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a b s t r a c t

The bubble-size distribution in 2.7 billion year old lava flows can be used as a proof of concept

illustrating a new set of techniques for measuring volumes of geological materials with variable density

contrasts using high-resolution X-ray computed tomography. Such studies have been limited in the

past to high-contrast situations such as vesicles devoid of secondary fill. We present a new dynamic

thresholding method for computationally separating amygdules from their basaltic matrix in X-ray

images that is based on a technique used in seismology. The technique is sensitive to the gradient of the

gray-scale value, rather than an absolute threshold value often applied to an entire set of X-ray images.

Additionally, we present statistical methods for extrapolating the volumetric measurement mean and

standard deviation of amygdules in the measured samples to the entire population in the flow. To do so,

we create additional amygdule sample sets from the original sample set in the process of ‘bootstrap’

resampling, and use the Central Limit Theorem to calculate the mean and standard deviation of the

amygdule population from these sample sets. This suite of methods allows the extension of bubble-size

distribution studies typically done on modern flows to the ancient rock record and potentially has

many other uses in geosciences where quantitative discrimination between materials with a range of

densities is required.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Measuring the dimensions (size, shape and relative abun-
dance) of objects and spaces enclosed in solid substrates is critical
for many geological investigations, including assessment of por-
phyroblasts in metamorphic rocks (Denison et al., 1997), fractures
in sedimentary rocks (Hamblin, 1962), fluid flow through porous
media (Coles et al., 1998) and vesicles in lava-flows (Sahagian
et al., 2002) where large color, size or density contrasts allowed
easy discrimination between the inclusions and their matrix.
However in many geological settings inclusions of interest have
variable contrast with the surrounding matrix owing to composi-
tional differences. Under such circumstances it has often proved
difficult to automate measurement of inclusions with much

accuracy, so that truly quantitative dimensional determinations
cannot be achieved. For applications like the one outlined below
where high-quality measurements are required, new techniques
for quantitative analysis are needed. We describe one such set of
methods bringing together high-resolution X-ray computed
tomography, image manipulation, a dynamic thresholding algo-
rithm, and coupling bootstrap resampling to the Central Limit
Theorem for determining the mean size and standard deviation of
populations of gas bubbles filled in with secondary minerals
(amygdules) in ancient lava flows. These techniques have other
geological applications, especially where variable density contrast
between inclusions and matrix is a problem. Possible examples
include quantifying quartz and feldspar phenocrysts in inter-
mediate to felsic igneous rocks (Gualda and Rivers, 2006), and
distinguishing lapilli from cemented ash in pyroclastic flows.

Gas bubbles in lava flows are sensitive recorders of magmatic
properties and Earth surface conditions, and their size distribu-
tion can be used to estimate gas loss from the flowing lava
(Cashman et al., 1994). The degree of degassing is an important
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control on surface morphological features, and thus emplacement
style (Swanson and Fabbi, 1973). Furthermore, bubble-size dis-
tributions are also critical for understanding the thermal and
rheological evolution of lavas (Aubele et al., 1988; Sahagian, 1985,
Sahagian et al., 1989), and have been used as a paleoaltimetry
proxy (Sahagian et al., 2002).

Bubble-size distribution studies have been limited to lava
flows where the trapped bubbles are true voids (vesicles). Such
voids enable measurement of bubble size distribution by several
techniques, including (i) injection of plastic to fill the voids
followed by rock dissolution in acid (Sahagian et al., 1989),
(ii) stereology (Sahagian and Proussevitch, 1998; Toramaru,
1990), (iii) probability distribution functions (Mangan et al.,
1993) and (iv) X-ray tomography (Sahagian et al., 2002; Song
et al., 2001). High resolution X-ray computed tomography has
emerged as the best tool because the density contrasts between
void and rock are easily imaged, and it is less destructive and
invasive than other methods (Ketcham and Carlson, 2001; Van
Geet et al., 2000). Such studies have not yet been extended to lava
flows in which the voids have been filled in by secondary
minerals, typically quartz, calcite, chlorite or zeolites, because
the density difference between void fill and host rock is not easily
identified by automatic algorithms that rely on thresholding (i.e.,
on the absolute value of the returned pixel on the raw X-ray
image; Ketcham (2005)). Such filled cavities (amygdules) typi-
cally characterize the vesicularity of more ancient lava flows that
are often metasomatized or metamorphosed.

Here we present a suite of techniques to identify amygdules
from X-ray images and compute errors automatically. Raw X-ray
gray-scale images are processed through a low-pass Wiener–
Kolmogorov filter prior to being treated using a modified seismo-
logical ‘‘picker’’ technique (Vanderkulk et al., 1965) to identify
amygdules. Identification is followed by binarization and the
resulting images are ‘‘cleaned’’ using image processing methods.
This suit of techniques is applied to individual images, rather
than defining detection parameters to an entire dataset. As such,
this technique can accommodate subtle changes in instrumental
X-ray intensity drift, and inherently has little sensitivity to the
amygdule composition as long as a difference in density exists
between the matrix and the secondary fill. The edge of scanned
samples may suffer from a difference in returned intensity
because of the shorter X-ray path length inside the sample, but
this does not affect amygdule detection. The fully processed
images are imported into BLOB3D (Ketcham, 2005), a freely
available software product specifically designed for X-ray tomo-
graphy that allows extraction of the dimensions of the amygdules.

The mean of the distribution and its error is often the
quantity of interest. To characterize these parameters accu-
rately, the fundamental assumption that the sample of the
population characterized by the measured amygdules is a
representative sample of the entire population of amygdules
must be clearly expressed. Although seemingly straightforward,
the clear statement of this assumption is a necessity for the
statistics to be representative of the entire population of
amygdules, rather than expressing the statistics of the mea-
sured sample alone. Indeed, this assumption allows the use of
bootstrapping techniques to calculate the mean and the error in
the mean of the entire population through application of the
Central Limit Theorem.

2. X-ray imaging

X-ray imaging is based upon mapping the attenuation of
X-rays as they travel through matter. X-rays are either photo-
electrically absorbed or scattered via the Compton effect,

resulting in a decrease in energy. Pair production, in which
intensity is lost when the X-ray photons interact with the
nucleus and are transformed into a positron-electron pair, is
another attenuation physical process but only occurs at X-ray
intensity 410 MeV (Ketcham and Carlson, 2001), substantially
higher than the 100 keV used in this study. Photoelectric
absorption and Compton scattering can be related to the linear
attenuation coefficient of the sample scanned. Given the linear
attenuation coefficient and sample thickness, the intensity of
the X-ray arriving at a detector can be related to the initial
intensity Io through the Beer–Lambert law (Ketcham and
Carlson, 2001). In practice, X-ray computed tomography relies
on obtaining multiple intensity measurements of an object over
a range of angular orientations, thus allowing 3D reconstruction
of the object.

3. Sample description

The amygduloidal subaerial lava flows analyzed as a proof-of-
concept in this study belong to the �2.75 billion year old
Bunjinah Formation in the Fortescue Group of the Pilbara Craton,
Western Australia (Blake, 1993). Thin sections reveal a subophitic
albite–chlorite–epidote–actinolite basaltic matrix of 0.2–0.5 mm
crystals containing amygdules that are spheroidal and typically
1–6 mm in diameter (Fig. 1). They can be independent (Fig. 2A),
partially coalesced, or fully coalesced with other amygdules
(Fig. 2B). Partial coalescence is evident from the throat present
between two amalgamating amygdules, whereas it is impossible
to differentiate between a larger single amygdule and complete
coalescence between two or more amygdules. The mineral fillings
that characterize the amygdules vary in mineral composition and
texture (Fig. 3) but consist dominantly of quartz and chlorite.
Quartz crystal size in the amygdules can vary from 0.5 mm to
microcrystalline, with the larger crystals typically located near
the amygdule center. Quartz crystals o20 mm are dominantly
equant and are concentrated toward the amygdule edge. Chlorite
is also often observed as a mineral fill with an outer veneer of
quartz, and typically occurs in larger amygdules (42 mm).
Microcrystalline quartz is the dominant secondary fill of both
small and large amygdules. Discrete growth rings originating
from nucleii within the amygdules can join to form composite
mineral growth surfaces with alternating dark and bright bands
(Fig. 2A).

Fig. 1. Amygdule-rich flow from the �2.75 billion year old Fortescue Group,

Pilbara Craton, Western Australia. Tip of pen (lower right) gives scale.
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4. Methods

In this study, we used a bench-top Skyscan 1172 X-ray micro-
tomography instrument. Cylindrical cores are typically preferred
in tomography studies (Ketcham and Carlson, 2001) because they
present a uniform cross-section to the X-rays when the cores
rotate around their long axis inside the instrument. Bulk rock
samples were drilled to produce 2.5 cm in diameter by �3–4 cm
tall cores using a water-lubricated diamond-grit hole saw that
was mounted on a bench press.

Several parameters influence the quality of the X-ray images.
Cores were scanned at a spatial scale of 0.03 mm per pixel, and an
inter-slice spacing of 0.03 mm (leading to 0.03 mm3 ‘voxels’—volume
elements, or 3D pixels). The instrument was operated at 100 kV and
100 mA. The cores were scanned at 0.51 rotational intervals for 1801,
where 3 frames were taken and averaged. The scans were divided
into three horizontal sections because of the core height, with the
instrument automatically adjusting the vertical position of the core
for scanning. Each core took �3 h to scan, and modified filtered back-
projection that employed a cone-beam algorithm was used to convert

the 360 projection images from each scan into 800–1300 horizontal
X-ray slices per core.

In previous studies of gas bubbles in lavas (Sahagian et al.,
2002; Song et al., 2001), the vesicles were air-filled voids
(density, r¼�1.23 kg/m3) contrasting sharply in density with
the surrounding basaltic matrix (r¼�2800 kg/m3) that trans-
lated into clear X-ray images of the vesicles. In this study,
the vesicles are mineral-filled amygdules containing quartz
(r¼�2650 kg/m3) and chlorite (r¼2700–3300 kg/m3). Thus,
depending on secondary mineral fill, some amygdules appear
brighter than the surrounding matrix, whereas others appear
darker. In many image-processing protocols, a threshold algo-
rithm is used to analyze images and separate the gray-scale
values representing the amygdules from the matrix (Ketcham,
2005). However, in the analyses conducted here, imaging suf-
fered instrument-related intensity drift which was manifested as
progressively brighter images along a section of a core, with the
next section starting darker and progressively getting brighter
(Fig. 4). This drift made the use of a traditional threshold
algorithm impractical, because the gray-scale value represented
by a Digital Number (DN) between 0 (black) and 255 (white)
identifying the threshold value of an amygdule at image n, would
not be the same value at image nþ200, for example. To overcome
these difficulties, we developed a method based on gray-scale
contrast existing at the boundary between an amygdule and the
matrix (Fig. 5), rather than a single gray-scale threshold value
applicable to all images. X-ray images (or ‘‘slices’’ as they are
typically called; Fig. 6a) were imported into Matlab and first
processed (taking advantage of Matlab’s image analysis toolbox)
using the ‘‘wiener2’’ function, an adaptive low-pass Wiener–
Kolmogorov smoothing filter (Fig. 6b), which reduces noise by
locally smoothing a zone of pixels (Lim, 1990). A structuring
element (a ‘‘smoothing zone’’, in this case) of 10�10 pixels
typically gave excellent results and is small enough to minimally
affect the matrix–amygdule boundary.

A dynamic thresholding algorithm was developed and imple-
mented to detect amygdules of variable density due to composi-
tional differences. Had the amygdules been of homogeneous
composition (or void vesicles) and the X-ray slices been affected
by instrument drift alone, then the traditional means of normalizing
the images with respect to each other would have been possible.
Dynamic thresholding allows the detection of amygdules where
both instrument drift and amygdule compositional variation
applies. DN cross-sectional profiles of the images (5–15 per image
depending on the anticipated amygdule density: Fig. 5) were taken
(using Matlab’s ‘‘improfile’’ function) and analyzed using an STA/
LTA (Short-Term Amplitude/Long-Term Amplitude) ‘‘picker’’ algo-
rithm used in seismology to detect earthquakes in a seismogram
(Vanderkulk et al., 1965). This method scans through the cross-
section DN values using two rectangular (‘‘boxcar’’) averaging filters
of different sizes (one 3 pixels long, the other 6 pixels long) and
calculates the ratio between the averages (Fig. 5). We found that a
ratio of 2 described well the location of a rapid change in gray-scale
value (a ‘‘DN jump’’) corresponding to the edge of an amygdule. The
DNs of the N pixels (DNi) recorded between each DN jump are
averaged into a mean, DNj, as follows:

DNj ¼
1

N

XN

i ¼ 1

DNi ð1Þ

and represent the ‘‘DN threshold’’ of one amygdule j. Ignored are DN

averages o30 (too dark and thus unlikely to be amygdules), and
averages that occur over more than 200 pixels and less than 10 pixels
between jumps (amygdules do not reach these dimensions in our
samples). Averaging the DN averages (DNj) for all M amygdules

Fig. 2. Two thin sections of amygduloidal Fortescue basalt viewed in transmitted

light, showing individual, partially coalesced, and substantially coalesced amyg-

dules. Partial calescence is evident by the throat present between two joined

amygdules. (A) Most amygdules are filled with secondary quartz and appear

lighter than the basaltic matrix. Chlorite is the other dominant mineral and fills

some darker amygdules. The large amygdule on the left with concentric growth

rings is enlarged in Fig. 3E. (B) Large amalgamating amygdules also dominantly

filled with secondary quartz. Two amygdules on the right-most side of the image

have a secondary chlorite core with a thin quartz veneer (Fig. 2A). Both scale bars

are 1 cm.
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detected in a slice yields a threshold value, DNslice, (Fig. 5):

DNslice ¼
1

M

XM

j ¼ 1

DNj ð2Þ

Each set of images must be processed twice: once to detect
amygdules darker than the matrix, and once to detect amygdules
brighter than matrix. For dark/bright amygdules, the mean of the
DNs between jumps (Eq. (1)) must be less/more than the mean of
the DNs at the jumps. The first and last jump in a profile identifies
the edge of the core (Fig. 5).

We found that the detection was improved by manually
shifting the DN threshold value up or down by a multiple f (the
value of which applied to all slices and depended on the core
analyzed) of the standard deviation of DNj.

DNslice ¼DNslice7 fsDNj
ð3Þ

Each image is thus analyzed individually for the DN threshold
that represents amygdules brightness independently of changes
in intensity from the instrumentation. The selection of f is
described below.

Binarization followed dynamic thresholding. Each image is
binarized with‘‘1’’ representing ‘‘amygdule’’ and ‘‘0’’ identifying

‘‘matrix’’ (Fig. 6c). These processes result in binarized images that
are often speckled and contain the core boundary (Fig. 6c). The
boundary is removed using a binary mask. Speckles (individual
white pixels with binarized DN¼1) are removed by ‘morphologi-
cal opening’ (Gonzales and Woods, 2007), an image-processing
technique (using Matlab’s ‘‘imopen’’ function) that can be visua-
lized as taking a structuring element (a disk with a radius of
2 pixels in our case) and sliding it inside the speckles (Fig. 6d).
Because the structuring element is too large to fit inside the
speckles, the speckles are removed and replaced by the black
background values (with binarized DN¼0). ‘‘Holes’’ in amygdules
– volumes left unfilled by secondary mineralization – and rough
edges on their outer surfaces are dealt with using ‘morphological
closing’ (Gonzales and Woods, 2007), an image-processing tech-
nique (using Matlab’s ‘‘imclose’’ function) that can be visualized
as taking a structuring element (a disk with a radius of 5 pixels in
our case) along the inside boundaries of the ‘‘hole’’ and along the
outside of the amygdule. If the structuring element can touch any
of the background (‘‘0’’ pixels) without any part of the structuring
element containing a pre-existing ‘‘1’’ pixel, then that background
pixel remains so; if not, it is set to ‘‘1.’’ Each slice goes
through identical binarization. Fig. 6e shows a fully processed
binarized image.

Fig. 3. Thin-section photomicrographs of amygdule fill; all images are under cross-polarized light. (A) Chlorite core in an amygdule. Basalt margin is at upper-right, and

the amygdule is first rimmed with a thin quartz veneer. (B) Two-stage growth with small equant crystals on the outer edge of the amygdule (bottom of the image), and

elongated large quartz grains at the core (top). (C) Equant to blocky quartz crystals filling the entire amygdule. (D) Multiple concentric growth rings of microcrystalline

quartz, enveloping equant microquartz cores. (E) Two generations of concentric microcrystalline quartz growth rings filling amygdule (see Fig. 2A for context).

(F) Amygdule filled with a veneer of fibrous microcrystalline quartz, surrounding blocky equant quartz crystals and a chlorite core.
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The analysis is done in three steps. In the first step, an image
slice is randomly selected and the best factor f manually deter-
mined. In the second step, 6 images are randomly selected. This
lets the user fine tune the factor f for optimal amygdule detection.
In the third step, all images are automatically passed through the
amygdule detection algorithm. The computer code used for this
analysis is available from the main author upon request.

To obtain amygdule volume, binarized images are imported into
BLOB3D (Ketcham, 2005), which is software made available by the
University of Texas High-Resolution Computed Tomography facility.
This program allows efficient and accurate identification and
measurement of individual amygdules. As mentioned previously,
the user inputs the pixel size (0.03 mm) and the inter-slice spacing
(0.03 mm), so that each pixel now becomes a voxel of a known
volume (0.03�0.03�0.03 mm). The software groups all the ‘‘1’’
voxels (i.e., the filled amygdules) and displays each resulting ‘blob’
to the user (Fig. 7a), who in the separation process (Ketcham, 2005)
manually identifies blobs as relevant or not. Partially coalesced
amygdules can be isolated with built-in tools available in BLOB3D
and truncated or otherwise incomplete amygdules are discarded.
Once selected, the number of voxels per blob is summed, yielding
an amygdule volume. For 3 D visualization, the entire stack of
binarized images can be imported into software such as ImageJ (free
software made available by the NIH) and then animated (Fig. 7b).

We follow Proussevitch et al. (2007) and plot all measured
amygdule volumes on semi-logarithmic scales as a histogram. The
ideal number of histogram bins is calculated by the method of
Scott (1979):

Bin width¼ 3:49sn1=3 ð4Þ

where s is the standard deviation of the dataset and n the total
number of measured amygdules. Proussevitch et al. (2007)
anticipate that bubble size distributions are commonly log-
normal in linear space. It is thus useful to convert measurements
to their logarithms because this converts the distribution of the
dataset from log-normal to normal for conventional statistical
analyses (Proussevitch et al., 2007). We test our data for normal-
ity by creating a normal quantile plot of the log of our data (Fig. 8

inset), and find a correlation coefficient of 0.9932, less than the
critical correlation coefficient of 0.9976 (from NIST statistical
tables) required to accept the null hypothesis that the data came
from a normal distribution. In light of Fig. 2, this is expected, as
some coalescence would cause the data to marginally deviate
from normality. As such, the meaning of a standard deviation on
the dataset alone becomes difficult unless an assumption of
normality is put forward, in which case the standard deviation
becomes the uncertainty in the mean. In contrast, applying two
statistical techniques such as bootstrapping and the Central Limit
Theorem that do not depend on the normality of the original
dataset allows for the determination of the mean as well as the
standard deviation. Furthermore, such statistics apply to the
entire population, rather than the dataset alone (Davis, 2002).

5. Statistical analysis

If the transformed bubble-size distribution is normal, it may
be fully described by its mean and standard deviation. Sahagian
et al. (2002) obtained a modal vesicle-size from a histogram
composed of ‘‘dozens of bins; thousands of vesicles’’ (Sahagian
et al., 2002), and calculated an uncertainty in volume of o2%
based on a specific vesicle dimension (1000 mm). A more thor-
ough statistical analysis is used here in which the total range of
vesicle volumes accurately measured is taken into account to
calculate the uncertainty in the mean volume, rather than focus-
ing on the uncertainty of a specific dimension. More importantly,
this method allows the statistics of the entire population of
amygdules to be synthesized, as the amygdule volumes obtained
using HRXCT represent only a sample of the much larger popula-
tion of amygdules within each lava flow.

We assume that the samples are representative of the popula-
tion of amygdules. This is necessary in order to extend the
statistical results from the sample to the entire population. We
use a resampling technique called the ‘bootstrap’ (Efron, 1979), in
which a new dataset is created numerically by randomly picking
amygdule volumes from the original HRXCT-obtained dataset.
After an amygdule is picked from the original dataset, it is copied
and returned to the original sample set. As such, the next
randomly picked amygdule will come from the exact same
dataset as the one previously picked from. This is repeated until
the new dataset has the same number of elements as the original
one. This whole process is then repeated 999 times to create
N¼1000 different datasets, all derived from the original one.
Because the original dataset is in effect a random sample from the
population, each randomly obtained dataset acquired from the
original random one also is a random sample from the population.
The Central Limit Theorem states that the mean of randomly
obtained samples from an original dataset (whether normally
distributed or not) taken randomly from a population will be
normally distributed, and the mean of this distribution of means
will be equal to the population mean, usually denoted m (Davis,
2002). Furthermore, if each dataset has the same standard
deviation s as the original dataset, then the error about the mean
sm may be obtained using (Bevington, 1969):

sm ¼ s=N1=2
ð5Þ

where N is the number of datasets.
However, if the uncertainties in each dataset are not equal, the

error about the mean sm is obtained with:

sm ¼ f1=ðSð1=si
2ÞÞg

1=2
ð6Þ

Eq. (6) reverts back to Eq. (5) if si’s are identical. The size of sm
can also inform us about the quality of the original HRXCT-obtained
sample. If outliers exist, one would expect a larger sm compared

Fig. 4. Left: An X-ray transmission image of a 2.5 (D)�4.4 (H) cm core, as

obtained from the Skyscan HRXCT instrument. Scanning is separated into three

sections to accommodate analysis of the tall specimen while maintaining

relatively small voxel dimensions. The core is placed on the sample mount using

putty (not shown), which allows easy manipulation to ensure that the core is

parallel to the vertical spin axis of the mount, as the sample rotates during scan.

Right: Digital Number (DN) representing mean slice intensity as a function of

height. Notice that each section is darker at its base compared with its top. This

prevents fixed thresholding for amygdule identification.
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with less scattered data. To compute the standard error in amygdule
volume measurement SVm applicable to the population, we need to
back-transform the results to linear space. Let log(Vm)¼m, where Vm

is the population mean in linear space, from which:

Vm ¼ 10m ð7Þ

The most probable error SVm in Vm due to the error sm in s is
the square root of the variance:

SVm ¼ ½ @Vm=@m
� �

sm�2
� �1=2

ð8Þ

The term (@Vm/@m) can be written as 10mln(10) from the
relationship:

@ax=@x¼ axlnðaÞ ð9Þ

where a is a constant and x is a generic independent variable.
Therefore, the volumetric error in the mean is expressed as:

SVm ¼ 10mlnð10Þsm
� �1=2

: ð10Þ

Our goal with these samples from the upper vesicular zone of an
Archean lava flow was to illustrate the dynamic thresholding
algorithm. A complete characterization of the vesicularity of a
lava flow would be beyond the analysis presented here. This
would include the vertical size distribution of amygdules within
the flow, amygdule-size distribution analyses in the lower vesi-
cular zone (Aubele et al., 1988), and additional mathematical

treatments to fully characterize the distribution (e.g., Prousse-
vitch et al., 2007; Kaplan, 1999; Shapiro and Wilk, 1965).

6. Results

The results of our proof-of-concept study are plotted in Fig. 8.
We find, after measuring 885 separate amygdules, a mean
sample amygdule volume of 2.2472.01 mm3, from which the
mean population amygdule volume can be found to be
2.2570.066 mm3 equivalent to 1.670.5 mm in diameter by
coupling bootstrap resampling to the Central Limit Theorem. This
value for an Archean lava flow compares well with measurements
of vesicle size in upper vesicular zones of modern flows. Sahagian
et al. (2002) found modal diameters in the range 1.22–1.68 mm in
nine basaltic lava flows in Hawaii, and Aubele et al. (1988)
measured vesicles of 2.571.27 mm 20 cm below another Hawai-
ian flow top.

7. Conclusion

The bubble-size distribution in a 2.7 billion year old amygdu-
loidal lava flow was used as a proof of concept to illustrate a new
set of techniques for measuring volumes of geological materials
with low density contrast to their matrix using high resolution

Fig. 5. Upper: An X-ray image of a slice with the location of the cross-sections used for dynamic thresholding indicated by the horizontal and diagonal lines. Amygdules are

visible as dark circles and ovals. The white arrows show a trace that is mapped on graphs below. Middle: The digital number (DN) values corresponding to the arrowed

trace in the upper panel serving as an example of one horizontal trace. Lower: the corresponding STA/LTA function. The dotted horizontal line represents our threshold

value of 2 where a sharp change in DN intensity occurs (see text for details). The first and last detections correspond to the core edge.
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X-ray computed tomography. The size distribution of vesicles in
lava flows is of particular interest because it can be used to
estimate gas loss of flowing lava, and to model the thermal and
rheological evolution of these lavas. Such studies have not
previously been extended to ancient lava flows because second-
ary minerals fill in the vesicle void, forming amygdules of variable
density compared with their rock matrix. We use statistical

methods involving ‘bootstrap’ resampling, coupled with the
Central Limit Theorem to extend the bubble-size distribution
results to the entire population of amygdules, rather than to the
sample alone. This X-ray technique is not limited to our particular
application, but could be used in other circumstances where
variable density contrasts between subject and background limit
the ability to quantitatively differentiate the two.

Fig. 6. Image-analysis procedure. (a) Original cross-sectional image as obtained from HRXCT, (b) Image smoothed using a low-pass Wiener–Kolmogorov filter,

(c) Binarization, (d) Core boundary removed, (e) Fully processed image following morphological erosion to remove the speckles, and morphological closing to fill holes

and smooth edges.

Fig. 7. Example of amygdule rendering. (a) These two touching amygdules imaged in BLOB3D can be manually separated using the software. (b) The entire stack of

binarized images forming a complete core as visualized using the ImageJ software.
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Fig. 8. Results of analysis of this proof-of-concept study, for amygdules from the flow top. (A) The logarithmic distribution of the amygdule volume spreads over several

orders of magnitude in a quasi-normal distribution, yielding a mean amygdule size of 2.2472.01 mm3. Inset: normal quantile plot of amygdule volumes. The correlation

coefficient r¼0.9932 is less than the critical r value of 0.9976 required to accept the null hypothesis that the data came from a normal distribution (B) Distribution of the

mean of 1000 datasets analyzed using bootstrapping techniques. The mean of the means of the sample datasets (2.25 mm3) is the mean of the population, and the standard

deviation of this distribution is the error in the mean of the population of amygdules (0.066 mm3).
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