This shutter is

critical, as it blocks several milliwatts of light from reaching a sensor that can be

overwhelmed by a nanowatt. Initially we used a Stanford Research Systems SR475

shutter. These shutters promised (and, in fact, delivered) extremely low vibrational

noise, which seemed ideal since our shutter needed to sit on the interferometry board
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itself. However, we found that a sufficient amount of light leaked through the shutter

to provide a strong signal on the PMT. To avoid potentially degrading the PMT over

thousands of exposures to such strong signals, we opted for the loud, but actually

opaque, Uniblitz LS6 shutter.

Finally, we have the readout optics. While the previous descriptions of contrast

interferometers used the same light for diffraction and readout, as discussed in section

6.4.2, we found great improvement from using a separate path for the readout light.

Just to the left of the diffraction light’s fiber at the top of the board is the readout

fiber. The light is roughly collimated out of the fiber. The half-wave plate M rotates

its polarization to maximally reflect at D. Before reaching D, 10% reflects at H. The

other 90% is dumped into the black cap from an optical fiber to avoid creating excess

background light in the readout path. After reflecting at D, it follows the same path

to the atoms as the diffraction light. Since the light is roughly collimated before the

beam splitter, the final lens will focus it onto the atoms. The reason for this focusing

is discussed in 6.4.2.

Though not optical elements, per se, the large amount of black cardboard visible

in the image is important enough to merit a comment. Protecting a PMT driven to

the single-photon-counting regime can be quite difficult. We found life was dramat-

ically improved in the lab once we had done a sufficiently thorough job as to allow

data taking with some of the room lights turned on. This required three stages of

protection. The PMT was unceremoniously crammed into a lens tube. Grooves had

to be cut to accommodate the PMT’s unfortunately square cross section, necessitat-

ing a great deal of black electrical tape to be wrapped around the tube to return its

light-blocking integrity. This was screwed onto the adjustable aperture L connected

to a long, black lens tube. The whole assembly was inside a small box constructed

of black cardboard, electrical tape and various bits of black plastic sheeting to seal

the edges. Admittance to this box was granted through the adjustable aperture I. In

addition, the entire breadboard was surrounded by a second box made of cardboard,
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electrical tape, black sheeting, and prayers. It is strongly recommended that future

experiments give more thought than we gave to how the PMT will be boxed before

constructing the board.

6.1.2 Alignment, Calibration, and the First Recoil Measurement

Once gross alignment was completed on the outgoing diffraction light (e.g., aligning it

by eye to the centers of the viewports on both sides of the chamber) careful alignment

proceeded by blowing atoms out of the optical dipole trap. With the retro-reflection

shutter closed, a short, high-power pulse of diffraction light was fired at an evapo-

ratively cooled cloud in the ODT. Pointing of the diffraction beam was iteratively

adjusted to keep it pointed parallel to the desired diffraction axis while increasing the

number of atoms kicked out of the trap.

As alignment progressed, the length of the pulse could be steadily reduced, from

roughly 100 ms to less than 1 ms. At such lengths it becomes feasible to align

to the atoms after some time of flight. This centers the beam closer to the region

where diffraction will actually occur in experiments. The cloud can be fit after some

additional time of flight and the x displacement of the cloud can be maximized to

bring the center of the beam to the position of the atoms.

Once the outgoing beam is aligned, the retro beam was aligned by eye to counter-

propagate with it. From there, Kapitza-Dirac diffraction (another name for diffraction

by optical gratings in the Raman-Nath regime) was used to optimize the overlap of

the brightest part of the beam with the atoms. Under the assumption that the

outgoing beam had been properly aligned to have the atoms in the center of the

beam, optimizing Kapitza-Dirac diffraction efficiency would also bring the center of

the retro to the atoms. Since the two beams certainly coincided at the retro mirror,

this would guarantee them to be counter-propagating.

This procedure is certainly not ideal. A far better way to align the retro is by

maximizing the coupling efficiency of the retro light into the fiber from which the light
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originally comes. Our initial attempts at this met with a great lack of success, as the

coupling efficiency was inexplicably insensitive to adjustments of the retro-reflection

mirror’s orientation. After some time, a distant memory of a comment from Joel

Hensley’s thesis[43] suggested the answer. The 1:1 telescope formed by the lens and

retro mirror served essentially as a point source at the mirror and a lens imaging the

point source. On this view, the optics on the outgoing side of the chamber served

to complete an imaging system for this point source with image point at the focal

point of the fiber optic output coupler. Thus, the orientation of the retro could be

changed, causing the overlap of the retro beam with the outgoing beam to change,

without substantially changing the coupling efficiency into the fiber. This was finally

understood at a point in the experiment where there was too little time left to us for

data-taking to justify rebuilding the retro setup1.

Once the diffraction beams were aligned, we calibrated the intensity at the atoms

by looking at Kapitza-Dirac diffraction in the zero and first orders for increasing

intensity. A sample plot is provided in figure 6.3. More careful calibrations of intensity

at the atoms versus measured power in the beams will be discussed in section 8.3,

where careful calibration is used to understand an important systematic effect.

The mirror pulses were initially planned to be in the Bragg regime. However, we

found that pulses of sufficient length for the Bragg approximations to be valid tended

to cut the center out of the cloud. Essentially, we were doing Bragg spectroscopy[96].

We thus moved to shorter pulses, picking Gaussians with half-width ≈ 35 µs. This

showed a good experimental compromise between reflecting essentially all parts of the

moving arms while not diffracting new states out of the non-moving arm.

We also demonstrated superradiance and high-order diffraction. A set of pictures

1This sounds bizarre, as building a telescope should be simple. However, the MOT breadboard
was out of easy real estate. Rebuilding the retro setup correctly would have required changing
paths for either the MOT or the Zeeman slower. Since we had an approaching deadline by which
the machine had to be returned to the mixture experiment for good, tinkering with the laser
cooling at this level seemed unlikely to be a net win.
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Figure 6.3: Calibrating with Kapitza-Dirac. The fraction of the population in the zero

diffraction order and the average of the fraction in the ±first order are plotted versus

control voltage. The fits are to Bessel functions of zero and first order, respectively.

The fitting function is of the form y = Jν(kx) + y0, and the fit values are shown on

the figure.

Figure 6.4: High-order diffraction. A set of time of flight absorption images for

increasing time of flight shows the separation of many orders of diffraction after a

short intense splitting pulse.
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showing high-order diffraction are shown in figure 6.4. Superradiance was induced by

firing a high power, long (≈ 100µs � Γ−1 ≈ 1µs) diffraction pulse with the retro-

reflection shutter closed. This allowed enough time for spontaneous scatter to seed the

matter-wave and for matter-wave amplification to proceed. We generated diffraction

out to seventh order using square pulses of width 2.3 µs. This pulse width is small

enough to fall into the Raman-Nath regime (τ � 1/(4N2ωrec)) for low diffraction

order N , but is well outside it for N = 7. For taking data, shorter square pulses with

width 1.5 µs were used. The decision to use shorter pulses was made to simplify the

diffraction phase analysis, as discussed in 8.4.

The last important result from before we achieved a working contrast interferom-

eter was our first measurement of the 174Yb recoil frequency. This measurement was

useful in three regards. First, though it had only 1% precision, it provided a number

from which to bootstrap to higher precision using the contrast interferometer. Sec-

ond, it established our ability to do traditional number-counting interferometry in our

setup. This would be important later on for demonstrating the vibration insensitivity

of the contrast interferometer. Finally, it gave us a value for the coherence time,

which was also relevant for the contrast interferometer.

The measurement was done using a momentum-space Ramsey interferometer. The

technique involves a pair of identical Kapitza-Dirac pulses separated by a variable time

T . The pulses are designed to have a relatively small amplitude to populate the first

diffraction order and negligible amplitudes to higher orders. For T = 0, the atoms

essentially experience a single, longer Kapitza-Dirac pulse. Therefore, a much larger

population is found in the first order than would be found for a single pulse. For

T = π/(4ωrec), the phase of the diffracted atoms has gone π rad out of phase, and

so the second pulse will reverse the effect of the first, leaving no population in the

first order. As seen in figure 6.5, we observed these oscillations for two full cycles.

The plot gives a value ωrec = 2π × 3.72 ± 0.06 kHz. In addition to a value for the

recoil frequency, this measurement also gave a value for the coherence time of the
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Figure 6.5: Momentum-space Ramsey interferometer. The fraction of the atoms

diffracted after the second pulse in the Ramsey sequence is plotted versus the time

between the pulses. The fit parameters from the functional form A exp(−t/τ) sin(ωt+

φ) are given on the plot. The fine structure constant implied by this measurement is

α−1 = 136.9± 1.0.
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BEC source. Later on, we would develop more careful evaporation ramps achieving

lower trap frequencies before trap turn off, thus increasing the coherence time.

6.2 Finding the Signal

Once the splitting and mirror pulses were calibrated we could cause the atoms’ wave

functions to follow the prescription of the contrast interferometer. All that remained

was to observe the back-reflected readout light. In the course of looking for the signal,

short intense readout pulses centered on t = 2T were used, as we simply wanted to

see a signal. Later, the intensity was reduced as much as possible to avoid decohering

the density gratings. Generally, a pulse of length 150−200 µs centered on t = 2T was

used for taking data. Pulse length and power were periodically re-optimized to give

the best signals with the least disruption of the clouds visible in absorption images

after the shot.

For a CI using diffraction light as readout light as well, stray back-reflections

are a formidable background. A substantial amount of effort was spent in iteratively

attempting to block and attenuate these various tiny spots of light, which though tiny

could completely overwhelm a PMT driven by enough voltage to see the CI signal.

Viewports, lenses, and beam splitters were all guilty. The proximity of these specular

reflections to the actual signal light made blocking them while not occluding the signal

itself particularly bothersome. In addition to specular reflections from transparent

optics, diffuse scatter of the readout light at particular places in the setup could be

focused into the imaging path for the CI signal, making an essentially irreducible

background.

A key technique for dealing with these is to turn up the readout light (at this

time this was just the diffraction light) to maximum intensity with the back-reflection

shutter closed. Then, the various unwanted back reflections may be viewed on a white

card. The fact that 556 nm is near the peak of human eye response is quite helpful

here. Further progress can be made by turning off the room lights and allowing your
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Figure 6.6: Stray light backgrounds. The image shows a small portion of the interfer-

ometry breadboard. For this image, the diffraction light was turned up to maximum

intensity and the back-reflection shutter on the far side of the chamber closed. This

allows back reflections to be observed with the naked eye. The white card on the

right shows the light headed for the readout detector. Most of the diffuse glow will

be blocked by irises downstream and so is not of concern. A specular back reflection

that would be overwhelmingly bright on this card was blocked with the twist tie bent

over the mirror indicated at the bottom. The shadow of the twist tie and the Fresnel

spot from the small round block made at the end of the twist tie are indicated. The

shadow of a more substantial beam block further upstream may be seen and the block

itself is indicated on a lens.
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eyes to adjust. A poignant example of the woe back reflections caused may be seen

in figure 6.6. In the foreground you can see a twist-tie taped to a mirror. This device

was designed to provide the least occlusion possible of the CI signal will providing

a block for a reflection that fell extremely close to the signal axis. The end of the

twist-tie in front of the mirror was shaped into a small ball. The white card on the

left shows the rectangular shadow of a larger beam block (visible on the lens in front

of the twist-tied mirror) and the shadow of the twist-tie. The green spot right in

the center of the twist-tie shadow is the Fresnel spot formed by diffraction of the

unwanted reflection around the improvised beam block.

Since the signal path was designed to image the atoms, we first performed absorp-

tion imaging of BECs along this axis by placing a camera2 with its CCD chip at the

position we intended for the PMT to take in the future. The atoms were illuminated

by the diffraction light, with the retro-reflected light acting to back light the atoms

for absorption imaging. While some prior concerns were expressed about the fact that

the light passed through the atoms twice, no adverse effects were observed in the im-

ages. Having the absorption imaging setup allowed us to optimize the lens positions

for signal collection. More importantly, it allowed for beam blocking and aperturing

around the telescope focal points to be guided by knowledge of where the image of

the atoms was within the beam. Blocking too close to the absorption shadow would

harm the image quality, warning that this would also block some of the signal light

coming from the atoms.

Once the unwanted lights were blocked to such a level that we could hope to see

the CI signal above them, we looked for the CI signal on the camera. This required

running the camera with unnervingly high electron multiplier gain, though the camera

came out of the ordeal unscathed. Having only one camera, we frequently changed

from absorption imaging to signal hunting and back again, to be sure we still had

2Specifically, an Andor iXon3 885.
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Figure 6.7: Images of CI signals. On the left is an example image of the CI signal. On

the right is an average of five such images to bring out the signal shape more clearly.

atoms despite having no signal on the camera. Figure 6.7 shows an example of the

CI signal as imaged by the camera, along with an average of several signal images.

It is interesting to note that the shape of the signal more closely matches the shape

of the original BEC before expansion than the shape of the BEC at the time of the

readout, most likely reflecting that the faster expansion in the vertical direction does

not substantially increase the coherence length of the condensate despite increasing

the total size by more than a factor of ten.

Once the signal is located on the camera, irises at the telescopes’ foci can be

closed down until they begin to reduce the signal strength. After these were adjusted

to satisfaction, the camera was replaced with a PMT and time-resolved CI signals

were captured.

6.3 Analysis and Small T Results

The CI signal combines modulation at 8ωrec, which carries the desired phase informa-

tion, and an envelope related to the condensate coherence and decoherence caused by
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the readout light. Any fit to this data will be somewhat tricky due to the necessity of

doing nonlinear curve fitting. With nonlinear fitting, it is easy to become trapped in

a local minimum which is not the global minimum or have the optimization routine

run some parameter out to absurdly high or low values. As a particularly perverse

example, fitting a sine wave with a Gaussian envelope to data with only two peaks

can lead to a fit with a low frequency sine wave and an enormous Gaussian (ampli-

tude ≈ 100 times the amplitude of the data) that when multiplied together yield a

two-peaked structure remarkably similar to the data.

Our early data had short coherence times, likely due to excessively strong readout

light. As such, much effort was expended trying to fit the signal envelope to obtain

better phase information from the underlying sine wave. However, the best results

were found by selecting the highest quality portion of the data and fitting that to a

sine wave. While this is an effective technique, automating the decision process for

the highest quality portion of the data would be quite difficult. Instead, the analysis

software uses a proxy that has been found to agree well with human judgment as to

the best quality portion of the data.

The procedure utilized in the analysis software involves picking a number of dif-

ferent windows from the data. It starts by finding the point of maximum signal. The

actual maximum in a file is often a noise spike on top of actual signal. However, it is

extremely unlikely for noise in a low quality portion of the signal to spike high enough

to win out over the strength of the signal in its best quality regions. The routine then

defines windows extending in either direction from the maximum point by different

numbers of oscillation cycles. For example, {1, 3/2, 2, 5/2, 3, 7/2, 4}, for a total of 49

different windows. The data in each window are fit to A [sin(8ωrec(t− 2T ) + φ) + 1],

with A and φ as fitting parameters and ωrec as a previously determined value of

the recoil frequency. At the end, the fit values from the window with the smallest

uncertainty in φ are used.

Notice that we fit the signal to a simple sine wave with twice the frequency ex-



93

pected from (5.3). The density modulation described by this equation will determine

the reflected electric field amplitude, however, the PMT detects the intensity, which

is the square of the amplitude. Squaring the time dependence of (5.3) we arrive at

an expected signal proportional to

cos2

(
4ωrect+

θ1 + θ−1

2
− θ0

)
= 1 + cos (8ωrect+ θ1 + θ−1 − 2θ0) . (6.1)

The decision to fit to a sine wave rather than a squared sine wave came from a desire

to minimize the “nonlinearity” of the fitting function, though in all likelihood the two

would work equivalently. However, we care about the phase of the atoms themselves,

so the phase form on the left side of (6.1) is more directly relevant. This is also the

phase that models for various systematic effects calculate. Thus, after extracting φ,

we divide by 2 and bear in mind that the 2π ambiguity in the fit corresponds to a π

ambiguity in the final value3.

The first recoil result from the CI used values for T of 0.99, 1.00, 1.01, and 1.02 ms.

By taking such small steps in T , we could be sure that we were not missing multi-

ple changes by π in the phase reported for each value of T . The π ambiguity in

phase requires several small adjustments during the data analysis. For a given T , all

measurements are shifted by a multiple of π to bring them within π/2 of the initial

mean value of φ. Next, corrections for systematic effects are applied. Particularly

important are the diffraction phase shifts, described in chapter 8.

To obtain a value for the recoil frequency from the data sets at T values listed

above, we must add multiples of π to all of the data sets except the smallest T

(T = 0.99 ms) set. To determine the correct number of π’s, we calculate

〈φ(0.99 ms)〉+ 2(T − 0.99 ms) · 4ωrec − 〈φ(T )〉
π

,

3To divide by 2 or not amounts essentially to an aesthetic choice. It has the satisfaction of
showing a smaller standard deviation in a set of identical measurements, but this of course does
not affect the relative uncertainty of the measurement. The only important thing is that analysis
remains consistent with the decision made.
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Figure 6.8: Small T Results. The left side of the figure shows data points and a linear

fit for T ∈ {0.99, 1.00, 1.01, 1.02} ms. The right side shows the same data with the

addition of points for T ∈ {2.00, 3.00, 4.00} ms. Fit residuals for the linear fits are

plotted beneath the main data plots.

using the value for ωrec determined in the momentum-space Ramsey experiment, and

then round the result to the nearest integer. This integer result multiplied by π is

then added to each value in the φ(T ) set. Once all of the data sets are adjusted, we fit

a straight line to φ(T ) vs. T . The slope of the line is 8ωrec. From the fit uncertainty

for the slope from the least squares fit, we determine the uncertainty in our recoil

frequency. The linear fit and the fit residuals for this data set are shown on the left

side of figure 6.8. The result is ωrec = 2π × 3.62± 0.09 kHz.

We may then use this value of the recoil frequency to extend to larger values of

T . Adding data sets at T = 2, 3, and 4 ms gives the data and residuals shown on the

right side of figure 6.8. The result from these data is ωrec = 2π×3.7122±0.0007 kHz.

These data were taken and analyzed before the diffraction phase systematic was fully

understood, and so they did not benefit from the large reductions in uncertainty that

this gave. This result corresponds to a relative precision of 190 ppm. It gives a value
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Figure 6.9: This schematic of a photomultiplier tube shows a single photon strik-

ing the photocathode. The emitted electron is directed to the dynode chain where

large potential differences between successive dynodes cause the number of electrons

to be multiplied on collision with each plate. The single photon is thus converted

into a measurable current spike. Figure from Photomultiplier Tubes: Basics and

Applications, available from the Hamamatsu website http://www.hamamatsu.com/

resources/pdf/etd/PMT_handbook_v3aE-Chapter2.pdf

of α−1 = 137.053 ± 0.013, which differs from the CODATA value by 1.3 standard

deviations. With hind sight, it is likely that there was a small systematic shift due to

diffraction phase, the magnitude of which was not appreciated at the time.

6.4 Improving the Readout

The initial readout system was plagued by several problems leading to poor signal-

to-noise ratios. These problems were largely overcome by upgrading the PMT and

amplifier and installing a separate fiber and optical path for the readout light.

http://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE-Chapter2.pdf
http://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE-Chapter2.pdf
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6.4.1 Better Equipment

To better appreciate the nature of the improvements to the signal detection equip-

ment, we’ll briefly review the workings of a photomultiplier tube. The actual detector

in a PMT is a photocathode that emits an electron when hit by a photon of suffi-

ciently high frequency. This process is an example of the classic photoelectric effect,

of which Einstein’s explanation served to help begin the understanding of quantum

mechanics. The photocathode material has some work function, which determines

the minimum frequency a photon must have to dislodge an electron. The rest of the

PMT consists of a series of plates (called dynodes) at progressively higher potentials.

The initially emitted electron is accelerated toward the first of these plates. When it

strikes this plate, having much greater energy than when initially emitted, it dislodges

many electrons. These freed electrons are then accelerated toward the second plate,

where each electron dislodges many new electrons on impact. This process continues

through to a final collector, the anode. Thus, a single photon at the photocathode is

converted into a measurable current pulse at the anode.

Since the PMT gives a certain current response for a single photon, the output

current, not voltage, is linear in light intensity. As such, we want an amplifier that

gives a linear conversion from current to voltage, voltage signals being more robust.

Such an amplifier is referred to as a transimpedance amplifier. In a very crude sense,

a large resistor is a transimpedance amplifier, since it will convert a small current

signal into a large voltage signal. However, the large resistance can distort the current

signal, and the small current would not support a robust voltage output. Ideally, a

transimpedance amplifier should combine a very small input impedance with a large

output impedance. A number of considerations go into the design of such amplifiers

to balance bandwidth and amplification.

The initial data were taken with a Thorlabs PMM02 photomultiplier module.

These general purpose PMTs come with a built-in transimpedance amplifier. While
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this is a fine general purpose light detector, far more sensitive than standard photodi-

odes, it fails to live up to the full potential of a PMT. Our two devices never achieved

the amplifications deemed possible by the specs. Perhaps equally important, the

built-in transimpedance amplifier response had a sharp roll off above 30 kHz. Since

our signal oscillates at 8ωrec = 2π ·30 kHz, this almost certainly introduced distortion

of signals.

To improve the system we changed to a Hamamtsu H10721-210 PMT. This is just

the raw PMT and so requires a separate amplifier (as well as a bit of time to build

voltage control electronics for the internal high-voltage). This PMT easily worked

to specification, despite occasional mistreatment4. At maximum safe control voltage,

and even just a touch below max, the PMT is sensitive enough to pick up individual

photons. We chose this particular PMT with an eye to the future. Its quantum

efficiency at 556 nm is only about 11%. However, it jumps to 30% for 399 nm light.

As we have good reason to believe that readout of the CI signal using 399 nm in the

future will substantially improve the experiment, we opted for a PMT that would

increase those gains further.

We paired this with the Stanford Research Systems SR570 low noise current

preamp. This preamp has a variety of settings allowing for bandwidth up to 1 MHz.

We found optimal results with a low-pass setting of 300 kHz. The amplifier has out-

standing levels of amplification with imperceptible electronic noise. Together, these

made an impressive improvement in our signal quality.

4I hesitate to say this, lest it embolden future grad students. However, on at least two separate
occasions, the experiment was run with the PMT protecting shutter open during the diffraction
pulses. While this drops unconscionable amounts of light onto the detector, the ill effects in
terms of increased noise were only temporary. Undoubtedly this would lead to sustained poor
performance if such abuse happened very often, and so should be avoided at all costs.
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6.4.2 Decoupling Diffraction and Readout

As discussed in 6.2, back reflections from optics form a background to the CI signal

which is difficult to reduce. Installing separate fibers and a new optical path for

delivering the readout light to the atoms solved this in several ways. Even with the

second fiber, we continued to use a single AOM for both light sources. The readout

out light was split from the diffraction light and sent to its own fiber. This fiber had

a shutter just in front of it, as did the diffraction fiber.

The most important improvement was the major reduction of readout light re-

quired. The diffraction beams had a waist of 3 to 4 mm over the life of the experi-

ment. However, the BEC at the time of the readout has dimensions of, at the most,

100 µm. This suggests that > 99% of the light is of no value for making the CI signal,

since it doesn’t hit the atoms at all. This light may, however, contribute to both the

diffuse background and to specular reflections. Switching to separate delivery of the

readout light allows it to be mode-matched to the BEC. The total power available

for making unwanted backgrounds is immediately reduced by a factor of 100. Future

experiments will need to move to roughly twice the waist for diffraction beams, while

hopefully using BECs with smaller momentum spread and thus smaller physical size

at time of readout. Thus, the wins from using separated readout may be even more

substantial.

The mode-matching allowed by separated readout would also be essential to any

future studies of back action or decoherence caused by the readout light. Quantifying

the amount of light actually reaching the atoms would be necessary and becomes far

easier if all of the delivered light reaches the atoms. By using absorption imaging

along the diffraction/readout axis, the readout light could be adjusted to overlap

with the BEC or even to address specific regions of the BEC. This last possibility

could be used to understand how coherence contributes to the signal in a manner

complimentary to taking direct images of the CI signal itself, as in figure 6.7.
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Separate readout light also allowed use of a polarizing beam splitter to connect

the readout path and the diffraction light. With the same light for diffraction and

readout, the CI signal has the same polarization as everything else. Thus, a partially

reflecting beam splitter had to used. The reflection ratio had to be chosen to trade off

fraction of transmitted power for diffraction beams against fraction of signal reflected

to the detector. With the PBS, each may be nearly 100%. The readout light and the

reflected signal still have to be combined on a nonpolarizing beam splitter, but since

there is vastly more readout light available than is actually needed, we could throw

away 90% of the readout light to allow collecting 90% of the signal.

6.5 Large T Results

Over the course of the year the interferometer was taking data, a number of incre-

mental improvements were made. An initially poor choice for the retro optics, which

included a mirror dangling in space from the edge of a third breadboard, was recti-

fied. Various tweaks were made to improve the working of the mirror pulse, mostly

related to getting the width just right. Changes were made to the evaporation ramp,

including improved intensity feedback control for the ODT laser, allowing for stable

running with lower final trap frequencies, and a 0.5 − 1 s hold at low trap depth to

damp out excitations of the cloud just before condensation. The end result was a pair

of measurements with 7 ppm precision using different values for T .

6.5.1 Vibrational Immunity

A key advantage of contrast interferometry over traditional atom interferometers is

the absence of an external grating for reading out the phase, discussed in 5.1.2. For an

external grating readout interferometer, the position of the external grating relative

to the initial splitting grating must be carefully stabilized. In interferometers using

physical gratings, this may be done through optical interferometry on the physical

gratings with some feedback control[50]. For optical gratings, this entails stabilizing
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the positions of the optics responsible for the standing wave, since sub-wavelength

scale changes in optical path length can markedly change the positions of nodes

and antinodes in the optical potential[49]. If the two beams interfering to make

the standing wave come from different sources, those sources must also be phase

locked[43].

The contrast interferometer avoids these issues by beating two atomic density

gratings against one another for its readout. So, in principle, the CI should be immune

to vibrations. This was conceptually demonstrated in the original CI paper[36] by

changing the phase between the two interfering laser beams in a deterministic manner.

However, a CI actually returning a signal over interferometer times long enough for

vibrations to be a concern was lacking.

To demonstrate the vibrational immunity we compared the coherence time for a

CI and for a momentum-space Ramsey interferometer. The interferometry setup had

no active vibration control. Being built on an optics table and adding brass plates

to the breadboards that were on legs above the optics table were the only passive

measures to combat vibration. The Ramsey experiment followed the procedure for

the CI exactly, with the one change that the final readout was a standing-wave pulse

identical to the splitting pulse. The experiment differed from that described in 6.1.2

in that a mirror pulse was inserted into the sequence so that our coherence time was

not limited by the spatial extend of the BEC. So, as for the CI, the Ramsey readout

pulse occurred at the time of perfect overlap for the interferometer arms.

Figure 6.10 shows the loss of fringe visibility in the Ramsey interferometer with

increasing T , as compared to the constant visibility for the CI signal over a far larger

span. The visibility of the fringe comes from fitting a sine wave to the data with

form A sin(ωt + φ) + y0. The visibility is then simply 2A/(A + y0). This is to be

compared to the interferometer contrast, defined as ymax − ymin/(ymax + ymin). The

essential difference is that the contrast measures the level of coherence in the atomic

interference itself, while the visibility measures the level of coherence relative to the
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Figure 6.10: Vibration immunity. In a) we see an absorption image of the separation

of the arms of the CI at the time of the mirror pulse for a T = 11 ms interferometer.

In b) the fringe visibility is plotted as a function of T for the CI (red disks) and

the Ramsey interferometer (blue circles). In c) two sample signals from the Ramsey

interferometer are shown to demonstrate the loss of visibility.
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readout process. For instance, a single point in the right-hand plot of c) could include

shots ranging from 0.2 to 0.8, which would give a contrast of 0.6. However, the fact

that these all occurred for the same readout settings means that while the atoms

maintain their coherence (otherwise the value would be essentially 0.5 for all shots)

the interferometer gratings are not maintaining their phase relationship from shot to

shot. A good summary would be contrast indicates coherence while visibility indicates

a useful measurement with that coherence.

We see the visibility in the Ramsey experiment begin a quick decline for T > 1 ms.

This suggests that vibrations of frequency . 1 kHz afflict the setup. The visibility

for the CI is unaffected by this noise, as seen from the fact that it is unchanged out

to T = 11 ms. We also took CI data where we intentionally coupled vibrations into

the table by running the Webtrol booster pump. This high pressure pump for cooling

the MOT and Helmholtz coils coupled sufficient vibrational noise into the optics table

as to make the Li spectroscopy, located on the same table, unlockable. There was

no discernible difference in the data quality from the CI with or without the booster

pump running.

6.5.2 Below 10 ppm and Scaling to Better Precision

Two different data sets were taken to the ≤ 10 ppm level. One (set A) included 500

data points at each of T = 1 ms and T = 7 ms. The other (set B) used 150 data

points at each of T = 3 ms and T = 11 ms.

Each data set was fitted using a holistic fitting routine. This is similar to that

described in section 6.3. However, rather than using the window which gives the

best value of the phase uncertainty for a single shot, the entire data set is fit with

different windows and then the window that gives the lowest standard deviation for

the data set is used. This gives a better metric for goodness of a window, since many

windows give small phase uncertainty for any given trace. It also addresses a potential

concern that if there are some nonlinear frequency changes across the time of the signal
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(e.g., from interaction induced phase curvature) that sampling from different parts

of the window for different runs could introduce systematic shifts and/or increased

uncertainty in the sample. The diffraction phase systematic described in chapter 8 is

strong, and highly susceptible to laser intensity noise. An example in that chapter

shows a factor of three reduction in sample standard deviation upon application of

the diffraction phase correction. Therefore, we first calculated the shift for each shot

and then applied those corrections before determining which window gave the best

standard deviation of the data set.

One other technique was used to give a modest boost to the precision of the

measurement. The mean and standard deviation are statistical estimators that are

extremely susceptible to skewing by outliers. Estimators with less susceptibility to

outliers are referred to as robust statistics. Two of the simplest are trimmed mean

and trimmed standard deviation. Essentially, these consist of the mean and standard

deviation calculated after removing some percent of the lowest and highest values from

the data set. In this way, extreme outliers are removed and the central trends of the

data set are preserved. Data sets without extreme outliers are essentially unchanged

by this procedure, as long as the percent removed is not too great5.

Data set A was analyzed with and without a 10% outlier trimming (i.e., the lowest

5% and highest 5% of data points removed). Without trimming, the result is ωrec =

2π×3712.110± .035 Hz. With trimming, the result is ωrec = 2π×3712.134±0.028 Hz.

As the results agree with one another to within error bars, it seems reasonable to

conclude that the trimming procedure does not introduce a systematic shift. This

should be rechecked in future high precision data sets, as some physical systematic

effect could cause a significantly skewed distribution, though this seems unlikely. The

relative uncertainty in the trimmed data is 7 ppm.

Data set B was analyzed similarly. Without trimming, the result is ωrec = 2π ×

5The extreme limit of this removal process would give the median as the 49.999% trimmed mean.



104

3713.190 ± .042 Hz. With trimming, the result is ωrec = 2π × 3713.156 ± 0.038 Hz,

giving a relative uncertainty of 10 ppm. Again we see agreement between the two

values to within error bars.

Unfortunately, discussion of accuracy is not possible for these data sets. As dis-

cussed in chapter 9, trap uncertainties limit the ability to correct for interaction shifts

at a level commensurate with the precision demonstrated in these data sets.

6.5.3 One Detuning, Two Detuning, Red Detuning, Blue Detuning

A technical advantage of Yb over alkali atoms is the ease of working near the narrow

intercombination line. To achieve detunings of 500 linewidths or more from resonance

for an alkali atom requires shifting frequencies by multiple gigahertz. With the 556 nm

transition for Yb, this reduces to about 100 MHz. Therefore, with a single AOM,

the diffraction light may be set to 500Γ of red detuning or blue detuning or set to

resonance. This flexibility may be enormously helpful in understanding and correcting

for the index of refraction shift in future experiments.

To test for any effect from detuning, we took data with several different combi-

nations of detuning for diffraction light and for readout light. Diffraction light was

generally ∼ 700Γ detuned, either to the red or the blue of the transition, while read-

out light was generally ∼ 50Γ detuned. We tried all four possible combinations of red

detuning and blue detuning for readout and diffraction lights. We found essentially

no difference in data quality or phase accumulation between these. At the precision

we worked to, the index of refraction shift to the recoil frequency, described in 7.3.4,

would have been too small to notice.

One motivation for the change from red to blue detuning in the diffraction pulses

was the avoidance of molecular photo-association resonances. The positions of these

resonances are well-known[97], and so avoiding them directly is fairly easy. However,

there was some concern that they might indirectly influence the interferometer by

contributing to the coupling of the diffraction light to the atoms. Since the strength of
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the photoassociation line is density dependent, this would induce a density dependence

into the diffraction phase shifts described in chapter 8. An alternative description

would be in terms of an optical Feshbach resonance[29]. While we found no measurable

difference between far red and far blue detuned diffraction beams, it is recommended

that future experiments stick to blue detunings. There is seemingly no down side,

while in principle these photoassociation/optical Feshbach effects could be visible at

higher precision with red detuning.

6.6 To BEC, or Not to BEC

The discussion thus far has assumed that the atomic source for the CI is a Bose-

Einstein condensate. A contrast interferometer using a cloud at a temperature above

the condensation temperature—a “thermal” cloud—is an interesting prospect for two

broad reasons. First, a sizable body of work must be applied to the BEC to correct

for interaction shifts due to the condensate’s high density, as described in chapter

9. A thermal cloud has much smaller density and as such far less severe interaction

shifts.

Second, the ability to do CI with a thermal cloud would allow study of the ef-

fect of inter-particle coherence in a CI, which could be enlarged to a general study of

many-body physics using CI. The envelope of the CI signal is essentially the two-point

correlation function of the cloud along the axis of the interferometer. Thus, phase

transitions with signatures in the two-point function could be studied. A particular

example would be to measure critical exponents for the condensation transition[28].

Additionally, the effect of inter-particle coherence on rates of decoherence due to con-

trolled external perturbations could be studied. The decoherence rate for uncorrelated

atoms could be determined using a thermal cloud CI, and then decoherence could be

studied at various temperatures crossing the transition down to pure BECs.

To demonstrate this ability, we performed CI with essentially the same parameters

as for taking high precision data. The evaporation ramp was modified by stopping
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Figure 6.11: CI across the BEC transition. The figure shows CI signals from three

clouds. Each trace is an average over twenty signals with the same evaporation

ramp. Trace 1 is from a pure BEC. Trace 2 is from a cloud just below the transition

temperature with T/TC ≈ 0.9. Trace 3 is from a thermal cloud just above the

transition temperature but below the recoil temperature (i.e., the diffraction orders

are well-resolved in absorption images with long time of flight). The time of flight

absorption images on the right show the momentum space distributions of the clouds.

A small condensate is visible in the center of image 2.

and holding the trap depth just before the BEC begins to form. For various hold

times at this trap depth the cloud will continue to cool and so cross the BEC phase

transition. The goal was to study a variety of T/TC values at fixed trap frequencies.

Hold times were 0, 100, 200, 300, 400, and 600 ms. Additionally, data was taken with

no hold at a slightly higher trap depth and after a long hold at a slightly lower trap

depth. A second modification was to use a longer, lower power readout pulse. The

pulse was lengthened to 300 µs to allow for the possibility of seeing many peaks in

a situation with long coherence time. An attempt was made to move to 400 µs, but

this seemed to artificially decohere the density gratings.
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Figure 6.11 shows some results of this effort. The three traces show the averaged

signals from twenty runs with a pure BEC, a cloud with T/TC ≈ 1, and a thermal

cloud just above TC. The emergence of a small condensate, visible in absorption

image two, seems to be accompanied by a qualitative change in the signal, namely

the appearance of three clearly defined central peaks. The results of this study,

necessarily quite preliminary due to lack of time on the machine, are quite promising

for the use of CI to study many-body physics in the future.

One potentially interesting twist would be to use a two arm configuration. That

is, use a Bragg pulse to populate only the 0 and 2~krec states. Then, simply look at

the amplitude of the back reflection as a function of time. This signal would have

no recoil frequency modulation, and so would provide cleaner data for the coherence

length. Such an asymmetric splitting pulse would require two separate sources for the

two diffraction beams. While this introduces some small extra experimental effort,

it removes the time-scale of closing the back-reflection shutter as a concern. Thus,

the reflection signal could be observed immediately after the Bragg pulse (i.e., during

separation rather than after a mirror pulse and recombination). Studies of grating

coherence at these times might also give insight into whether some coherence is lost

due to collisions between the interferometer arms during the splitting process.

6.7 Recommendations for Future Experiments

Describing how we did things is important, since what we did worked. However, we

learned a number of lessons along the way and frequently wished to have time to

start anew. Some subset of these insights are collected here, as advice for future

experiments.

• Two-lens telescope for the diffraction light retro. As explained in 6.1.2, using a

single lens with the retro mirror at its focus makes it impossible to use optical

fiber return coupling for aligning the retro diffraction beam. This is such a
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powerful technique that it’d be foolish to give it up.

• Image with outgoing diffraction light. For high-precision interferometry, it will

be helpful to know where the atoms are in the diffraction beams. This will also

be necessary if experiments to test the fully quantum mechanical treatment of

wavefront curvature are to be carried out. A telescope must be constructed on

the retro side of the interferometry axis for the shutter to work. As mentioned

above, having a complete two-lens telescope for the diffraction light retro is key.

If such a telescope is to be constructed anyway, it is not much more work to add

a magnetic stage with a mirror after the second lens such that a mirror may be

inserted before the retro mirror to send the light to a camera. This should also

simplify the initial alignment process as the atoms can simply be imaged with

the light and then the light position adjusted to center it on the atoms at the

proper time of flight. Admittedly, this does require the telescope to be adjusted

such that the first lens has the atoms at its focus, but in the long run the extra

information on where the atoms are in the beam should be worth the trouble.

Also of interest, this would allow imaging of the readout light to place it on

the atoms and adjust it’s focus to mode-match the BEC at the time of readout.

This could be important to experiments designed to understand the dynamics—

including quantum back-action and decoherence—of the readout process.

• Avoid the Hall of Mirrors. While it is important to keep angles of incidence

small at all mirrors, the interferometry paths should be planned so as to ac-

complish this goal without increasing the number of optics beyond the bare

minimum. The three steering mirrors, dubbed the “Hall of Mirrors” lead to

ambiguity in adjusting alignments, and occasional confusion as to which mirror

had most recently been adjusted. Additionally, keeping optics clean is essential

for avoiding odd diffraction effects from dust and other contaminants. Keeping

the optics to the bare minimum reduces the number of places for contaminants
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to affect the beam.

• Boxes Within Boxes. Plan the layout of the interferometry optics such that the

optics from the aperture on the first signal telescope to the PMT itself can all

be boxed up, with a second box surrounding the entire setup, including this

inner box. Also, robust boxes which are easy to open and then close light-tight

again will make things go much more quickly.

• Interlock Protection for PMT. The PMT must be run at maximum gain settings

to see the CI signal well. Thus, any leakage of room light or inadvertent shining

of lasers into the PMT can be very hazardous to the equipment. The home-

built voltage gain controls could be fairly straight-forwardly retrofitted with an

interlock system that would drop the control voltage to zero if a signal output

above a certain threshold were detected. This is not perfect as it still requires

the PMT being connected to a working transimpedance amplifier for it to be

effectively protected, but it might go a long way to safe guarding this critical

piece of equipment.
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Part III

SYSTEMATICS
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Chapter 7

SYSTEMATIC SHIFTS IN A CONTRAST
INTERFEROMETER

This chapter discusses a wide variety of physical effects that could systematically

shift the output of the contrast interferometer. The size of such effects and how they

scale with T will be derived. Also, we will consider the effect on an interferometer

where the moving arms are accelerated to p = ±2N~k for free propagation. Such

acceleration may be accomplished in several different ways[74, 19]. Since such accel-

eration will be key to future experiments with sub part per billion precision, we will

also consider scaling with N . We intentionally avoid describing the techniques for

acceleration, simply noting that they involve two- or multi-photon transitions akin to

those made in the mirror pulse. An interferometer with N > 1 requires four stages

of acceleration: speed up after the splitting pulse, slow down before the mirror pulse,

speed up again after the mirror pulse, and final slow down before read out.

Two larger/more complex systematic shifts will be described separately in chapters

8 and 9.

7.1 Reference Frame Effects

Reference frame effects refers to any systematic shifts due to relative movement of

the diffraction beams and the atoms. While general relativity shows that gravity

should properly be classified as a reference frame effect, we opt to use the simpler

Newtonian picture of an external force field, which is more than sufficiently accurate

for our needs.

The standing optical wave defines a reference frame. In a traditional interfer-
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ometer, the fact that an external grating reads out a phase relative to itself makes

unintended relative motion between grating and atoms a serious concern. Such issues

were discussed in section 6.5.1 where we demonstrated the vibrational immunity of

the contrast interferometer. Similarly to the vibration results, the CI is generically

less sensitive to reference frame effects than traditional interferometers because the

external reference frame is not directly involved in the final phase measurement.

Since the CI relies on momentum kicks delivered by the optical standing wave,

a change in its orientation between momentum kicks will change the magnitude of

the total momentum kick, thus skewing the results. To take an extreme example,

if the apparatus rotated π/2 between the splitting pulse and the mirror pulse, the

momentum kick from the mirror pulse would be orthogonal to the original momentum

kick. In fact, this interferometer would not close. If a signal could be obtained (e.g.,

for extremely short T ), the kinetic energy would be too large by a factor of two for

the second half of the interferometer. We will assume that the effects are only small

perturbations of the momentum kicks. However, for an N = 100 interferometer, tiny

imperfections in the momentum kicks could add up to unacceptable inaccuracies.

If the atoms are moving along the standing wave axis, they will see photons from

one diffraction beam as having less momentum but the other having correspondingly

more. Thus, initial velocity or any acceleration along the standing wave axis will not

affect the net momentum kick obtained in a two-photon transition1. Such motion

may affect the efficiency of diffraction pulses by making the two-photon transition

slightly off-resonant but this does not affect the momentum kick. Similarly, motion

perpendicular to the axis can change the intensity at the atoms, thereby changing the

diffraction pulse efficiency but not affecting the momentum kick2.

1Equivalently, we may think of the standing wave as having a physical spacing between intensity
maxima of λ/2. This physical spacing can be length contracted by motion along the axis, but the
relative size of these corrections for an N = 1000 interferometer (atomic speeds of ≈ 8 m/s) would
be 10−15.

2It has been argued that moving within the beam affects the wavefront curvature effects described
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Rotations, as suggested in our extreme example above, may alter the momentum

kick. Specifically, a rotation that changes the direction of the standing wave axis

relative to the inertial reference frame of the freely falling atoms by an angle δθ will

in turn change the direction of the momentum kick by the same amount.

As a simple case, consider an N = 1 CI. Defining the initial standing wave axis to

be the x direction, the two momentum kicks for the +1 arm would be (2~k, 0, 0) and

(−4~k[1−δθ2/2],−4~kδθ, 0), where for simplicity we’ve defined axes where the axis of

rotation is the z axis and assumed the validity of the small-angle approximation. This

gives kinetic energy for the two free propagation times of 4ωrec and 4ωrec(1 + 2δθ2),

respectively. So, how large might this effect be?

Cold atoms experiments are generally bolted to a heavy table (certainly the case

for all experiments described in this dissertation). As such, they are unlikely to rotate

relative to the Earth, leaving the rotation of the Earth itself as the major concern.

The Earth rotates at a rate of Ω⊕ = 2π/(8.64 × 104 s). Consider the worst-case

scenario of a vertical interferometer at the equator, which will have its axis rotate at

the same rate. For an experiment with T = 10 ms, we find δθ = 7.3×10−5 rad, which

would result in a 5 ppb shift. So, we see an effect large enough to be taken seriously,

particular since moving to vertical geometry has as a principal bonus the ability to

increase T by factors of 5 or more over the ∼ 10 ms that is feasible in horizontal

geometries. More generally, for a vertical interferometer run at latitude φ, we have

δωrec

ωrec

=

(
2πT

8.64× 104s

)2

cos2 φ .

Seattle’s latitude wins a factor of two, but even the T = 10 ms interferometer would

have a 2.5 ppb shift. Of course, latitude and the length of the day being well-known

and unchanging3 makes this an easy shift to correct for.

in 7.3.1. We consider this question there.

3Technically, each of these changes on geological time scales due to tectonic plate movement and
tidal interactions with the moon, respectively. If time to complete a data set should ever approach
geological scales, this dissertation would be obsolete.
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For a large N experiment, rotation during the sequence of acceleration pulses

could also affect the momentum during free propagation. For an acceleration pro-

cess wherein each individual momentum kick is small compared to 2~kN , the actual

momentum at the end may be found by treating the process as continuous. Such a

continuous process may be modeled by adding the individual, infinitesimal momen-

tum vectors. Geometrically, this gives an arc of a circle. Since the total length of

the arc must be 2~kN and the angle subtended by the arc must be the difference in

angle between the first and last momentum kicks, ∆θ, we must have an arc from a

circle of radius 2~kN/∆θ. Using this construction, we find a net momentum kick of

2~kN(1−∆θ2/6,∆θ/2, 0).

Defining Ω′⊕ ≡ Ω⊕ cosφ, using a particular latitude of interest, we can write down

the momentum during the two free propagation periods for an interferometer where

each of the four acceleration phases lasts a time tacc. The momentum for the first

time comes directly from the above formula:

~p1 = 2~kN
(

1−
(Ω′⊕tacc)

2

6
,
Ω′⊕tacc

2
, 0

)
. (7.1)

The momentum at the second time requires applying a rotation to the above formula,

yielding

~p2 = −2~kN
(

1− 7

6
(Ω′⊕tacc)

2 − (Ω′⊕T )2 − 2Ω′2⊕Ttacc,−Ω′⊕(2T + 3tacc/2)

)
. (7.2)

Combining (7.1) and (7.2) we find the total effect to be

δωrec

ωrec

= Ω′2⊕

(
T 2 + Ttacc +

1

12
t2acc

)
. (7.3)

For orientations other than vertical, the result of (7.3) holds but with a different

effective rotation rate Ω′⊕. For an interferometer oriented along a line of longitude

we have Ω′⊕ = Ω⊕ sinφ, while for one oriented along a line of latitude Ω′⊕ = Ω⊕.

Generically, Ω′⊕ = Ω⊕|r̂ × x̂|, where r̂ is the unit vector in the direction of Earth’s

rotation axis and x̂ is the unit vector in the direction of the interferometer’s axis.
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Accurate subtraction of this effect should be achievable with a simple compass and

suitable correction for the difference between magnetic and rotational north.

7.2 External Field Effects

In this section we discuss systematic shifts due to interactions of the atoms with

external fields not deliberately imposed on the atoms. These include the gravitational

and magnetic fields of the earth, stray electric fields (either static or radiative), and

stray magnetic fields from sources other than the earth. The combination of Yb as

source atom with the symmetry of the contrast interferometer renders all of these

shifts quite small.

7.2.1 Gravitational Fields

As mentioned in 7.1, Newtonian gravity viewed as a potential energy is more than

sufficiently accurate for our purposes. General relativistic effects need not be consid-

ered.

The potential energy due to gravity is given by mΦg where Φg is the gravitational

potential. For an interferometer oriented along the x axis, the first relevant effect

is due to ∂2Φg/∂x
2. It should be noted that, like the electrostatic potential, the

gravitational potential in free space satisfies Laplace’s equation: ∇2Φg = 0. Thus, in

principle, the interferometer could be run in each of three orthogonal directions. The

sum would then exactly cancel gravitational effects (out to fourth derivatives, which

will be negligible). This is, however, infeasible in practice.

It is standard to discuss gravitational effects in terms of the acceleration due to

gravity ~g = −∇Φg. In terms of g, the first relevant effect is due to gradients of g.

Gradients of g are used in geodesy for discovery of oil and mineral deposits. As such,

commercial gravity (g) gradiometers are available with extremely good accuracy and

precision. We will return to this point once the magnitude of the effect is established.
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We calculate the energy difference responsible for the differential phase evolution

of an interferometer oriented along the x axis:

E−1(t) + E1(t)

2
− E0(t) ≈ m

1

2

∂2Φg

∂x2
δ2(t) = −m

2

∂gx
∂x

δ2(t) (7.4)

where δ(t) is the separation between arm 0 and either of the ±1 arms. For an in-

terferometer with a deceleration/mirror/acceleration phase of time span 2tacc near

maximum separation, we calculate the total phase difference ∆θgrav:

∆θgrav = −m
2~
∂gx
∂x

∫
dt δ2(t)

= −m
2~
∂gx
∂x

[
2

∫ T

0

dt
{

(2Nvrt)
2
}

+ 2tacc(2NvrT )2

]
= −8ωrecN

2T
∂gx
∂x

T

(
1

3
T + tacc

)
,

giving
∆θgrav

θrec

= −∂gx
∂x

(
1

3
T 2 + taccT

)
. (7.5)

As an example, consider the energy difference for an interferometer outside of a

spherical mass M , with axis oriented along the radius vector of the spherical mass:

E−1 + E1

2
− E0 = −GMm

2

[
(R + d(t) + δ(t))−1 + (R + d(t)− δ(t))−1 − 2 (R + d(t))−1]

= −GMm

[
δ2(t)

(R + d(t))3 − δ2(t) (R + d(t))

]
= −GMmδ2(t)

(R + d(t))3

(
1− δ2(t)

(R + d(t))2

)
= −GMmδ2(t)

R3
+O (d/R, (δ/R)2) ,

where R is the distance from the center of the massive body to the initial position of

the interferometer before the splitting and d(t) is the displacement of arm 0 from its

initial position. The expression has the form we would anticipate based on equation

(7.4), but the order symbol allows us to see the magnitude of error we make by

considering only gradients. For the Earth’s gravitational field we have ∂gr/∂r =
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2GME/R
3
E = 3.1 × 10−6 s−2, where ME = 5.97 × 1024 kg and RE = 6.37 × 106 m.

For T = 10 ms and tacc = 1 ms we find a relative phase shift of −1.2 × 10−10. From

Laplace’s equation and an approximate cylindrical symmetry of the local field around

the radius vector, we determine that this shift will have the opposite sign and half

the size for a horizontally oriented interferometer.

Alternatively, we might ask: For the given T and tacc how accurately must we

measure the gradient in g to subtract the phase shift down to the 0.1 ppb level? We

see from above that the answer will be ≈ 10−6 s−2. Commercial gravity gradiometers,

such as those built by Gravitec, can measure gradients of size 5× 10−9 s−2 or better.

Since the gradient due to the spherical Earth is barely at the level needing correc-

tion, we might wonder if anything in the lab could cause gravity gradients sufficient

to concern us. Keeping the gradient in g fixed and simply rescaling M and R si-

multaneously, we find that a mass one meter from the atoms would have to be over

22, 000 kg to cause a gradient comparable to that due to earth. One can estimate

that Mt. Rainier has a mass ∼ 1013 kg (base area ≈ 5 km2 and height ≈ 4 km with

density ≈ 3 g/cm3) and is a distance ∼ 105 m away and so creates a completely

negligible gravity gradient. Tidal changes in Puget Sound constitute a change of

water mass of approximately 5 km3(1 g/cm3) = 5 × 1012 kg[63]. If the entire mass

were located 10 km from the atoms (roughly the distance to the closest part of Puget

Sound) the gradient due to the changed water mass is roughly 10−4 times that due

to the spherical earth. So, we can safely neglect any time-varying gradient. For the

accuracy required to subtract this effect, the gradient calculated with the spherical

Earth model should be correct.

7.2.2 Electromagnetic Fields

External (quasi-static) electric fields can affect the interferometer through the Stark

shift. The energy of an atom in a static electric field is EStark = pE2, where p is the

atomic polarizability and E is the magnitude of the electric field. The polarizability
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of ytterbium is ≈ 2.3 × 10−39 C2 ·m2/J [10]. The curvature of the energy along the

interferometer axis, z, gives

∆EStark = p

[(
∂E
∂z

)2

+ E ∂
2E
∂z2

]
(∆z)2 . (7.6)

Integrating this over the trajectory of the moving arms gives a result identical to (7.5)

with −dgx/dx replaced by p/m times the bracketed expression in (7.6).

Treating the closest possible charge (accumulated charge on the vacuum viewports,

d = 5 cm from the atoms) as a point source, we find

∆θEM

θrec

= 10
p

m

k2q2

d6

(
1

3
T 2 + taccT

)
= 4× 1014 s−2

( q

1 C

)2
(

1

3
T 2 + taccT

)
. (7.7)

For a T = 10 ms experiment with tacc = 1 ms, the charge must be no larger than

0.076 nC to keep the systematic shift to 0.1 ppb. A charge this large could easily be

detected with an electrometer4. The Stark shift due to blackbody radiation can be

considered as a quasi-static effect as well. The variation of the black body field in a

vacuum chamber is far too small to have a noticeable impact on the CI phase[89].

Static magnetic fields couple to the spin of an atom. Since the Yb ground state has

spin zero, magnetic fields cannot affect it. This, in fact, is one of the key advantages

of Yb for precision measurement.

7.3 Diffraction Beam Effects

For the vast majority of interaction effects between single atoms and light, the semi-

classical approximation—treating the electromagnetic field as a classical potential for

4For example, the Standard Imaging SuperMAX Electrometer can measure charges as small as
1 fC. In practice, 0.076 nC is sufficiently large that confetti thrown at the viewport would stick
due to polarization of the paper. In fact, a charge as small as 0.025 nC should cause confetti to
stick
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quantum mechanical atoms—gives quite accurate results 5. For a contrast interfer-

ometer, the splitting and acceleration pulses all involve interactions with strong laser

pulses for which the quantum nature of light is essentially irrelevant. Though, as

discussed earlier, talking about photons may be a convenient description of these in-

teractions for a single atom, the semi-classical approximation is more than sufficient

for the level of precision required of our experiment.

In this section we discuss the possible systematic shifts due to interactions between

the atoms and the diffraction beams. We omit the most important of these effects,

the diffraction phase. This effect will be treated separately in chapter 8.

7.3.1 Beam Geometry

We already used the semi-classical theory to explain diffraction processes in 5.2. In

this section we address the effects of real beam geometry as compared to the simple

plane wave used in that discussion. We will first look at how this geometry modifies

the momentum transferred to an atom during a laser pulse. Then we will see how

it affects the dispersive energy shifts of the spatially separated branches of the wave

function.

For simplicity, we consider a laser beam propagating in the z-direction plane po-

larized such that its only non-zero electric field component is Ex. We then postulate

a solution to the wave equation of the form Ex = ψ(~x, t)eikz−iωt where the function ψ

changes slowly in space and time. Specifically, we assume that

∂2ψ

∂z2
� k

∂ψ

∂z
and

∂2ψ

∂x2
,
∂2ψ

∂y2
� ∂2ψ

∂z2
. (7.8)

The first assumption corresponds to the envelope function changing only on scales

much larger than the wavelength of the light while the second corresponds to focusing

with small numerical aperture. Both of these assumptions are valid to high precision

5Even the photoelectric effect, originally cited as evidence for the existence of quanta of light,
can be explained with semi-classical theory.



120

for our diffraction beams. A final assumption is of a stationary envelope (i.e., ∂ψ
∂t

= 0)

Plugging this ansatz into the wave equation and dropping the term ∂2ψ
∂z2

, in accord with

the above assumptions, yields a two-dimensional, free-particle Schrödinger equation

for ψ with z serving the role of the time coordinate:

∂2ψ

∂x2
+
∂2ψ

∂y2
= −i(2k)

∂ψ

∂z
, (7.9)

where k = ω/c. Analogously, the Schrödinger equation in the context of single-particle

quantum mechanics may be viewed as an approximation to a relativistic equation (e.g.,

the Klein-Gordon equation for 174Yb) where the wave function changes slowly in the

ct direction of space-time 6. The choice of k both simplifies the equation and gives the

plane wave term the wave vector corresponding to that determined experimentally,

since we measure the laser frequency directly and then use the speed of light to find

the wave vector. We choose the plane with uniform phase to be z = 0. As we use a

single-mode optical fiber to purify the laser mode, a Gaussian is the appropriate shape

for ψ in this plane. We may use the scaling solutions, described fully in chapter 9 for

a Gaussian wave packet to determine the form of ψ for all z. For now, the reader is

invited to check that the form given below indeed solves the equation; the full solution

technique is explained in chapter 9. With ψ0(x, y, z = 0) = E0 exp (−(x2 + y2)/w2
0),

we find a solution of the form ψ = E0 exp(if(t)−(x2+y2)/(w2
0α

2)−α̇(x2+y2)/(2α))/α

df

dz
= − 1

2k

1

ψ0α2
(2)

∂2ψ0

∂x2

∣∣∣∣
(x,y)=(0,0)

=
2

kw2
0

α−2 and (7.10)

d2α

dz2
=

1

2k2

1

α3

∂2

∂x2

[
1

ψ0

∂2ψ0

∂x2

]∣∣∣∣
(x,y)=(0,0)

=
4

k2w4
0

α−3 (7.11)

6Linear media may be included in this formalism as terms analogous to potential energies in
the quantum mechanical Schrödinger equation. Nonlinear media can also be included leading to
nonlinear Schrödinger equations. In particular, a uniform medium with third-order nonlinearity
leads to an equation identical to the two-dimensional Gross-Pitaevski equation, leading to many
fruitful analogies between the propagation of strong laser pulses and the dynamics of Bose-Einstein
condensates.
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with solutions

α =

(
1 +

(
z

zR

)2
) 1

2

and f = atan

(
z

zR

)
(7.12)

where zR = kw2
0/2 is the so-called Rayleigh range. The electric field ~E(x, y, z) at all

points in space is then given by

E0x̂
w0

w(z)
exp

(
i(kz − ωt)− x2 + y2

w(z)2
+ i

z

zR

x2 + y2

w(z)2
− iatan

(
z

zR

))
, (7.13)

where

w(z) = w0

(
1 +

(
z

zR

)2
)1/2

.

While cumbersome when written out in such detail, each term has a simple phys-

ical interpretation. The first term in the exponential is that expected for a simple

plane wave. The second term in the exponent and the similar z dependence of the

amplitude ensure conservation of energy. That is, as the beam cross-section shrinks

or grows the power flowing into a thin spatial slice (perpendicular to the beam axis)

equals the power flowing out the other side. The third term in the exponential is

known as the wavefront curvature term. This accounts for the necessary curvature

of the phase fronts to allow focusing of a beam coming in from z = −∞ and sub-

sequent defocusing for z > 0. The final term in the exponential is the Gouy phase.

The wavefront curvature slightly increases the local longitudinal momentum density

away from the beam axis. To conserve net momentum flowing through a thin spatial

slice perpendicular to the beam axis, the longitudinal momentum must be reduced

throughout the slice. This is the role of the Gouy phase. So, we see the Gaussian

beam takes exactly the form needed to allow for focusing while conserving energy and

momentum.

With the solution in hand, we can now check our approximations for consistency.

We have characteristic length scales for change in the x, y, and z directions of w0, w0,

and zR, respectively. Thus, neglecting ∂2ψ/∂z2 compared to ∂2ψ/∂x2, ∂2ψ/∂y2, and

k∂ψ/∂z corresponds to neglecting terms of order (w0/zR)2, (w0/zR)2, and 1/(kzR).
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These orders all equal roughly (λ/w0)2 where λ is the wavelength corresponding to k.

For our experiment, with λ = 556 nm and w0 = 4 mm, these corrections are smaller

than those we account for by a factor of 10−8. As will be seen below, these corrections

would be far smaller than our desired precision of 10−9 or 10−10.

As discussed in 5.2, when an atom makes a momentum-state transition induced by

the standing wave of light, the momentum is quantized in units of 2~~krec, called the

recoil momentum, where ~krec is the local wave vector of the laser beam at the atom’s

position. This is determined by the gradient of the phase term in the exponential,

which gives

2x

w(z)2
x̂+

2y

w(z)2
ŷ

+

k +
x2 + y2

w(z)2

 1

zR

− z2

z3
R

(
1 +

(
z

zR

)2
)−1

− 1

zR

(
1 +

(
z

zR

)2
)−1

 ẑ .
By imaging using the diffraction light, x0 and y0 can be determined to within

20 µm. Using a Shack-Hartmann wavefront analyzer, z0 may be found to within

1 cm. These should be compared to w0 = 4 mm and zR = 90 m, respectively.

First, consider a horizontal interferometer geometry. Let y be the vertical di-

rection. Then, the x and z coordinates will be constant. The uncertainty in the x

component of ~krec leads to an uncertainty in the final recoil frequency measurement.

Since z/zR � 1 we may approximate δkx/k = δxδz/z2
R = 2.5×10−11, giving a relative

uncertainty in the recoil frequency of (2N)2 ·6.3×10−22 = 2.5×10−21N2. The uncer-

tainty due to the y component could be calculated analogously by using y = 3 mm in

place of δx. This gives a relative uncertainty in the recoil frequency of 4× 10−17N2,

still markedly below our desired precision for an N = 100 experiment.

The relative shift in the z component of ~krec may be approximated by again using

z/zR � 1 to find

∆kz
k

=
1

kzR

[(
ρ

w0

)2

− 1

]
=

λ2

2π2w2
0

[(
ρ

w0

)2

− 1

]
= 9.8× 10−10

[(
ρ

w0

)2

− 1

]
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where ρ =
√
x2 + y2 is the distance from the beam axis.

A realistic sequence begins at y = 3/4w0, finishing at y = −3/4w0. For our

parameters of w0 = 4 mm this gives a total time of 35 ms. With an expan-

sion time of 5 ms and T = 15 ms the initial momentum is given at a point y =

(3/4)w0 − (3/2)w0(5/35)2 = .72w0 and the momentum reversal occurs at a point

y = 3/4w0 − 3/2w0(20/35)2 = .26w0. The relative shift in frequency is twice the

relative shift in wavenumber. Thus, we see a frequency shift for the first time T of

−9.4 × 10−10. The momentum reversal gives a net momentum k2 = 2N(k + ∆k1) −

4N(k+ ∆k2) = −2N(k+ 2∆k2−∆k1) for ∆k1 and ∆k2 the wavenumber shifts at the

initial acceleration point and the turn around point. The relative shift in recoil fre-

quency for the second time T is, therefore, 2·9.8×10−10(2·.068−.52−1)) = −2.7×10−9,

giving an overall shift of −1.8 × 10−9. Using the more modest T = 7 ms gives an

overall shift of −1.3× 10−9.

The preceding discussion makes the vertical geometry straight forward to analyze.

As seen above, the x and y components of the momentum are irrelevant at our level of

precision. As discussed below, it may be advantageous to work with ρ = w0. Allowing

for z to change by 10 cm in the course of such a run gives a relative frequency shift

of 7× 10−15N2.

For a vertically oriented interferometer, x and y may be held essentially fixed

during the run. Placing the interferometer at a point with ρ = w0 causes a near-

perfect cancellation of ∆kz between the wavefront curvature and Gouy phase terms.

The residual ∆kz is smaller than those discussed for a horizontal geometry by a factor

of (z/zR)2. The relative uncertainty would then be dominated by the uncertainty in

ρ:
δkz
k

=
λ2

π2w2
0

δρ

w0

= 2.0× 10−9 δρ

w0

. (7.14)

While equation 7.14 suggests that in a vertical interferometer geometry, the wave-

front curvature and Guoy phase shifts may be made to cancel by careful placement

of the atoms in the diffraction beams, there is a potential issue from beyond the
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semi-classical approximation that ought to be mentioned. If we consider first-order

Bragg diffraction as a two-photon transition, momentum is conserved by matching

the atomic momentum change, ∆patom, to the momentum change of the light field

due to a stimulated absorption/emission pair ∆plight = ~(k1 − k2), where k1, k2 are

the momenta of the absorbed and emitted photons, respectively.

The uncertainty in ∆patom should be
√

2 times larger than the uncertainty in

k1 and k2. The precision of the most recent recoil measurement of Biraben’s group

(δωrec = 1.3×10−9 with 1000 photon recoils) implies δk1 < (1/
√

2)1.3×10−9
√

1000 ≈

3×10−8k1. If this absorption event localizes the photon somewhere within the atomic

wave packet, typically of order 102/k1 in size, this would lead to a gross violation of

the Heisenberg indeterminacy principle for the absorbed and emitted photons (i.e.,

∆x∆p ≈ 3× 10−6~� ~/2).

While one might argue that the stimulated absorption/emission pair technically

only constrains the uncertainty in the momentum difference between the two pho-

tons, this seems a bit of a cheat. One could imagine a single stimulated absorption

event for an atom with a long-lived metastable state (e.g., the Yb 3P0 state) allowing

a similarly high precision measurement of the momentum transfer due to a single

photon being absorbed. The question of the fundamental quantum indeterminacy of

such a measurement cannot be settled with current experiments in the way that the

indeterminacy of ∆patom is settled by precision recoil measurements.

A potential solution of this conundrum is to suggest that the photons interact

with the atom as a mode of the electromagnetic field, roughly analogous to a single-

particle wave function for a massive particle. This essentially amounts to saying the

atom generates a coupling between the modes but does not localize a photon to the

size of the atomic wave packet. Under this interpretation, the precise position of the

atomic wave packet within the mode would not affect the transferred momentum. It

would still affect the strength of interaction of the mode and the atom by changing

the overlap integral between the mode function and the atomic wave function. Thus,
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we recover the well-established variation of Rabi frequency within a Gaussian beam

without violating the Heisenberg indeterminacy relation in the course of a two-photon

transition. The uncertainty in the atomic momentum change would then be related to

the uncertainty of the momentum for the EM field mode, which is set by the Rayleigh

range for kz in a Gaussian field mode.

This question could be settled experimentally by running a vertical orientation in-

terferometer with the atomic cloud placed at different points in the beam and looking

for variation of the measured recoil frequency with position in the beam.

7.3.2 Counter-propagation

Since the momentum transfered to an atom is ~(~k1−~k2), if the two laser beams are not

perfectly counter-propagating, the z direction momentum transfer will be 2~k cos θ,

where θ is the half-angle between the two beams. From the small angle expansion, we

see that the total momentum transfer is 2~k(1− θ2/2) for small misalignments from

perfect counter-propagation. Since δωrec/ωrec = 2δk/k, we have

δωrec

ωrec

= (δθ)2 . (7.15)

Shrinking this uncertainty to the level required for a 0.7 ppb measurement (i.e.,

δθ < 2.6 × 10−5 rad ) may be accomplished for a retro-reflected beam or for two

independent beams by maximizing the coupling of one beam into the output fiber

for the other beam. As discussed in 6.7, this technique can go awry if the light is

focused at the retro-reflection mirror. Avoiding this problem makes fiber coupling an

excellent tool for aligning the two beams to 10−5 rad precision.

Similar considerations of accidental imaging will arise in aligning two independent

beams. The uncertainty in θ should be
√

2 as large for this case because in retro-

reflection, you know that the two beams are perfectly overlapped at the retro mirror

and so the uncertainty in θ is related only to the coupling efficiency at one fiber. For

independent beams the misalignment at each fiber should be uncorrelated, and so the



126

uncertainties will add in quadrature. This constitutes an argument (admittedly, not

a particularly strong one) in favor of horizontal geometry, as retro-reflection is not a

good option in vertical interferometer geometries.

7.3.3 AC Stark Effect

Another concern related to the geometry of the diffraction beams is a differential

AC Stark energy shift. The w0/w(z) factor, and the −ρ2/w(z)2 in the exponent,

in equation (7.13) gives a varied intensity along the diffraction axis, which leads to

a different AC Stark shift for the three arms of the interferometer. For a two-level

atom, the AC Stark shift is Ω1Ω2/(2∆), where Ω1,Ω2 are the Rabi frequencies for the

two laser beams and ∆ is the detuning from resonance. Our diffraction beams are

sufficiently far from resonance for any but the 1S0 →3 P1 transition, that the two-level

atom approximation is valid. As the beams are essentially mode-matched, we may

treat the variation of Ω1Ω2 along the z axis as

Ω1(z)Ω2(z) ∝ E(z)2 = E(0)2

(
w0

w(z)

)2

e
−2 ρ2

w(z)2 . (7.16)

For each 2~k acceleration, an integrated Stark shift divided by ~ that is ∼ π

is needed. This may be seen, for instance, in the Bragg regime calculation in 5.2.

Thus, we have an integrated phase evolution per acceleration ramp of πN . The exact

multiple will depend upon the technique used for acceleration; for now we will use π

as an example.

For a single acceleration ramp, the fractional difference in AC Stark shift will be

roughly

1

E(z0)2
∆z2

01

∂2

∂z2
E2

∣∣∣∣
z=z0

=

(
∆z01

zR

)2
2ρ2 − w2

0

w(z0)2

[
w2

0

4z2
0

z2
R

(
2ρ2

w(z0)4
− 2

w(z0)2

)
+ 2

]
≈ 2

(
∆z01

zR

)2
2ρ2 − w2

0

w(z0)2
,

where ∆z01 is the distance between arms 0 and 1. We’ve used the fact that z0 � zR

for any conceivable experiment to obtain the more wieldy form on the second line. For
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our benchmark experiment (N = 100, T = 10 ms) ∆z01 = 8 mm. So, at most, we face

an effect of order π(100)(10−8) ≈ 3×10−6 rad. Since the benchmark experiment calls

for an accuracy of order 10−3 rad, this effect can likely be neglected. For completeness,

we give an upper bound formula for the relative phase shift due to the two acceleration

sequences assuming peak separation throughout:

∆θACS

θrec

≤4(πN)

(
2NvrecT

zR

)2
2ρ2 − w2

0

w(z0)2

1

8ωrecN2T

= 4πN
T~
mz2

R

2ρ2 − w2
0

w(z0)2

= 5× 10−15N

(
T

10 ms

)(
4 mm

w0

)4
2ρ2 − w2

0

w(z0)2
. (7.17)

Again, it should be borne in mind that different acceleration techniques may increase

this by a small multiplicative factor (no greater than 4).

A far more serious effect is the momentum-state dependent Stark shift of atoms in

a periodic potential, which leads to the diffraction phase. This is discussed in detail

in chapter 8.

7.3.4 Index of Refraction

While the preceding three effects were due to controllable parameters of the diffraction

beams alone, the index of refraction effect is due to the interactions of the atoms with

the diffraction beams. However, as this is also amenable to a semi-classical analysis,

we include the discussion here.

The question of the exact momentum of light in a dispersive medium stood as a

vexing question for many decades[6]. One school of thought, following Minkowski,

arrives at pphoton = n~kvac where kvac = ω/c is the vacuum wave vector. The other

school, following Abraham, arrives at pphoton = ~kvac/n. The Minkowski formula

follows from using the de Broglie formula p = h/λ with the wavelength in the medium,

λ/n, while the Abraham formula follows by assuming uniform motion of the center

of mass-energy for a pulse of light passing through a block of medium.
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An experiment in 2005 by Campbell et al.[15], showed definitively that for the case

of an atom in a dilute gas, the Minkowski formula is correct. Two extreme cases help

motivate the final formulas. For a single atom being diffracted out of a large cloud,

the entire cloud acts as a medium, so a two-photon transition gives the single atom a

momentum kick 2n~k, where we return to the practice of using k for the vacuum wave

vector. Outside the cloud the photons have momentum ~k and so the net change of

momentum for the light in this process is −2~k. This implies that the medium, the

cloud itself, must recoil with momentum 2(1−n)~k to conserve momentum, i.e., each

atom gets a momentum kick 2(1− n)~k/Nat, where Nat is the total number of atoms

in the cloud.

For acceleration pulses or the mirror pulse, if the three arms are physically sep-

arated and the efficiencies are 100%, conservation of momentum dictates that the

transfered momentum is 2~k per two-photon transition. This may also be under-

stood as the net result of an atom receiving a 2n~k momentum kick in a two-photon

transition plus a total momentum kick of N · 2(1− n)~k/N = 2(1− n)~k for its role

as medium in the N transitions required for full transition efficiency.

For the initial splitting pulse in the interferometer, the above analysis may be

repeated to give the defect of the transfered momentum. In the +1 arm, each atom

receives a momentum kick 2n~k plus by serving as a medium for transitions into the

+1 and -1 arms, it receives momentum kicks 2(1 − n)~kf+1 and −2(1 − n)~kf−1,

respectively, where f±1 is the fraction of atoms diffracted into the ±1 state. For a

symmetric splitting pulse, these two contributions cancel, leaving a net momentum

of 2n~k. By identical reasoning, the -1 arm has a momentum −2n~k. For a short

splitting pulse these cancellations should be essentially exact. For longer Bragg-type

splitting pulses, the motion of the arms relative to one another during the pulse might

cause small alterations to these results.

Assuming the ±1 arms have initial momenta ±2n~k and that subsequent acceler-

ation and mirror pulses transfer in exact multiples of 2~k, the recoil energy during the
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outgoing period is 4ωrec(N + δn)2, where we use the notation δn ≡ n − 1. However,

since the mirror pulse is not a perfect mirror but rather a transfer in multiples of 2~k,

the recoil energy during the returning period is 4ωrec(N − δn)2. For example, in the

experiments described in this thesis, the mirror pulse changes the momentum of the

+1 arm from 2n~k = 2~k(1 + δn) to 2n~k − 4~k = −2~k(1− δn). This works in the

interferometer’s favor by canceling the cross terms from the (N ± δn)2 expressions

when calculating the total recoil phase:

θrec = 4ωrec(N + δn)2T + 4ωrec(N − δn)2 = 8ωrecT [N2 + (δn)2]. (7.18)

Additionally, we can account for the small index of refraction shifts due to im-

perfect diffraction in the acceleration and mirror pulses. For simplicity, we will

assume that each two-photon transition has the same efficiency e, which is close

to 1, and that atoms not diffracted in a given transition are too far away to act

as media for all subsequent transitions. This gives a momentum per transition of

2n~k − 2δn~ke = 2~k(1 + δn(1− e)). Since δn is proportional to the atomic density,

we arrive at a geometric series for the outgoing momentum

pout = 2~k

(
1 + δn0 +

N∑
i=2

[
1 + δn0(1− e)ei−2

])
= 2~k

(
N + δn0(2− eN−1)

)
,

where n0 is the initial index of refraction. The returning momentum will be

preturn = pout − 2~k
3N∑

i=N+1

[
1 + δn0(1− e)ei−2

]
= pout − 2~k

(
2N + δn0(eN−1 − e3N−1)

)
= −2~k

(
N + δn0(e3N−1 − 2)

)
.

Combining with the outgoing momentum, this gives a recoil phase of

θrec = 8ωrecT

[
N2 +Nδn0

(
e3N−1 − eN−1

)
+ (δn0)2

(
4 + 2

(
e3N−1 − eN−1

)
+

1

2

(
e6N−2 + e2N−2

))]
,
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implying the relative error is

δθindex

θrec

=

(
δn0

N

)
(e3N−1 − eN−1) , (7.19)

where we dropped the terms of order (δn0)2 because, as will be shown next, δn0 . 10−6

for our current experiments, and likely will be even lower for future sub-ppb-level

experiments.

Now, we need an expression for δn. For a classical ideal gas, the dielectric function

is
ε

ε0
= 1 + α1S0

ρ , (7.20)

where

α1S0
= − µ2

ε0~
1

δ + iΓ/2
= − µ2

ε0~
δ − iΓ/2
δ2 + Γ2/4

(7.21)

is the Yb ground-state polarizability and ρ is the atomic density[72]. There are

modifications to this result based on bosonic statistics, specifically related to the

deviation of the two-point correlation function from ρ2[72]. For a pure BEC, these

corrections vanish, due to the triviality of the two-point function7. Additionally, for

a condensate high density corrections are possible[85]. In the case of the diffraction

pulses, the detuning is sufficient to render these corrections negligible. However, they

could become important in a detailed analysis of the readout dynamics.

Since the index of refraction is just the square root of the real part of the dielectric

function, we arrive at an expression

δn =

√
1− ρ µ

2

ε0~
δ

δ2 + Γ2/4
− 1 ≈ −1

2
ρ
µ2

ε0~
δ

δ2 + Γ2/4
= −ρ3λ3

8π2

2δ

Γ

1

1 +
(

2δ
Γ

)2 , (7.22)

where we used µ2/(ε0~) = 3Γλ3/(8π2) in the final equality[31]. Combining (7.19) and

(7.22) we find our final form for the index shift:

δθindex

θrec

= −ρ3λ3

8π2

2δ

Γ

1

1 +
(

2δ
Γ

)2

e3N−1 − eN−1

N
. (7.23)

7For a thermal cloud interferometer, these corrections would need to be considered more carefully.
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For the 556 nm transition in Yb with large detuning, we find an approximate value

0.0065
( ρ

1012 cm−3

)(2δ

Γ

)−1
eN−1 − e3N−1

N
. (7.24)

With a short expansion time (2 ms) the splitting pulse is fired at a density of 1.0 −

1.5 × 1012 cm−3. Together with our detuning of δ = 700Γ, this gives a recoil shift

less than 4 ppm. For a future ppb-level experiment, a density at least 10 times

lower is recommended for dealing with atomic interaction shifts. Coupled with a

larger detuning and a large N , this systematic should be reducible to the ppb level.

Additionally, detuning and pulse efficiency can be measured extremely well. The

uncertainty in the density is the only limit in the ability to subtract these effects.

Finally, though it was recommended earlier that blue detuning be used for diffraction

pulses, a pair of data sets with equal magnitude detuning, one red and one blue, would

have their index shifts cancel exactly, assuming constant density. Thus, the ability to

cancel index shifts exactly would depend not on the ability to measure density but

simply to have a repeatable density.
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Chapter 8

DIFFRACTION PHASES

Diffraction phases is a term used to describe differential phase shifts on interfering

states induced by the diffraction process. Such phases have previously been mea-

sured for diffraction from physical absorption gratings[79]. They have been studied

theoretically[12] and experimentally[102] for optical gratings in and near the Raman-

Nath regime. In this chapter, we develop numerical tools for accurately calculating

such phase shifts in any regime of pulse length or strength and show a dramatic re-

duction of uncertainty when applying these corrections to a contrast interferometer.

8.1 Basic Framework

We will build up a means for calculating the populations in various momentum states,

and their phases, after a diffraction pulse. We start with the simplest case of a single,

two-state atom with a plane wave, ~p = 0 wave function. Additional complications,

such as wave functions with nonzero momentum width, will be added to the model

subsequently.

In section 5.2 we developed several different forms for the Hamiltonian describing

a two-level atom interacting with an optical standing wave. We first developed equa-

tion (5.10). To solve problems numerically, we must project this onto a finite set of

states. Since we begin with the state |~p = 0, g〉, the complete set of accessible states is

{. . . , |2~k, g〉 , |~k, e〉 , |0~k, g〉 , |−~k, e〉 , |−2~k, g〉 . . . }. In practice, the Hilbert space

may be truncated to include only a manageable number of states without introducing

errors large enough to affect final results. For the purposes of this discussion, we will
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truncate to five states1. With this truncation, (5.10) has the matrix representation

H =



4~ωrec
~ωR

2
eiωt 0 0 0

~ωR

2
e−iωt ~ω0 + ~ωrec

~ωR

2
e−iωt 0 0

0 ~ωR

2
eiωt 0 ~ωR

2
eiωt 0

0 0 ~ωR

2
e−iωt ~ω0 + ~ωrec

~ωR

2
e−iωt

0 0 0 ~ωR

2
eiωt 4~ωrec


. (8.1)

For numerical computation, this Hamiltonian suffers from a severe separation of

scales. For typical experiments, ω ≈ ω0 ∼ 1015Hz while ωrec ∼ 104Hz. The high scale

may be dealt with by passing to the interaction picture. Briefly, this entails separating

the Hamiltonian into a non-interacting piece, H0, and an interaction potential V , so

H = H0+V . The time evolution due to H0 is then removed by changing to interaction

picture states:

|ψ, t〉I = eiH0t |ψ, t〉S , (8.2)

where |ψ, t〉I and |ψ, t〉S are the interaction and Schrödinger picture states, respec-

tively. Time evolution of the interaction picture state is governed by the interaction

picture Hamiltonian, VI, given by

VI(t) = eiH0tV e−iH0t. (8.3)

Physically, it is tempting to treat the diagonal as the non-interacting Hamiltonian.

However, this choice continues to connect the large and small frequency scales through

electronically excited states (e.g., with energy ~(ωrec+ω0)). With this in mind, a more

fruitful choice might be H0 = ~ω0 |e〉 〈e|, thereby removing the high scale from the

diagonal. This yields a Hamiltonian that may be easily simulated, however, this

Hamiltonian remains time dependent.

1In practice, we find 17 states to be necessary for sufficient accuracy in modeling our 2~k ↔ −2~k
mirror pulses.
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Numerical computations are dramatically sped up by the use of a time-independent

Hamiltonian. For our Hamiltonian, the choice H0 = ~ω |e〉 〈e| gives

VI =



4~ωrec
~ωR

2
0 0 0

~ωR

2
~ωrec − ~∆ ~ωR

2
0 0

0 ~ωR

2
0 ~ωR

2
0

0 0 ~ωR

2
~ωrec − ~∆ ~ωR

2

0 0 0 ~ωR

2
4~ωrec


. (8.4)

Equation (8.4) is just the projection of (5.11) onto our five-state basis. In addition to

dramatically improving numerical efficiency, this choice also shows a nice connection

to the dressed-atom picture for atom-light interactions. Since ~ω may be viewed

as the single photon energy, the choice made above is mathematically equivalent to

considering the non-interacting systems as “ground state atom plus N photons” and

“excited state atom plus N−1 photons,” then subtracting off the energy of N photons

from the total energy.

The time evolution operator, U(t′, t), for fixed laser intensity can then be calcu-

lated as U(t′, t) = exp(−iVI(t
′−t)/~). For typical diffraction pulses with time-varying

intensities, the time evolution may be calculated using small time steps approximated

as having constant intensity. The SciPy extension to the Python scripting language

makes such calculations quick by virtue of its ability to call the LINPACK and BLAS

highly optimized linear algebra libraries.

Real experiments are not conducted with perfect plane wave atomic wave func-

tions, nor with ideal laser standing waves. We now consider some refinements which

allow the theory to connect more closely with experiments.
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8.2 Refinements

8.2.1 Non-Zero Momentum Width

A BEC in a harmonic trap has a non-zero momentum width in accordance with the

Heisenberg indeterminacy relation and its non-zero spatial extent. On release from

the trap this momentum width grows as atomic interaction energy is converted into

kinetic energy.

This issue may be treated by simply calculating the time evolution for each plane-

wave in the momentum-space wave function of the condensate. In practice, an ex-

tremely coarse-grained approximation using five or seven plane-wave states is sufficient

for finding the expected population diffracted by a Bragg pulse for a BEC.

The Hamiltonian (8.4) assumes that the atomic plane wave has initial momentum

a multiple of ~k. The kinetic energy terms in VI can be written as (n~k)2/(2m) =

n2~ωrec for integer n. Other plane-wave states may be accommodated by adding a

parameter δ which gives the fractional offset from the closest integer multiple of the

recoil momentum. For example, a BEC released from a trap may have a momentum

spread from −0.3~k to 0.3~k. For the plane wave with p = −0.3~k, we use δ =

p/(~k) = −0.3. This transforms the kinetic terms of VI to (n+ δ)2~ωrec but otherwise

has no effect on the evolution operator.

This construction also lends itself to the simulation of Bloch oscillations (BO). In

BO, a time varying frequency difference between the two counter-propagating laser

beams makes an effective standing wave in a frame of reference moving with respect

to the lab frame. In this picture, there is a standing wave in an accelerating reference

frame. By tuning the depth of the effective periodic potential appropriately, the

atoms may be kept in the lowest band, effectively being accelerated along with the

“standing” wave in the lab reference frame. The δ parameter may be continuously

varied to simulate this accelerated frame picture of the BO. In this way, VI is viewed

as being calculated in the standing wave’s rest frame, thus causing the atomic kinetic
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energy in a given state to vary with time.

8.2.2 Imbalanced Laser Beams

Another assumption of the theory in section 8.1 is that the two counter-propagating

laser beams have identical intensity, manifested in their having identical Rabi frequen-

cies ωR. In practice this can be difficult to achieve. In the retro-reflected geometry

used for these experiments, inevitable losses in the retro-reflection optics (small ab-

sorptions in mirrors, reflections from lens faces, etc.) guarantee an imbalance in power

between the outgoing and reflected beams. Careful mode-matching between the two

beams is important for dealing with wavefront curvature and relative alignment of the

beam wave vectors, so in practice power imbalance is equivalent to intensity imbalance

at the atoms.

To model such imbalances, we replace ωR with two Rabi frequencies ω1 and ω2 for

the two beams. This modifies the form of VI to have off-diagonal terms alternating

between ω1 and ω2:

VI =



4~ωrec
~ω2

2
0 0 0

~ω2

2
~ωrec − ~∆ ~ω1

2
0 0

0 ~ω1

2
0 ~ω2

2
0

0 0 ~ω2

2
~ωrec − ~∆ ~ω1

2

0 0 0 ~ω1

2
4~ωrec


. (8.5)

8.3 Calibration and Diffraction Phase Calculation

To accurately calculate the phase differences due to a mirror pulse, the parameters in

the evolution operator must be fixed. Several are straightforwardly fixed. The recoil

frequency ωrec is measured sufficiently well by low precision interferometry before

reaching the level of precision where diffraction phase correction becomes important.

The detuning ∆ is simply read off of the AOM driving signal after calibrating the
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resonance frequency. The resonant frequency is found by absorption imaging with a

variety of frequencies to map out the Lorentzian line shape. The momentum-space

wave function, which determines the relevant values of δ, is measured with time

of flight images of the interferometer sequence (allowing direct comparison of the

momentum width to the recoil momentum).

It is reasonable to assumed a fixed ratio ω1/ω2 from shot to shot. The chief

difficulty lies in finding ω1 for a given laser pulse. A photodiode trace recorded for

each experimental run characterizes the total laser power as a function of time for each

pulse. However, the relevant parameter is the intensity at the atoms as a function of

time. While one could in principle precisely image the position of the atoms in the

laser beam and try to connect the total power to the intensity using this information,

such a tactic makes difficult to quantify assumptions.

Instead, we calibrate the intensity vs. photodiode signal by producing a sequence

of experimental runs with increasing mirror pulse intensity. In each run the pulse

width is kept roughly fixed. Absorption images of the resulting momentum states

allow us to determine the effect of each pulse on atoms in the ±2~krec momentum

states. This produces a set of photodiode traces and associated fraction of ±2~krec

atoms diffracted by the pulse.

Next, we calculate the expected fraction diffracted by each pulse by guessing a fixed

calibration from intensity to ω2
1. This process is repeated for a variety of calibration

values. Then, the expected fractions are compared to the actual diffracted fraction for

each pulse. The calibration values giving the closest fit to the data are determined by

calculating the summed squared error (SSE) and taking the calibration that minimizes

this. Explicitly,

SSE(C) =
∑
traces

[f(trace,C)− fdata(trace)]2,

where f(trace,C) is the diffracted fraction calculated for a given photodiode trace and

multiplier, C, from photodiode voltage to Ω2
1 in MHz2. The actual diffracted fraction
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Figure 8.1: Intensity calibration. The histogram gives the number of trials in which

the given value of the calibration C gave the smallest error. This particular calibration

curve, for the T = 11 ms mirror pulse, shows the results from 40,000 trials. The value

extracted from this plot is C = 56.4± 0.8 MHz2/V.

from the data is fdata(trace) for the given trace.

To find a robust value for C and quantify the uncertainty, we randomly sample

half of the traces from the calibration data set and find the C which best fits this

subset. This process is repeated many times and a histogram is constructed for the

best values of C over a large number of samplings. Figure 8.1 gives an example of

such a histogram, this one for calibrating the T = 11 ms data. With a value of C in

hand, the diffraction phases may be calculated for each of the data points.

8.4 Results for Current Experiments

For each shot in a data set, the power profile of the mirror pulse is recorded on a fast

photodiode (200 MHz bandwidth, ν-Focus model 1801). An example trace is shown in
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Figure 8.2: Mirror pulse. The trace shows a typical mirror pulse, recorded on a fast

photodiode. This particular file is from a T = 11 ms data set. The time on the x axis

includes a 2 ms offset for the initial expansion of the condensate.

figure 8.2. The photodiode looked at a weak reflection from the beam splitter face. For

some time a Thorlabs PMT (Model PMM02) was used to record the pulses, looking

at a reflection from a lens face on the retro-reflection side of the chamber. The change

to a fast photodiode was made because of the slowness (30 kHz bandwidth) of the

Thorlabs PMT. However, the greater sensitivity of the PMT had given better signal

to noise. It also consistently had a background voltage of zero, while the photodiode

background could vary by a few percent of the peak pulse amplitude from shot to

shot. For future experiments, a diffraction light monitor using a high-bandwidth PMT

should be incorporated at the design phase. Using one identical to the one detecting

the readout light would reduce concerns about differences in timing.

The value of C from the calibration data is used to calculate the diffraction phase

for each shot. After calculating the diffraction phase we subtract it from the phase

of the contrast signal, φ(2T ). As described in 6.3, we extract φ(2T ) by fitting a sine

wave to the signal and finding its phase at time 2T . Figure 8.3 shows T = 1 ms data
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Figure 8.3: Diffraction phase correction. A single large data set is shown as a function

of shot number. The open blue circles show the extracted phases before diffraction

phase correction. The red filled disks show the same phases after shot-by-shot cor-

rection for diffraction phase.

before and after the diffraction phase correction. In addition to a uniform noise width,

we also see a marked drift in phase over time. This drift is eliminated in the corrected

data, showing that it arose from drifts in laser intensity. (The data were taken over

the course of 8 hours.) We also note that the noise width is reduced by the correction.

Overall, the standard deviation of the data set drops from 0.44 rad to 0.14 rad. The

ability to correct for phase shifts induced by both laser drift and random laser noise

is a powerful confirmation of our model. The diffraction phase correction procedure

was so useful that it was incorporated into a holistic fitting procedure, described in

section 6.5.2.
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Chapter 9

ATOMIC INTERACTIONS IN A BEC
INTERFEROMETER

In this chapter, we will consider the most difficult systematic effect for the Yb BEC

contrast interferometer: Atomic interactions. We begin by discussing atomic interactions in

the ultra-cold regime. This leads to a discussion of mean-field theory, an extremely accurate

technique for describing interactions in Yb BECs. With the technique in place, we develop

two special tools for solving the mean field equations. From these technical tools, we extract

both qualitative understanding and quantitative predictions.

9.1 Ultracold Interactions

Interaction potentials are often most easily understood in terms of scattering events.

For a scattering event, two particles are prepared at infinity where their interactions

are negligible. They then propagate toward one another, collide, and some products

are again detected at infinity. Such a scenario has the advantage that we needn’t

consider the complications of many-particle systems to understand the two-body in-

teraction potential. Many-body systems may then be built up by considering the

various particles to interact via that same potential.

The theory of quantum scattering has a vast literature. Two particularly good

references are the text of Gottfried and Yan[33] for general scattering theory and the

Varenna notes by Dalibard[24] for discussion specific to cold atomic physics. Consid-

ering the partial-wave expansion of a scattering event, we may see that interactions

in the ultra-cold regime have a particularly simple form.

The amplitude for scattering between two plane waves can be decomposed into a
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sum of contributions due to different relative angular momentum states. For example,

a direct head-on collision has relative angular momentum ` = 0, referred to as s-wave,

by analogy to the ` = 0 orbitals of hydrogen. This decomposition is possible because,

in the absence of spin, the interaction Hamiltonian between two particles will be

rotationally symmetric. Therefore, any collision must conserve angular momentum.

The ultra-cold regime simplifies this picture by essentially disallowing any but s-

wave interactions. In the center-of-mass frame for the incoming particles, the collision

problem reduces to an effective single particle scattering from a fixed potential. The

radial Schrödinger equation for this effective particle has the form

~2

2µ

(
− 1

r2

d

dr

[
r2 d

dr
R`(r)

])
+

(
~2`(`+ 1)

2µr2
+ V (r)

)
= En`R`(r) , (9.1)

where µ is the reduced mass of the pair, V (r) is the interaction potential, R` is the

radial wave function, and En` is the energy of the incoming particles in the center of

mass frame. The interaction potential is modified by the addition of the centrifugal

barrier term, except for ` = 0. For a potential localized within a radius b, if the rela-

tive momentum of the colliding particles is less than ~2 · 2/(2µb2), then the potential

lies in the classically disallowed region for any partial wave with ` > 0. Thus, the

interaction in the p-wave (` = 1) channel is exponentially suppressed by the proba-

bility to tunnel through the centrifugal barrier (as are all higher ` channels). For the

range of the interatomic potentials encountered in most atomic physics experiments1,

the energy scale for the centrifugal barrier corresponds to temperatures of order hun-

dreds of microkelvin[27]. Thus, for experiments occurring at temperatures < 1 µK,

the interaction is purely s-wave to an extremely high precision.

Treating the interactions as purely s-wave simplifies the analysis. The condition

of having low enough kinetic energy to ignore ` > 0 is equivalent (up to a factor of π)

to λ > b. As the wavelength becomes much larger than the range of the interaction,

1Strictly speaking, the potentials encountered in atomic physics are not completely localized.
However, since they drop off with distance faster than 1/r3, a specific centrifugal barrier energy
may still be defined.
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the shape of the interaction potential becomes less important. For a case as extreme

as that of atoms at T < 1 µK, to a very good approximation the interaction potential

may be replaced by a simple delta function2.

A single number characterizes the strength of such an interaction. We will use

the s-wave scattering length, as. The scattering length arises out of the effective

range expansion[101]. For our purposes, it may be thought of simply as the radius

corresponding to the scattering cross-section, if the atoms are considered as solid

spheres. Thus, it correlates with the strength of atomic interactions, not the physical

range of the interaction potential. By matching this cross-section to that calculated

with the Born approximation for a potential ηδ(~r), we find the value of the coefficient

η to be 2π~2as/µ = 4π~2as/m, where we used the assumption of identical particles

to replace the reduced mass.

With the interaction potential characterized in this low-temperature limit, we may

now describe the collective interaction effects in the BEC.

9.2 Mean-Field Theory

To describe the interactions between atoms in the condensate, we make use of the

idea that all atoms are in the same (ground) state. This allows us to consider a single

atom to be experiencing interactions with all of the other, identical atoms. The single

state in which they all find themselves may then be solved for self-consistently. The

atom is said to interact with the average distribution of atomic density in the system,

hence the name “mean-field.” Mean-field theory is well described in several review

articles[23] and texts[81]. We will more closely follow the treatment of Leggett[61],

which stresses the structure of the many-body wave function.

The mean-field treatment reduces the often intractable problem of finding a many-

2This approximation is actually part of a controlled approximation scheme known as the gradient
expansion. The next term has the form α∇2δ(~r). Discussing the connections between this expan-
sion and effective field theory would take us too far afield from our goal of describing interactions
in a BEC. The interested reader should enjoy the excellent review by LePage[62].
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body wave function into the simpler problem of solving for a single-particle wave

function. This approach leads to a nonlinear version of the Schrödinger equation.

Nonlinear equations are more complex both to understand and to solve numerically

than linear equations of comparable size. However, the truly bewildering size of the

Hilbert space for a many-body wave function means that the nonlinear Schrödinger

equation can, in fact, be both more comprehensible and more amenable to simulation

than the linear Schrödinger equation for a large number of atoms. In fact, direct

numerical solution of the Schrödinger equation for more than a few particles in three

dimensions is beyond the reach of computers.

With the picture of all atoms in the same state, and the requirement that bosonic

wave functions be symmetrized, we find a many-body wave function of the form

Ψ(~x1, ~x2, . . . , ~xN) =
N∏
j=1

φ(~xj) , (9.2)

where φ(~x) is a single-particle wave function. Since φ should be the ground state, we

may use the variational method to find the function. However, to do this we need a

Hamiltonian including the interaction potential.

For a many-body system, it is easier to write the Hamiltonian in terms of creation

and annihilation operators. Define ψ̂(~x) and ψ̂†(~x) as the operators which annihilate

or create a particle at point ~x, respectively. The Hamiltonian can be written as

Ĥ =

∫
d3x ψ̂†(~x)

[
− ~2

2m
∇2 + U(~x)

]
ψ̂(~x)

+
1

2

∫
d3x d3x′ ψ̂†(~x′)ψ̂†(~x)V (~x− ~x′)ψ̂(~x)ψ̂(~x′)

=

∫
d3x

{
ψ̂†(~x)

[
− ~2

2m
∇2 + U(~x)

]
ψ̂(~x) +

2π~2as
m

ψ̂†(~x)ψ̂†(~x)ψ̂(~x)ψ̂(~x)

}
. (9.3)

We may then use this equation to find the ground state subject to the ansatz of equa-

tion (9.2) through a variational calculation. To keep φ(~x) normalized, we introduce a

Lagrange multiplier, −Nµ, in anticipation of the direct connection that emerges be-

tween the multiplier and the chemical potential µ. Taking the variational derivative,
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with respect to φ∗ and then dividing through by N gives

µφ = − ~2

2m
∇2φ+ U(~x)φ+ (N − 1)g|φ|2φ , (9.4)

where g ≡ 4π~2as/m. Equation (9.4) is referred to as the Gross-Pitaevskii equation3.

Similarly, we may plug the mean-field ansatz into the time-dependent Schrödinger

equation. For this purpose it may be instructive to rewrite the state in bra-ket

notation:

|Ψ〉 =
N⊗
j=1

|φ〉j . (9.5)

This clarifies the action of the annihilation operators:

ψ̂(~x) |Ψ〉 = φ(~x) |0〉 ⊗

(
N⊗
j=2

|φ〉j

)
+ φ(~x) |φ〉1 ⊗ |0〉 ⊗

(
N⊗
j=3

|φ〉j

)
+ . . .

+ φ(~x)

(
N−1⊗
j=1

|φ〉j

)
⊗ |0〉 ,

which leads to

ψ̂†(~x)Ôψ̂(~x) |Ψ〉 = φ∗(~x)Ox [φ(~x)] |Ψ〉 , (9.6)

where Ox is the ~x-space representation of the operator Ô. With this result, it is easy

to apply the Hamiltonian operator to the state |Ψ〉 in writing down the Schrödinger

equation for this state. Finally, multiplying by the bra 〈Ψ| and dividing by N leads

to

i~
∂

∂t
φ = − ~2

2m
∇2φ+ U(~x)φ+ (N − 1)g|φ|2φ , (9.7)

known as the time-dependent Gross-Pitaevskii equation. This is a particularly simple

nonlinear Schrödinger equation. Such equations arise in the description of laser pulses

in nonlinear media or the propagation of certain types of water waves, in addition to

the description of BECs.

3Technically, the equation referred to as the Gross-Pitaevskii equation is missing the factor of (N−
1) on the interaction term. This comes about by defining the condensate order parameter, which
is just

√
Nφ(~x), and then finding the equation for the ground-state order parameter (recalling

that N − 1 = N to good accuracy in the mean-field regime).
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Equations (9.4) and (9.7) allow us to determine both the ground state of a BEC

in a trap and all of its subsequent dynamics upon release from the trap. In the fol-

lowing sections, we develop a set of tools for solving those problems. Solutions to

nonlinear partial differential equations are notoriously difficult to come by. We will

employ a mix of analytic approximations and numerical algorithms to both under-

stand the physics and arrive at quantitative predictions for interaction effects in a

BEC interferometer. While we will eventually apply these techniques specifically to a

174Yb contrast interferometer, it is worth noting that they are applicable to any atom

interferometer using a BEC as source.

Before turning to the development of these solution techniques, we return briefly

to the discussion at the beginning of this section. We have dramatically reduced the

Hilbert space by picking the ansatz in equation (9.2). We have thus surely lost some

aspects of the many-body state. In this case, what is lost is correlations. Namely,

the n-point density correlation function for this mean-field state will always have

the form |φ(~x1)|2 . . . |φ(~xn)|2. This correlation function is factorisable and so cannot

exhibit quantum mechanical fluctuations. That is to say, the reduced correlation

function is just
〈n̂(~x1)n̂(~x2) . . . n̂(~xn)〉
〈n̂(~x1)〉 〈n̂(~x2)〉 . . . 〈n̂(~xn)〉

= 1 . (9.8)

For instance, considering the two-point function shows that the density at any

point has zero variance: 〈n̂2(~x)〉− (〈n̂(~x)〉)2 = 0. This again connects to the idea that

an atom interacts with the mean-field: The field has no fluctuations, so the mean is

all that the atom can possibly interact with. While this is a heavy loss of quantum

mechanical information, it turns out that mean-field theory is incredibly precise for

calculating the interaction energy in a BEC with ≥ 1000 atoms.

We can estimate the regime of validity for the mean-field approximation with a

simple heuristic. Assuming Gaussian fluctuations, one expects that density fluctu-

ations should be of order
√
N at any point, whereas the total energy should be of

order N . This would make us expect that mean-field theory, much like averaging
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methods in classical statistical mechanics, should have a relative precision of order

N−1/2. We can expect an added benefit for calculations of time integrated quantities

such as the accumulated phase, because a single experimental run covers much longer

times than the time scale for density fluctuations (a time scale that should, näıvely

be related to the chemical potential). Thus, there is, in fact, some averaging out of

those fluctuations over the course of a run, so we likely do much better than N−1/2

precision. For N = 1000, this suggests that mean-field theory is correct at roughly

the 3% level, even before accounting for the time-averaging gain.

The break down of mean-field theory is due to the emergence of strong interatomic

correlations. Since the mode in which condensation occurs can be described exactly by

a state of the form in equation (9.5), correlations can only emerge from the presence of

noncondensed atoms. Thus, another way to describe the breakdown point for mean-

field theory is the place where a sizable fraction of atoms are uncondensed. Small

system size is one way, as described above, for these correlations to become important

for the system dynamics.

The other is through strong interactions in a large system. This breakdown is

discussed in detail by Castin and Dum[18]. Essentially, the fraction of atoms still

uncondensed at zero temperature scales with
√
na3

s. In fact, they show that, for

large N , mean-field theory can be viewed as an expansion in
√
na3

s, and so mean-

field theory is valid for
√
na3

s � 1. The first correction to mean-field theory in this

expansion is Bogoliubov-de Gennes theory4. For all of the work described in this

thesis, the Bogoliubov corrections are irrelevant since, even at the highest, in-trap

densities of 174Yb encountered in our experiments,
√
na3

s ≈ 0.03.

With the nature and applicability of mean-field theory established, we now turn

to solution techniques of particular value for BEC interferometry.

4In line with the discussion of mean-field theory as lacking non-trivial correlations, the
Bogoliubov-de Gennes theory represents the addition of non-trivial two-particle correlations to
the description.
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9.3 Scaling Solutions

9.3.1 Deriving the Scaling Solutions

Many of the results of this section were published in Jamison et al.[47]. In this section

we describe an approximate solution to the GPE which is accurate for both small and

large interaction strength.

Our scaling solution builds from a previous result valid in the Thomas-Fermi (TF)

approximation, derived by Castin and Dum [17]. The TF approximation describes

condensates where the interaction energy is much larger than the kinetic energy, by

simply ignoring the kinetic energy. The time-independent GPE then reduces to

|φTF(~x)|2 = µ− U(~x) . (9.9)

This turns out to be an extremely good approximation to the condensate wave func-

tion for cold atom BECs.

While the TF approximation may be quite accurate in calculating ground-state

wave functions, removing the kinetic energy term from the GPE (or the linear Schrödinger

equation) removes all interesting dynamics. In real space, potentials and the nonlin-

ear term can cause space-dependent phase evolution, but they do not allow different

points in space to communicate with one another. Only the kinetic term can do this5.

Thus, a straight-forward extension of the TF approximation to problems in dynamics

fails.

Said differently, the kinetic energy term is the one responsible for diffraction.

Therefore, the TF approximation ignores the wave-like character of the particle and

so should be considered as a semi-classical approximation. To derive a “dynami-

cal Thomas-Fermi” approximation, Castin and Dum explicitly considered the semi-

classical nature of the TF approximation. They used an analogy to the expansion of

5This can be seen especially clearly by discretizing space and writing the GPE as a set of ordinary
differential equations: φ̇j = Ujφj + g|φj |2φj − (φj+1 + φj−1 − 2φj)/4, where the index j indicates
a specific point in space.
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a classical interacting gas to find a self-similar scaling solution to the GPE. We briefly

recount their approach, as it gives a satisfying intuition to the problem.

Consider a classical gas in which a particular particle feels a force ~F = −∇[U(~x)+

gρ(~x)], where ρ is the mass density, in analogy to the mean-field Hamiltonian discussed

above. The equilibrium (~F = 0) density distribution will match the TF result in

equation (9.9). It is thus reasonable to look for inspiration in the dynamics of this

system.

For a harmonic potential (even one with time dependence), this system has an

exact solution. The solution corresponds to a dynamical rescaling of the initial density

distribution:

ρ(x1, x2, x3, t) =
ρ
(
x1
λ1
, x2
λ2
, x3
λ3
, 0
)

λ1λ2λ3

,

where the λj’s are time-dependent scale factors. In addition to simple expansions

and contractions, such solutions describe phenomena such as quadrupole oscillations

induced by sudden trap changes.

To make scaling solutions work for the quantum case, the local kinetic energy

induced by the scaling must be accounted for in the phase. The velocity of a particle

would be vi = λ̇iri. Recalling that the wave vector in the phase for a plane wave

connects to the velocity as vi = ~ki/m, by analogy we expect a phase factor of the

form C
∑

i λ̇ix
2
i for some prefactor C that needs to be computed. Thus, we arrive at

an ansatz that treats the initial kinetic energy as negligible but correctly accounts for

the kinetic energy induced by interactions and changes in U .

Using an alternate derivation we can find scaling solutions that are accurate near

the origin (i.e., the center of the BEC) for any interaction strength. In the TF regime

(g → ∞), these solutions reduce to those of Castin and Dum and are exact. In

addition, these scaling solutions reproduce the exact solutions for the noninteracting

(g = 0) gas as well.

The region near the origin is where most signal comes from in an interferometer
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since this is the area of highest density as well as greatest phase coherence. For

precision interferometry experiments, bringing the mean-field shift as low as possible

without compromising the advantages of a BEC is essential, so the residual interaction

effects will likely be well outside the regime where TF is applicable. As will be seen

below, interaction effects for such BECs can still be large enough to spoil the results

of precision interferometers. However, a BEC released from a trap with enough atoms

to give strong signals will likely start in or near the TF regime. Therefore, solutions

that are good for all interaction strengths in a region near the cloud center are ideal

theoretical tools for interferometry. As seen below, scaling solutions naturally give

just such tools.

Suppose the initial state has a known form φ0 (~x). Now, consider an ansatz of the

form suggested above by the semi-classical arguments:

φ (~x, t) =
φ0

(
x1
λ1(t)

, x2
λ2(t)

, x3
λ3(t)

)
(λ1(t)λ2(t)λ3(t))

1
2

e−iθ(~x,t) , (9.10)

where λi, θ, and φ0 are all real valued. We will not initially assume the form of θ

suggested above, but it will in fact follow from the analysis.

We will use the notation yi ≡ xi/λi to simplify the appearance of equations. This

gives ∂/∂xi → λ−1
i ∂/∂yi. Additionally, this means there is some time dependence in

φ0(~y) due to the λi’s.

To proceed, we substitute this ansatz into (9.7). Since all functions are real-valued,

we can separate the result into two separate equations for the real and imaginary parts.

The equation for the imaginary part gives:

3∑
j=1

[
φ0

2

(
λ̇j
λj

+
~

mλ2
j

∂2θ

∂y2
j

)
+
∂φ0

∂yj

(
λ̇jyj
λj

+
~

mλ2
j

∂θ

∂yj

)]
= 0 . (9.11)

Setting each of the two expressions in parentheses equal to zero we find the following

condition on θ:

θ (~y, t) = f(t)− m

2~

3∑
j=1

λ̇jλjy
2
j , (9.12)
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which matches the expectation from the semi-classical arguments above.

Using this form for θ, the equation from the real part yields

ḟ − m

2~

3∑
j=1

λjλ̈jy
2
j =

gφ2
0

~λ1λ2λ3

− ~
2m

3∑
j=1

1

λ2
jφ0

∂2φ0

∂y2
j

+
m

2~

3∑
j=1

Ω2
jλ

2
jy

2
j , (9.13)

where Ωj/(2π) is the trapping frequency in the j direction. (Recall that we are not

requiring the Ωj’s to be constant.) If (9.13) can be satisfied exactly for a given φ0,

the ansatz gives us an exact solution to the GPE. We will see that the solutions are

exact at the two extremes of interaction strength.

In the TF limit, a condensate initially in a harmonic trap gives

φ2
0(~y) =

1

g

(
µ− 1

2
m

3∑
j=1

Ω2
jy

2
j

)
, (g →∞) . (9.14)

The second term on the righthand side of (9.13) becomes negligible. In this limit,

(9.13) can be solved exactly, recovering the original result of Castin and Dum:

λ̈j =
Ω2
j(0)

λjλ1λ2λ3

− Ω2
j(t)λj .

As discussed above, this result may be interpreted as the scaling dynamics of a

classical gas driven by pressure due to interactions. From this perspective the second

term, neglected in the TF limit, can be viewed as the first quantum correction: an

extra “quantum pressure” due to wave packet dispersion.

In the opposite limit of a noninteracting BEC (or a single atom) initially in a

harmonic trap, φ0 is Gaussian, with the well-known form

φ0 = (π3a1a2a3)−1/4 exp

(
1

2

3∑
j=1

(
xj
aj

)2
)

,

where aj =
√

~/(mωj). The exact solution to the dynamics after switching off the

harmonic potential (i.e., a Gaussian wave packet expanding in free-space) can be

found in standard quantum mechanics texts[90]. Adding in the possibility of non-

zero, time-dependent trap frequencies leads to the result:

λ̈j = Ωj(0)2 1

λ3
j

− Ω2
j(t)λj . (9.15)
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The key, mathematically, in both cases is that the right hand side of (9.13) has no

terms of order higher than y2.

From the exactness in the limits of both arbitrarily strong and arbitrarily weak

interactions, we expect (9.10) subject to (9.12) and (9.13) to give good results for

very small or very large g. To extend this solution to all g values, we enforce the

condition on order in y by treating the above equations as an expansion in y. Thus

we find solutions valid for all interaction strengths in a region near the center of the

condensate.

In addition to the importance of the center of the BEC to interferometry signals

discussed above, there is a second reason to desire these centrally valid solutions.

Since one primary goal in a precision measurement is to suppress the phase shift

due to mean-field effects, setting an upper bound on that shift is useful. Accurately

knowing the mean-field phase shift at the center of the condensate, where it will be

greatest, sets a tight upper bound.

We expand the right hand side of (9.13) in a power series in y and keep only terms

up to order y2. Equating the coefficients for the y0 terms and the y2
j terms yields the

following set of equations for f and the λ’s:

ḟ =
g

~
α0

λ1λ2λ3

− ~
2m

3∑
k=1

αk
λ2
k

(9.16)

α0 ≡ (φ0(0))2 , αk ≡
1

φ0(0)

∂2φ0

∂y2
k

∣∣∣∣
~y=0

λ̈j =
g

m

−β0j

λjλ1λ2λ3

+
~2

2m2

1

λj

3∑
k=1

βkj
λ2
k

(9.17)

β0j ≡
∂2φ2

0

∂y2
j

∣∣∣∣
~y=0

, βkj ≡
∂2

∂y2
j

[
1

φ0

∂2φ0

∂y2
k

]∣∣∣∣
~y=0

where the α’s and β’s are constants calculated from the initial state.
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9.3.2 Numerical Simulations

As the intermediate interaction regime has no exact solutions, we tested our approx-

imation by comparison to full numerical simulations of the three-dimensional GPE.

These simulations were coded in MATLAB R©. Time evolution was performed in

momentum space using fourth-order, adaptive Runge-Kutta via the Matlab ’ode45’

function. Implementation of spatial potentials and the interaction term required

Fourier transforming from momentum space to physical space, computing these terms,

then Fourier transforming the computed terms to momentum space for time evolution.

Using momentum-space time evolution rather than finite-differences speeds up the

calculation of the second derivative term enough to make this seemingly baroque

sequence the most efficient way to simulate the GPE in three dimensions6. As is true

of so many numerical challenges, the absurdly good scaling of fast Fourier transforms

(FFTs) makes this algorithm fast. As such, these calculations were always done on

grids with number of grid points equal to a power of 2 to maximize the speed of the

FFTs.

Initial in-trap states were found by imaginary-time evolution to find the lowest

energy steady state. The algorithm was essentially identical to that of the real time

evolution described above. However, imaginary-time evolution does not conserve

probability. So, after a small imaginary-time step, the condensate wave function was

renormalized before taking the next imaginary-time step.

All experiments were simulated on a variety of grids to check numerical conver-

gence. Both size of box and fineness of grid sampling were varied. Use of momentum-

space time evolution lead to the use of periodic boundary conditions. Thus, sufficient

sampling as well as avoiding interaction with periodic images of the condensate were

6Atomic physicists frequently make use of split step algorithms for simulating the GPE. Though
I did not write a separate simulation code using such methods to test which is faster, my under-
standing is that momentum-space time evolution using efficient fourth-order evolution algorithms
is essentially as fast but more flexible than split-step methods.
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Figure 9.1: Accuracy of scaling solutions at center of BEC. We plot the phase at

the center of the condensate as a function of expansion time for (a) high density,

(b) intermediate density, and (c)low density. The red circles show results from full

numerical simulations, while the solid blue curves show our scaling solutions using

the initial condensate wave function calculated in the trap. For reference, the TF

scaling solutions are plotted as dashed black curves and the noninteracting solutions

are plotted as thick green curves. Neither the TF nor the noninteracting solution is

sufficient for high-accuracy measurements at any of these densities.

concerns. Both problems were easily avoided with grids that fit comfortably on com-

modity personal computers.

To test the scaling laws, the evolution of a 174Yb (as = 5.6 nm) BEC was simulated.

The condensate was formed in a harmonic trap with frequencies (Ωx,Ωy,Ωz) = 2π ×

(50, 50, 20) Hz. Then, it was allowed to expand for 20 ms, roughly the relevant

time-scale for the contrast interferometer.

Figure 9.1 shows the phase at the center of the condensate as a function of time

for condensates with Nat = 104, 103, and 102 (corresponding to high, intermediate,

and low interactions). For comparison, the results of the TF scaling laws and the

noninteracting solution are plotted along with the numerical data and the central

scaling laws derived here. In the early stages of the expansion with Nat = 104, the

TF result agrees well with the full numerical solution. This shows the initial density

(peak density in trap of 6.2×1013 cm−3) falls in the TF regime. However, we see that
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Figure 9.2: Scaling solutions for coherence length. The coherence length is plotted

versus expansion time for (a) high density and (b) intermediate density. The red

circles show results from full numerical simulations, while the solid blue curves show

our scaling solutions using the initial condensate wave function calculated in the

trap. The coherence length is not well approximated with the scaling solutions for

intermediate densities where the O(y2) expansion breaks down.

the TF result begins to diverge from the numerical solution after around 5ms, growing

to a substantial deviation at the end of the expansion. This deviation is important

for precision measurements. While a condensate may begin an experiment in the TF

regime, its subsequent expansion lowers the density, eventually spoiling the accuracy

of the TF approximation. For condensates deeper in the TF regime (such as those

used in our experiments) this feature may become even more pronounced due to the

faster expansion.

It should be noted that this deviation in the phase is more pronounced than the

deviation in density profile. The TF scaling laws are shown[17] to agree with the time

of flight density distribution for less strongly interacting condensates over even longer

times of expansion.

For Nat = 102 (peak density in trap of 6.5 × 1012 cm−3) the low density makes

the TF approximation inaccurate throughout. However, the central scaling solutions

derived above maintain good validity. A common suggestion for precision BEC inter-
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ferometry is to adiabatically lower the in-trap density before beginning an experiment.

The failure of both the TF and the noninteracting solutions to describe the Nat = 102

results highlights the need to be able to analyze interaction effects, even for seemingly

low initial densities.

The middle case of Nat = 103 (peak density in trap of 2.4 × 1013 cm−3) shows

marked departure from both the TF and noninteracting results. The continued agree-

ment with the central scaling solution in the intermediate regime highlights the ro-

bustness of this technique.

To further discuss the extent of validity of our central scaling solutions, we now

address more global properties. The density and phase profiles across the condensate

generally show good agreement between numerical simulation and central scaling

solutions for all three interaction regimes. However, these properties individually

are not usually of direct experimental importance for atom interferometry. Instead,

we consider here the more relevant parameter of coherence length lc which depends

sensitively on both density and phase profiles. For a condensate wave function φ (~x)

the coherence length is defined by:∫
d3x φ (~x)∗ φ (~x± (lc/2)x̂3)∫

d3x φ (~x)∗ φ (~x)
=

1

e
. (9.18)

For a two-arm interferometer this is directly related to the 1/e coherence time of the

signal through the relative velocity of the two arms at recombination [38]. There

is a similar relationship, up to some numerical factors related to the splitting, for a

three-arm interferometer .

As figure 9.2 shows, the scaling solutions reproduce this global property well for

high density (Nat = 104) but show clear (25% in fig 9.2b) deviations for intermediate

densities (Nat = 103). These deviations grow to 50% for the Nat = 102 case and

then decrease sharply to below 5% for Nat = 101. Given that coherence length is a

global quantity, it is unsurprising that our central scaling solutions are inadequate

to calculate it, since the central scaling solutions are only accurate near the origin.
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In the small interaction case, the deviations fall in line with the relative size of the

y2 and y4 terms in the small y expansion of the right-hand side of (9.13) found

using first-order perturbation theory. This suggests, again unsurprisingly, that the

failure to accurately reproduce the coherence length in intermediate densities directly

follows from truncating the expansion at O(y2). We will see in section 9.6 that

central scaling solutions accurately reproduce phase offsets even for the difficult case

of a long experiment that moves from deep in the TF regime to weak interactions.

Thus, extension of the scaling technique beyond O(y2) is unnecessary for adequately

accounting for systematic shifts in precision BEC interferometers.

9.4 Slowing-Varying Envelope Approximation

BEC interferometers typically contain widely disparate scales. The laser pulses used

to manipulate condensates have durations ranging from hundreds of nanoseconds to

tens of microseconds[37], while the entire experiment can last for tens or hundreds of

milliseconds. Accurate simulation with such a separation of scales is computationally

intensive—in some cases it may be prohibitively intensive. A similar separation of

scales in distances arises, comparing the healing length of the condensate, which is

of order 100 nm to the separation between interferometer arms, which is of order

100 µm for the experiments reported in this thesis and could grow to order 1 cm

for future sub-ppb measurements. To separate these scales computationally, we can

decompose the condensate wave function into quasi-independent pieces for each arm.

The decomposition technique, known as the slowly-varying envelope approximation

(SVEA), is well-known in the context of optics7. Its application to BECs was pio-

neered by Trippenbach et al[98].

The SVEA leverages one of the key experimental advantages of a BEC: its narrow

momentum spread. The momentum-space wave function of a condensate typically

7The use closest in application to the present case comes in modeling wavelength division multi-
plexing systems. See the book by Agarwal[1].
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has a width well below the laser recoil momentum. Thus, when the condensate wave

function is split using a light grating, the momentum-space wave function consists of a

series of clearly separated peaks. The SVEA may be applied to any splitting method

that creates clearly separated momentum states, and so is applicable to many possible

experiments.

We generalize the standard SVEA, finding certain terms dropped in the usual

description of the technique can be important at the level of accuracy needed for

modeling precision experiments. We also find a description of this modified SVEA

as an expansion whose small parameter gives us an estimate of the accuracy of the

method.

To start, we postulate a form for the condensate wave function:

φ (~x, t) =
∑
j

φj

(
~x− ~~kj

m
t, t

)
ei
~kj ·~x−iωjt (9.19)

where the ~kj’s are the relevant wave vectors and the ωj’s the corresponding frequencies.

We will consider ~kj = 2j~krec where j is an integer and ~krec is the laser wave vector.

This form corresponds naturally to the language we use to describe an interferometer

in terms of arms. After inserting this ansatz we reorganize the GPE into the following

suggestive form:

∞∑
j=−∞

i~
∂φj
∂t

ei
~kj ·~x−iωjt

=
∞∑

j=−∞

[
− ~2

2m
~∇2
ξj
φj + g

∞∑
l1,l2,l3=−∞

φ∗l1φl2φl3δj,−l1+l2+l3e
−i(−ωj−ωl1+ωl2+ωl3)t

]
ei
~kj ·~x−iωjt ,

(9.20)

where coordinates ~ξj = ~x− ~~kjt/m were chosen for the φ’s and δa,b is the Kronecker

delta function. The choice of coordinates cancels a term of form ~kj · ~∇φj, and the

usual non-relativistic dispersion relation ω = ~k2/(2m) is used to cancel another pair

of terms.
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Consider the Fourier transform of this equation. If all φj’s (“envelopes”) have

bounded support centered at zero with diameters smaller than one third8 of the

minimum of |ki − kj|, then this equation separates exactly into an infinite set of

equations of the form

i~
∂φj
∂t

= − ~2

2m
~∇2
ξj
φj + g

∑
l2+l3−l1=j

φ∗l1φl2φl3e
−i(ωl2+ωl3−ωl1−ωj)t . (9.21)

This form differs slightly from that found in the literature [1]. Standard deriva-

tions of the SVEA refer to collecting “phase matched” terms into separate equa-

tions. In optics, where ωj ∝ kj, spatial phase matching is equivalent to temporal

phase matching. For matter waves, where ωj ∝ k2
j , the two conditions may be con-

sidered separately. Equation (9.21) retains pieces with ~kl2 + ~kl3 − ~kl1 − ~kj = 0 but

ωl2 + ωl3 − ωl1 − ωj 6= 0 (i.e., it enforces spatial but not temporal phase matching).

Such pieces can have large enough effects to be important in simulating precision

experiments, specifically during the fast dynamics of diffraction pulses.

Given initial conditions satisfying the above criterion, this set of equations is

equivalent to the full GPE. To simplify, we select a subset of the envelopes to keep,

setting the rest to zero. This truncation affects the envelopes we keep by dropping

terms from the nonlinear piece. To understand the limits of this approximation, we

want to know how large an error this induces.

Since we only set φm ≡ 0 if φm(t = 0) = 0, for short times (i.e., times in which the

modulus of φm remains much smaller than the modulus of the retained envelopes) we

8For a linear equation one expects the condition to be one rather than one third, which is equiv-

alent to the φj exp
(
i~kj · ~x

)
terms being orthogonal. The stronger condition is necessary to keep

momentum separation in the nonlinear term. This can be extended to higher nonlinearities, with
a fifth order nonlinearity necessitating the stronger “one fifth” condition on the support of the
φj ’s and so on. In fact, these conditions for nonlinear equations are only sufficient initially, as
momentum-space mixing can slowly broaden the momentum width of the envelope functions. For
our purposes, the BEC gives far better than the factor of one-third in separation, and so there is
no concern about mixing the envelopes.
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can drop the kinetic term to find

i
∂φm
∂t

=
g

~
∑

l2+l3−l1=m

φ∗l1φl2φl3e
−i4ωrect(l22+l23−l21) .

For time scales short enough that the other envelopes do not appreciably move or

expand, this can be integrated. The initially unpopulated terms would oscillate with

frequency at least 4ωrec. By considering the average growth of φm, we see that the

amplitude will be smaller than that of the initially populated states by the ratio

of the mean-field energy to the 4~ωrec. This result gives us a good error bound,

since envelopes expanding and moving relative to one another will decrease the right

hand side. It also suggests a way to systematically improve the accuracy of the

approximation by retaining one or more of the initially unpopulated terms.

To verify these uncertainties, a condensate wave function with an initial superpo-

sition of three momentum states (0 and ±2~krec), all populated with equal density,

was simulated. These simulations considered Na condensates (as = 2.9 nm) with

Nat = 104 and trap frequencies (Ωx,Ωy,Ωz) = 2π × (50, 50, 20) Hz. The results from

SVEA simulations were compared to results from full simulations of the GPE. Figure

9.4 shows the fractional error in the phase accumulated by the zero momentum branch

during separation. The percent error in simulations with both spatial and temporal

phase matching fluctuates with a frequency 2 × (4ωrec). This matches the expecta-

tion for error due to neglecting a term φ∗0φ1φ−1e
−i(4ωrec)t(12+12) . The sharp decline in

fluctuations just after 0.2 ms corresponds to complete separation of the condensate

branches.

The SVEA approach can be used to simulate the effects of external potentials as

well. Consider the potentials created by laser standing waves used for splitting and

acceleration the arms of the interferometer. Using the light-shift potential formalism,

these pulses may be described by a potential of the form

V (~x, t) = A(~x, t)
∣∣∣ei~krec·~x + e−i

~krec·~x
∣∣∣2 (9.22)
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Figure 9.3: Errors in SVEA from temporal phase matching. The phase at the center

of the zero-momentum branch of the condensate in SVEA simulations is compared to

the result of full simulations of the GPE. The blue dashed curve shows the SVEA with

both spatial and temporal phase matching. The black solid curve shows the modified

SVEA with only spatial phase matching. The initial peak of the dashed curve rises

to 26%, but has been cropped from the image to make other details visible. The inset

shows the solid curve on a scale where details are visible.
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where A is the amplitude of the potential, which may depend on time and space.

The use of relative detunings may create potentials moving relative to the lab frame.

In the rest frame of such a potential, the e±2i~krec·~x pieces connect branches of the

condensate wave function with momenta differing by ±2~~krec. Since dynamics during

a laser pulse occur at the time-scale of the recoil frequency, removing the e−iωjt phase

is no longer acceptable. Equation (9.21) is modified by the reappearance of the term

(~krec)
2φj/(2m), which was canceled by the time dependence of e−iωjt in the original

derivation. Thus, for modeling laser interactions in the SVEA it is key that temporal

phase-matching not be enforced.

Accurate simulation of the physics during laser interactions necessitates retaining

a number of initially unpopulated condensate branches. For both Raman-Nath and

Bragg regime pulses it is sufficient to consider two extra accessible branches on each

side of the range you expect to populate (for better than percent-level accuracy of all

final wave functions). For instance, a Bragg pulse that takes 2~krec to −2~krec will

also require keeping track of the 0 momentum branch, two more states above 2~krec

and two more states below −2~krec. However, once a laser interaction is complete, the

branches that are no longer populated can be removed from the simulation, keeping

the number of states tracked from growing during simulation of an experiment with

many light gratings.

9.5 Modeling a Complete Experiment: Analytic Results

Since the equations for the envelope functions in the SVEA look essentially like a set

of Gross-Pitaevskii equations, the scaling solutions may be combined with the SVEA

to reduce the description of a full experiment to a small set of ordinary differential

equations. While these equations cannot be solved analytically, they represent a

tremendous simplification in terms of numerical simulation. In section 9.6 we will

describe the results of such simulations. First, we consider what analytic analysis of

these various approximations reveals about the physics of atom-atom interactions in
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a contrast interferometer. Readers interested only in intuitive pictures of the physics,

not their derivations, should skip ahead to section 9.5.3.

Using the scaling solutions, it is straight-forward to follow the time evolution of

the condensate between its release from the trap and the initial splitting pulse. This

pulse is, by design, too short for any meaningful dynamics to occur during the pulse.

Thus, we may treat it as occurring instantaneously for calculations of the condensate

dynamics.

9.5.1 Modified Kinematics and Scaling Behavior

Let the initial condensate wave function in the trap be φ0(x1, x2, x3). Further, suppose

that the scale factors, λ1, λ2, λ3, have been calculated up to the time of the splitting

pulse, ts. The instant before the splitting pulse the condensate wave function is

φ(x1, x2, x3, ts) =
φ0

(
x1

λ1(ts)
, x2
λ2(ts)

, x3
λ3(ts)

)
eiθ(x1,x2,x3,ts)

(λ1(ts)λ2(ts)λ3(ts))
1/2

,

where

θ(x1, x2, x3, ts) =

∫ ts

0

dtḟ(t)− m

2~

3∑
n=1

λ̇n(ts)

λn(ts)
x2
n

with

ḟ(t) =
g

~
φ2

0(0, 0, 0)

λ1(t)λ2(t)λ3(t)
− ~

2m

3∑
n=1

[
1

λ2
n(t)

(
φ−1

0

∂2φ0

∂x2
n

)∣∣∣∣
~x=~0

]
, (9.23)

as dictated by the scaling solutions. Then, a splitting pulse that instantaneously

diffracts the condensate into three momentum states would give a wave function of

the form

φ(x1, x2, x3, ts)
(
α1e

ikx + α0 − α−1e
−ikx) ,

where k = 2krec. For a pulse that split the momentum states equally, we would have

α1 = i/
√

3, α0 = 1/
√

3, and α−1 = −i/
√

3. This form may now be reduced, using

the slowly-varying envelope approximation (SVEA) to a set of coupled equations for

the wave functions of the separate momentum states.
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We need not confine ourselves to only three states. In fact, depending upon the

parameters of the initial splitting, higher diffraction orders may be essential to the

proper understanding of interaction shifts. Generically, we begin the SVEA analysis

at time t = ts with initial states ψn(~x, ts) = αnφ(~x, ts).

The SVEA equations are (arguments of functions will be suppressed for brevity)

i~
∂ψn
∂t

= − ~
2m
∇2ψn + g

∑
l+m−j=n

ψ∗jψlψme
−i(l2+m2−j2−n2)ω, (9.24)

where ω = 4ωrec. For instance, if we truncate to include only three states, the

interaction term for the ψ0 equation becomes

g
(
|ψ0|2ψ0 + 2|ψ1|2ψ0 + 2|ψ−1|2ψ0 + 2φ∗0φ1φ−1e

−2ωti
)
. (9.25)

If we intend to simulate only the propagation dynamics of the condensate, using

separate techniques to simulate the effects of diffractive laser pulses, then we can

discard any term for which l2 + m2 − j2 − n2 6= 0. Thus, from equation (9.25), the

final term would be dropped. The discarded terms amount to four-wave mixing terms,

which are suppressed at the densities for which precision interferometry is feasible.

For instance, the final term of (9.25) corresponds to atoms scattering into or out of

the 0 arm by scattering from the atomic density grating made by other arms (e.g., an

atom from the −1 arm scattering off of the grating made by the 0 and +1 arms into

the 0 arm). These processes can add coherently to the effects of laser diffraction and

so cannot be ignored in simulations of laser pulses whose temporal length is & 1/ω.

Applying these insights to equation (9.24), we obtain a simplified SVEA:

i~
∂ψn
∂t

= − ~
2m
∇2ψn + g|ψn|2 + 2g

∑
m6=n

|ψm|2ψn. (9.26)

The equation for each branch has the structure of the GPE with an extra potential

generated by the densities of the other momentum states. Therefore, the scaling

solutions may be applied to each branch’s wave function. Recalling that the scal-

ing solutions are derived as an expansion around the center of the condensate, the

densities of the branches need be known only to second order in their arguments.
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For the single condensate case, reflection symmetry is a good approximation, and

so terms linear in x don’t appear. However, as the branches of a split condensate

move past each other, the potentials due to inter-branch interaction will have non-

negligible linear terms. These linear potentials can be absorbed by allowing the wave

vector kn to have a slow time dependence. Specifically, the left side of equation 9.26

contributes a term −~~̇kn · ~xψn, where the dot represents a time derivative. Since we

are interested in the center of branch n, at a time t, we set x − vn(t − ts) = 0. This

makes the argument of ∇|ψm|2 equal to (vn − vm)(t− ts). Thus we have

~̇kn = −2g

~
∑
m

∇|ψm(y)|2
∣∣
y=(vn−vm)(t−ts)

. (9.27)

This may be straight-forwardly integrated. Note that once all branches have com-

pletely separated, the final change in wavenumber is

∆kn = −2g

~
∑
m

1

vn − vm

∫ ∞
0

dξ∇ξ|ψm(ξ)|2 =
2g

~
∑
m

|ψm(~0)|2

vn − vm
. (9.28)

By treating the velocities as constants, we introduce an error in ∆k of order ∆k/k.

Note that—as may be easily seen in the case of only three branches—the ∆k given

by equation 9.28 agrees with the value obtained by converting interaction energy into

kinetic energy and calculating the resulting wavenumber.

With equations 9.26 and 9.27 we can now determine the important corrections

to the single-branch scaling solutions. First, the time varying kn will lead to a time

variation in ωn = ~k2
n/(2m). Second, the time-varying kn will affect the kinematics

of the interferometer causing it to close at a later time than anticipated. This may

be accounted for by pre-calculating the closing time—the time of perfect overlap for

the three arms—and reading out the phase at that time. Alternatively, data taken at

the naive closing time, 2T , may be corrected by taking into account a small shift due

to the phase curvature, which will be discussed below.

To fully account for other effects, we must finish combining the scaling solutions

with the SVEA. Each branch will feel an effective potential due to each of the other



166

branches of the condensate. This leads to corrections both to the central phase

function fn(t), but also to the evolution equations for the scale factors. For a given

branch, n, we refer to the scale factors as λn1, λn2, and λn3. The scaling form for each

branch gives us

ψn(~ξ) = αn
φ0

(
ξn1
λn1
, ξn2
λn2
, ξn3
λn3

)
(λn1λn2λn3)1/2

eiθ(ξn1,ξn2,ξn3,t), (9.29)

where ξnj = xj − vnjt.

To facilitate using the SVEA, we write equation 9.23 in a more compact form:

˙f(t) =
g

~

∣∣∣φ(~0)
∣∣∣2 − ~

2m

3∑
n=1

(
φ−1 ∂

2φ

∂x2
n

)∣∣∣∣
~x=~0

. (9.30)

In the SVEA, this becomes

ḟn(t) =
g

~

∣∣∣ψn(~0)
∣∣∣2 − ~

2m

3∑
j=1

(
ψ−1
n

∂2ψn
∂ξ2

j

)∣∣∣∣
~ξn=~0

+
2g

~
∑
m6=n

∣∣∣ψm(~ξmn)
∣∣∣2

=
g

~
αn0

λn1λn2λn3

− ~
2m

3∑
j=1

αnj
λ2
nj(t)

+
2g

~
∑
m 6=n

αn0m

λm1λm2λm3

where ~ξn = ~x− ~vn(t− ts) and ~ξmn = ~ξm − ~ξn = (~vn − ~vm)(t− ts). The coefficients

are

αn0 = φ2
0(~0), αnj =

(
φ−1 ∂

2φ

∂x2
n

)∣∣∣∣
~x=~0

, and αn0m = φ2
0(~ξmn) (9.31)

Similarly, the inter-branch interactions add an extra term to the equation for the

evolution of scale factors:

λ̈nj = λnj
∂2

∂ξ2
j

{
g

m
|ψn|2 +

~
2m

ψ−1
n ∇2ψn

}∣∣∣∣
~ξ=~0

+ λnj
2g

m

∑
m 6=n

∂2

∂ξ2
j

|ψn|2
∣∣∣∣
~ξ=~ξmn

=
g

m

−βn0j

λnjλn1λn2λn3

+
~2

2m2

1

λnj

3∑
k=1

βnkj
λ2
nk

+
g

m

∑
m6=n

−βnm0j

λmjλm1λm2λn3

,

where

βn0j =
∂2φ2

0

∂x2
j

∣∣∣∣
~x=~0

, βnkj =
∂2

∂x2
j

[
1

φ0

∂2φ0

∂x2
k

]∣∣∣∣
~x=~0

, and βnm0j =
∂2φ2

0

∂x2
j

∣∣∣∣
~x=~ξmn

.
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In addition to the standard phase evolution due to the interaction energy within

a branch, an extra phase evolution due to the interaction energy between branches

appears. Similarly, expansion in one branch is accelerated by the curvature of the

density in other branches, when they overlap with it.

9.5.2 Effects of Phase Curvature

While the central phase shifts have an obvious effect on the overall phase measured

by the interferometer, the phase curvature also affects the final signal. Failure to

take data at exactly the closing time of the interferometer adds an extra complication

to this analysis. For this analysis, we will assume that the wave functions for the

different momentum states have been calculated with the techniques of the previous

section.

Let the closing time of the interferometer be t = 0. We consider a case with motion

only in the x1 direction. To simplify, we ignore the phase curvature in other directions,

though it may be added to the analysis straight-forwardly. The wave function for a

contrast interferometer at times near t = 0 can then be written as

ψ(x, t) =A1(~x− ~vt) exp
[
i
(
kx1 − f1(t)− C1(x1 − vt)2

)]
+ A0(~x) exp

[
i
(
−f0(t)− C0x

2
1

)]
+ A−1(~x+ ~vt) exp

[
i
(
−kx1 − f−1(t)− C−1(x1 + vt)2

)]
,

where Aj is the real amplitude of the j-momentum branch and fj and Cj are the

corresponding central phase and phase curvature. The signal from a contrast inter-

ferometer is a time-varying back-reflection whose amplitude is roughly proportional

to the amplitude of the cos(kx) component of the atomic density. Computing |ψ|2

and keeping only terms whose exponential contains ±ikx1 yields

A0(~x)ei(f0(t))+C0x21)

[
A1(~x− ~vt) exp

[
i
(
kx1 − f1(t)− C1(x1 − vt)2

)]
+ A−1(~x+ ~vt) exp

[
i
(
−kx1 − f−1(t)− C−1(x1 + vt)2

)] ]
+ h.c.

(9.32)
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The contrast interferometer has reflection symmetry, meaning that A1 = A−1,

C1 = C−1, and f1 = f−1. For x1 < 0 and t < 0, A1(x − vt) > A1(x + vt). The

reflection symmetry guarantees that the signal contribution for x1 > 0 will equal the

contribution from x1 < 0. This simplifies the model for times relatively near to the

closing time of the interferometer where |A1(x − vt) − A1(x + vt)| � A1(x + vt),

allowing for terms proportional to the difference in the moving branch amplitudes to

be dropped.

For a situation of nearly even splitting of the initial condensate, we have the

further simplifications A1 ≈ A0 and C1 ≈ C0. Then, dropping terms proportional to

|A1(x− vt)− A1(x+ vt)|, equation 9.32 reduces to

4A0(~x)A1(~x+ ~vt) cos [(k + 2C1vt)x1] cos
[
f1(t)− f0(t) + C1(vt)2

]
. (9.33)

The first cosine describes the spatial density modulation leading to the optical Bragg

reflection signal. The second cosine describes the time variation of this reflection,

from which the recoil frequency is to be extracted. From the scaling solutions we have

C1 = −(m/2~)λ̇1/λ1, which makes the argument of the first term k(1−tλ̇1/λ1), which

for our experiments is close enough to k to have negligible effect on the reflection.

The argument of the second term becomes ωt− ωt2λ̇1/(4λ1).

To complete the analysis we must compute the closing time of the interferometer.

This is essentially just kinematics. Let the time of the center of the mirror pulse be

T (now defining the time of the initial splitting pulse as t = 0). For a condensate

density of the form A−Bx2
1 along the direction of motion, eq. 9.27 leads to

u̇1 =
4g

m
u1tB(t)[θ(vt−R(t)) + 2θ(2vt−R(t))], u1(0) = v (9.34)

where u1 is the time-dependent velocity of the branch with initial velocity v, θ is the

Heaviside function, and R(t) = A/B(t) is the radius of the condensate. The theta

functions’ use of vt rather than
∫
dt′u1(t′) introduces errors of order ∆u1/v ∼ 10−2 in

the endpoint of the integral, which make negligible changes to the kinematics. Define
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tshort as the solution to 2vt = R(t) and tlong as the solution to vt = R(t). For the time

interval [tlong, T ], the velocity is fixed at u1(tlong). At time T the velocity changes to

u1(tlong)− 2v, so the moving branches return to the center of the interferometer more

slowly than they moved away. This pushes the closing time to be later than 2T . From

(9.28) we know that u1(tlong)− v ∝ ρ, where ρ is the condensate density at the time

of the splitting pulse. For data taken at 2T , the deviation ∆t from the proper closing

time is proportional to ρ. .

.

9.5.3 Summary of the Physics

A key factor in the influence of interaction effects on the final interferometer signal is

the splitting parameter x, defined such that the densities in the +1, 0, and -1 arms

are in the ratio 1−x : 1+2x : 1−x. We describe four separate effects. First, there are

intra-branch energy shifts. These shifts arise from the interaction energy of a single

branch of an atom with the total atomic density in that branch of the interferometer.

Recalling the combination of phases that generate the CI signal’s phase, equation

5.3, the CI phase will be shifted by the difference between intra-branch energy for

the moving versus non-moving branches. The phase shift is proportional to −xρT ,

where ρ is the atomic density just before the initial splitting and x is the splitting

parameter.

There are similar inter-branch interactions. During the time the branches of the

interferometer are overlapped in space, the 2~k branch of an atom will interact with

the total atomic density in the 0 branch of the BEC. This gives an energy shift

analogous to that from intra-branch interactions. Similar shifts arise for all other

pairs of momentum states.

Inter-branch interactions are twice as strong as intra-branch interactions. This

effect appears in the SVEA from the fact that there are two different ways to get a
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Figure 9.4: Summary of interaction effects. The four important interaction effects

are illustrated. Below each illustration are the scaling of the effect with splitting

parameter, x, density at time of splitting, ρ, the difference between 2T and the time

of perfect overlap, ∆t, and T . The branches are represented by red, black, and blue

lumps. Solid lines show density profiles, and dashed lines show phase profiles. The

gray box in the phase curvature illustration highlights that the center of the black

0~k branch interferes with the wings of the ±2~k branches. Values given to illustrate

the relative sizes are for the experiment described in the text.
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φ1 and a φ0 from the second and third terms of the product in the nonlinear piece.

Physically, this is a manifestation of the distinguishability of the two branches as

final states in the quantum scattering problem9. The moving branches have a shift

proportional to ρ((1 + 2x) + 0.5(1− x))/3 (the 0.5 comes from the moving branches

overlapping with one another half the time they overlap with the non-moving branch)

while the non-moving branch has a shift proportional to ρ(2)(1 − 3x)/3. Thus, the

overall effect scales as ρ(5x/2− 1/6).

The momentum of a moving arm from t = 0 to t = T is increased by an amount

~∆k ∝ (1 + x)ρ. By the same argument as given in section 7.3.4 for the index of

refraction, only the term quadratic in ∆k from the total kinetic energy survives. Thus,

the total phase shift from this effect is proportional to (∆k)2T ∝ (1 + x)2ρ2T .

A final, less obvious effect of interactions involves the phase curvature across

the condensate. Due to the acceleration effect, the branches may not be perfectly

overlapped at time 2T . The actual time of perfect overlap is referred to as the closing

time of the interferometer. In this case, the grating is formed by the interference

between non-analogous parts of the different branches. In figure 9.4 the gray box

highlights the fact that the center of the 0 momentum branch interferes with the

wings of the ±2~k branches. The phase accumulated due to interactions in the BEC

before splitting is curved like the density profile that generates it, as first demonstrated

in [38]. Therefore, the phase is greatest in the center of a branch and decreases into

the wings. This effect scales like (∆t)2, where ∆t is the difference in time between

the proper closing time and the time when data is taken. This shift can be made

negligibly small by taking data at ∆t = 0 rather than at 2T . Taking data at ∆t = 0

spoils the cancellation of the 2~2k∆k term in the acceleration shift. Thus, a trade-off

must be made in deciding between 2T and the closing time. For all work described

9For bosons, the scattering cross section is twice as large for distinguishable final states as for
indistinguishable because the cross-sections for the two permutations of particle and final state
add. There is no such ambiguity for indistinguishable final states.
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in this thesis, data was taken around 2T .

9.6 Modeling a Complete Experiment: Numerical Results

In this section we use our theoretical tools to numerically calculate the interaction

phase shifts in a contrast interferometer measurement of ωrec. First, we consider com-

parisons of the SVEA plus scaling solutions to more complete numerical simulations.

Two full experiments were simulated. The first allows us to assess the validity of

the SVEA decomposition as compared to full numerical solutions of the GPE. We find

that the potentially dramatic reduction of computational cost allowed by the SVEA

does not diminish the accuracy of the simulations. The second shows the efficacy of

central scaling solutions combined with SVEA in several parameter regimes as com-

pared to three-dimensional SVEA simulations. This involves simulating experiments

that could not be adequately simulated on commodity PCs using the full GPE.

First, we simulated a short experiment using a 23Na condensate with 1 ms of free

expansion out of the trap ((Ωx,Ωy,Ωz) = 2π × (50, 50, 20) Hz) and T = 0.2 ms.

This experiment is sufficiently short that full simulations of the GPE may be run in

reasonable time. Figure 9.5 shows the signal from the full GPE simulation along with

the signal from the SVEA simulation. The signals were generated by extracting the

magnitude of the 2~krec component of the total atomic density as a function of time.

The phase at time 2T agrees within the granularity of the time steps in the simulated

signal10.

Since the final phase of this signal is sensitive to slight differences between sim-

ulations in the free propagation, condensate separation/recombination, or laser in-

teraction periods, the agreement seen in figure 9.5 shows the power of the SVEA to

accurately model all periods of an experiment. The actual experiment considers the

slope of a φsig vs. T plot in which many of these details are expected to cancel out.

10The small differences in signal envelope may arise from spurious gratings created by higher
momentum states, which we remove from the SVEA simulations.
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Figure 9.5: Simulated output of a contrast interferometry experiment. The solid

(black) curve shows the output signal simulated using the full GPE. The circles (blue)

show the output signal simulated using the SVEA.

Being able to accurately model these details can thus improve the confidence in these

cancellations, allow modeling of laser intensity fluctuation effects, etc.

Several recent studies of atom-light interactions with varying levels of complexity

[95, 51, 12, 73] can easily be adapted to describe the condensate splitting. In the

SVEA plus scaling framework, the complexity of the laser interaction model may

be changed as needed without substantially affecting the models for the rest of the

interferometer. For the simulations described above we used the light-shift potential

formalism described in section 9.4. For the following, we use a much simpler model

ignoring phases accumulated during the laser interactions. These phases should not

affect the final result of an experiment in principle. The effects of diffraction phases

discussed in chapter 8 can be handled separately.

The second simulated experiment is a 174Yb contrast interferometer. We used

Nat = 104 and had the condensate initially confined in an isotropic trap with frequency

Ω = 2π × 200 Hz. After a 10 ms period of free expansion, the BEC is split into three

branches. The densities in arms −1, 0, and 1 are in the ratio (1−x) : (1+2x) : (1−x),
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Figure 9.6: Mean-field shifts versus splitting parameters. The black solid line shows

the scaling solution value for the shift in measured recoil frequency as a function of

density imbalance for the experiment described in the text with Ω = 2π×200 Hz. The

blue dashed line shows the same but for an initial trapping frequency of Ω = 2π×5 Hz.

The circles show data points from SVEA simulations. The inset shows a closer view

of the solid line. For imbalance levels of ≤ 2% the mean-field shift is reduced to the

1 ppb level.
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using the splitting parameter defined above. Notice that x is the difference in fraction

of original density between the stationary branch and the accelerated branches (e.g.,

density splitting in the ratio 1:2:1 has x = 0.25). We make use of our scaling solutions

from section 9.3 to quickly probe a large region of parameter space to find suitable

conditions a ppb-level experiment.

To apply our scaling solutions, we break a full experiment into stages of free

propagation and stages of laser interaction. These stages are simulated using the

results of section 9.5.3.

For these simulations, we ignored the back-reaction—the change in shape of each

branch due to its interactions with other branches. This approximation gives the first

term of an expansion in a small parameter. We can derive its value for the case of

release from a trap followed by some period of expansion before the splitting laser

pulse. Let the z axis be the direction of laser propagation. The relative size of the

neglected back-reaction effects is [(Ωz/ωrec)(µ/(~Ωz))
3]1/2λ−1

x λ−1
y for a condensate in

the TF regime and [(Ωz/ωrec)(µ/(~Ωz))
2]1/2λ−1

x λ−1
y in the small interaction limit.

With this approximation the entire post-splitting pulse propagation is simulated

with a single scaling solution and the inter-branch interaction phase may be added

at the end as a perturbation. With the parameters described for this simulation,

these make good approximations. Later, in simulating actual experiments, we work

with ten times more atoms, higher trap frequencies, and a shorter expansion time. In

such a case, the full solutions from section 9.5 must be solved numerically. However,

future sub-ppb measurements will use several techniques to reduce density before the

splitting pulse. In such a case, adding in inter-branch interactions and their resultant

accelerations as small perturbations to a single scaling solution should be a good

approximation, at least for choosing trap parameters in the design phase.

Returning to the simulation, we find the fractional shift of the measured recoil

frequency due to atomic interactions as a function of x (see figure 9.6). To do so, we

calculated the phase of the signal at t = 2T , φ(2T ) for runs of T = 2 ms and T = 5 ms
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and then found the slope of φ(2T ) vs. T . The result from the SVEA plus central

scaling solution agrees well with the results of three-dimensional SVEA simulations.

For |x| < 0.02 the mean-field shift contributes at less than the ppb level. We have

achieved control of the splitting parameter at the level of ±0.01, as will be seen in

the data presented below.

While the simulated conditions were somewhat contrived, they achieve densities

that should be feasible in the newly built interferometry machine. As such, we see

that interactions can indeed be controlled to the ppb-level with our current level of

control for the splitting pulse. However, it should also be said that accelerations to

N = 100, which are the goal for the new machine, turn this ppb-level result into a

sub-ppb result, more than adequate for longer-term goals of pushing to 0.1 ppb.

For a given atom number and available total time for a run, the mean-field shift

is generally smaller for larger trap frequencies because the condensate expands much

more rapidly after release from strong traps than weak traps. The rapid expansion

quickly makes up for the higher initial density. However, the more rapid expansion is

a direct result of increased momentum spread, potentially diminishing the advantage

of a BEC’s narrow momentum distribution.

An example considered in [47] used Nat = 104 at Ω = 2π × 200 Hz. There, the

final momentum spread was still less than one tenth of the recoil momentum, while

the mean-field shift was well below the ppb level. While this may sound like an

appealing avenue, there is, in fact, a strong argument for keeping the momentum

spread as low as possible. As seen in section 7.3.4, efficient acceleration and mirror

pulses are key both to avoiding atom loss and to avoiding strong shifts due to index

of refraction. The best course of action, considering all factors, is to reduce the final

trap frequencies and density as far as possible, understanding that the interaction

effects may still have to be carefully modeled and subtracted to achieve the desired

precision.

Finally, we compare these models to data from our contrast interferometer. We
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Figure 9.7: Different splittings. The density distributions produced by two different

splitting parameters—x = 0.29 ± 0.01 and x = −0.14 ± 0.01—are shown in these

absorption images (average of three images, each). Mean atom number dropped from

1.3× 105 to 1.0× 105 between the two sets.

created a dataset specifically to maximize the effects of interactions by using T =

11 ms and only allowing the BEC to expand for 2 ms before the splitting pulse to

magnify the interaction effects. We then compare two data sets differing only in their

density splittings, one with x = 0.29±0.01 and another with x = −0.14±0.01. These

splittings are displayed in figure 9.7. The interaction effects for these BECs, having

≈ 105 atoms per run, can be calculated using the full SVEA plus scaling solutions

formalism. While this requires numerically integrating a small number of coupled

nonlinear ordinary differential equations, shifts may be calculated for each run of the

interferometer at a rate of a couple seconds per run on a commodity PC.

Before applying interaction shift corrections, the phase difference between these

two data sets was 0.70 ± 0.03 rad. After applying the corrections, the difference

dropped to 0.02± 0.1 rad. The large error bar is due to uncertainty in trap geometry

and turn-off. For future experiments in the new interferometry machine, trap param-

eters can be both better controlled and better measured, reducing the uncertainty.

Together with longer expansion times, these enable correction of interaction effects

at the < 5 mrad level. For the design goals of N = 100 and T = 5 ms, this is safely

below the ppb level and can likely be pushed below the 0.1 ppb level in the long term.
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We thus have a set of tools for understanding and calculating interaction effects in

BEC interferometers. While we have applied them exclusively to contrast interferom-

eters in the interest of brevity, it should be noted that they may also be applied to any

other geometry of condensate interferometer. By adding in the terms of the scaling

solutions for trapping potentials, these techniques may even be applied to confined

atom interferometers such as those of Hughes and Close[13, 67].
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Appendix A

EFFECTS OF GRAVITATIONAL CONFINEMENT ON
BOSONIC ASYMMETRIC DARK MATTER IN STARS

This appendix presents the paper Effects of gravitational confinement on bosonic

asymmetric dark matter in stars published in (and copyright to) Physical Review

D[46]. The paper corrects some mistakes in the literature on asymmetric dark matter

specifically related to the formation of Bose-Einstein condensates of such matter. The

essential insight added by this paper is that the gravitational potential in the center

of a neutron star forms a harmonic trap for such dark matter, modifying the density

of states. Additionally, the relativistic corrections to this potential are found to be

quite substantial.
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I. INTRODUCTION

While the existence of dark matter is at present well
established, the nature of this dark matter is still a matter of
considerable speculation [1]. Constraints from precision
cosmology [2] and observations of the Bullet Cluster [3]
give a picture of the generic phenomenology that dark
matter models must satisfy. Direct detection experiments
have also placed constraints on the interactions of the dark
matter with baryons. Recently, attempts have been made to
use astrophysical observations to further constrain the
nature of the dark matter. However, such constraints tend
to be strongly model dependent.

One particularly well-motivated class of dark matter
models are known as asymmetric dark matter (ADM)
models [4,5]. These models attempt to explain the similar-
ity of dark matter and baryonic densities �DM � 5�baryon

by postulating a mechanism for transferring the baryonic
asymmetry of the standard model sector to the dark
matter sector and visa versa. Such models favor a mass
of the dark matter particles in the range of 5–15 GeV [6].
The asymmetry in the dark sector implies that dark matter
particles are stable and lack antiparticles with which to
annihilate.

This stability allows for interesting bounds to be derived
from the existence of old neutron stars, particularly for
bosonic dark matter [7,8]. The stability of ADM allows a
neutron star to slowly accumulate a cloud of ADM parti-
cles by scattering them in such a way as to reduce their
speed below the neutron star’s escape speed. Once cap-
tured in the neutron star’s gravitational field, repeated
scattering between the star and the ADM particles allows
the ADM to thermalize with the star. Once a sufficient
amount of dark matter has accumulated, the ADM cloud
can become self-gravitating and collapse into a black hole.
This black hole then consumes the host neutron star.
Bosonic ADM can undergo a phase transition to a Bose-
Einstein condensate (BEC) state. The BEC, having higher

density than a thermal gas cloud, considerably increases
the strength of the bounds obtained by this method.
However, all analyses of this situation, to date, have

treated the thermal ADM cloud as homogeneous. In this
note, we consider the shortcomings of this approximation
for a cloud of noninteracting bosons with a radius much
smaller than that of the neutron star. Taking account of the
effects of the confining gravitational potential improves
the strength of the bounds for all masses up to 15 GeV.
The improvement is particularly strong, a factor of an
order of magnitude, in the well-motivated mass range of
�5–15 GeV.

II. EFFECTS OF CONFINEMENT

The well-known Newtonian theory of gravitation in a
uniform density sphere suggests that the ADM cloud within
the neutron star should experience a harmonic potential
energy given by VðrÞ ¼ ð2�G�m=3Þr2. Calculations [9],
subsequently verified by experiments with dilute alkali
gases [10], show the density of states for a gas trapped
in a harmonic potential is markedly different from that of
a homogeneous gas. Specifically, for a gas confined in an
isotropic harmonic potential the density of states, gð�Þ, at
energy � is given by gð�Þ ¼ �2=ð2ðℏ!Þ3Þ, where ! is
the angular frequency of the harmonic oscillator potential.
This may be compared to the homogeneous gas result

gð�Þ ¼ ffiffiffi
�

p ð2�VÞð2m=h2Þ3=2, where m is the dark matter
particle mass and V is the volume occupied by the gas.
For a fixed temperature T, the critical number Nc in the

harmonic trap for which a BEC begins to form is Nc ¼
�ð3ÞðkT=ℏ!Þ3, with �ðxÞ the Riemann zeta function and
�ð3Þ � 1:2. Using the Newtonian potential above we find a
critical number

Nsho ¼ �ð3Þ
�

kT

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G�=3

p
�
3
:

Comparing this to the value Nhom, found using the homo-
geneous gas in a volume determined by gravitational bind-
ing in [7,8], we see the same temperature scaling but a
larger prefactor:*jamisona@uw.edu
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Nhom

Nsho

¼
ffiffiffiffi
6

�

s
�ð3=2Þ
�ð3Þ ¼ 3:0:

Using the Newtonian potential for a relativistic system
such as a neutron star, particularly near the core, misses
important effects. We therefore derive the metric near the
center of the star and from it derive an effective gravita-
tional potential energy. To do so, we model the star as
spherically symmetric with a metric of the form

ds2 ¼ �e2�dt2 þ e2�dr2 þ r2d�;

e2� �
�
1� 2GmðrÞ

r

��1
;

where mðrÞ is the mass contained within a sphere of
radial coordinate r. For the temperatures of interest,
T � 105–107 K at the neutron star core, the thermal
ADM cloud should be localized within a sphere of radius
roughly 1 m around the center of the neutron star. Thus it
is reasonable to treat the density as uniform in the region
of interest. This gives us mðrÞ ¼ 4��r3=3, making
grr ¼ 1� 8�r2�=3. Using � ¼ 1:5� 1015 g=cm3 shows
that for r � 1 m, jgrr � 1j � 10�8. Thus, we can neglect
the curvature of the spatial components of the metric
and treat the radial coordinate as the proper length, sim-
plifying the analysis. This allows us to treat the system via
an effective Newtonian potential �. Using the
Oppenheimer-Volkoff equation [11] we find

d�

dr
¼ Gm

r2

�
1þ 4�Pr3

m

��
1� 2Gm

r

��1

¼ 4�

3
G�r

�
1þ 3

P

�

�
;

where P is the pressure at the star’s core.
From this expression, we see that the Newtonian analy-

sis can be carried over by simply replacing � with �þ 3P.

The pressure depends sensitively on the neutron star
equation of state. Recently, observations of x-ray emission
from neutron stars have progressed to the point where good
approximations for this equation of state can be had
[12,13]. The core density used above corresponds to
� � 0:9 GeV=fm3 with a pressure of P � 0:3 GeV=fm3.
The relativistic analysis therefore gives a gravitational
potential roughly twice as strong as the Newtonian
analysis. This further decreases the critical number for
the condensation transition. Our final result for the critical
number is thus

Nsho ¼ �ð3Þ
�

kT

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�Gð�þ 3PÞ=3p

�
3
:

For the mass range 5–15 GeV the constraints on dark
matter-nucleon scattering are dominated by the critical
number. As such, using the corrected expression above
strengthens the bounds in this range by roughly a factor
of 8 as compared to those from Ref. [8]. Further refine-
ments to the neutron star equation of state are anticipated in
the near future, based on discrepancies between comple-
mentary techniques for deriving it from observation
[13,14] as well as the accumulations of further data.
Bounds on dark matter cross sections may be easily
updated in light of such new information, based on the
above results.
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