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ABSTRACT

We present an analytic one-dimensional radiative–convective model of the thermal structure of planetary
atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-
stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling
between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are
taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By
combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-
pressure–temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux.
We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric
attenuation of sunlight is weak, which we show tend to have relatively high radiative–convective boundaries; (2)
worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or
deep radiative–convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated
giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached
convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through
comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed
flux profiles to more complex models.

Key words: convection – radiation mechanisms: general – planets and satellites: atmospheres – planets and
satellites: general

1. INTRODUCTION

A fundamental aspect of planetary atmospheres is the verti-
cal thermal structure. A one-dimensional (vertical) model can
provide a reasonable estimate of a planet’s global-mean tem-
perature profile. Simple models can provide insights into the
physics behind the thermal profile of an atmosphere without be-
ing obscured by the details of numerical models that sometimes
can approach the complexities of real atmospheres. The best
simple models are those that incorporate the minimum amount
of complexity while still remaining general enough to provide
intuitive understanding.

The historical analytic approach to computing atmo-
spheric temperature profiles employs radiative equilibrium
only (Chandrasekhar 1960, p. 293; Goody & Yung 1989,
pp. 391–396; Thomas & Stamnes 1999, pp. 440–450). Ther-
mal radiation is handled according to the two-stream equations
(Schwarzschild 1906), and the calculations typically use the
“gray” approximation, meaning that the thermal opacity of the
atmosphere is assumed to be independent of wavelength and is
represented with a single, broadband value. Such models have
been used to study the ancient (Hart 1978) and modern Earth
(Pelkowski et al. 2008), and the stability of atmospheres to con-
vection (Sagan 1969; Weaver & Ramanathan 1995). The temper-
ature profiles from purely radiative models resemble planetary
thermal profiles in two broad ways: the temperature falls with
height in the deep part of the atmosphere—the troposphere—and
above that a “stratosphere” forms, which may contain a temper-
ature inversion, and tends toward an isothermal profile.

McKay et al. (1999) used a radiative model with two short-
wave solar channels to study the antigreenhouse effect on Titan
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and the early Earth. For Titan, the second solar channel improved
the fit to the observed stratospheric structure by taking account
of stratospheric short-wave absorption. More recently, Hansen
(2008) and Guillot (2010) derived similar models for application
to hot Jupiters and studied variations in emerging radiation
and temperature profiles that result from the inhomogeneous
distribution of stellar irradiation across a planet.

In general, radiative equilibrium models tend to have regions
in their tropospheres where the temperature decrease implies
that convection should ensue, which is a process not incorpo-
rated into the models but is a part of the essential physics of
planetary atmospheres. Convection is common to all planetary
tropospheres known in the solar system (Sanchez-Lavega 2010)
and is predicted for exoplanet atmospheres (Seager 2010), so
radiative equilibrium models neglect the basic physics of ther-
mal structure. While Sagan (1969) and Weaver and Ramanathan
(1995) investigated the conditions under which the temperature
profiles generated by gray and windowed-gray radiative equi-
librium models will be convectively unstable, these authors did
not derive analytic radiative–convective equilibrium models.

A simple radiative–convective model, employed in the
limit that the atmosphere is optically thin at thermal wave-
lengths, joins a convective adiabat to an isothermal stratosphere
(Pierrehumbert 2010, pp. 169–174). Since this optically thin
limit seldom applies to realistic planetary atmospheres, it is
more common to join the convective adiabat to a gray radia-
tive equilibrium solution (Goody & Yung 1989, pp. 404–407;
Nakajima et al. 1992) or a windowed-gray radiative equilibrium
solution (Caballero et al. 2008). However, the aforementioned
models neglect short-wave attenuation of sunlight by the atmo-
sphere, leading to isothermal stratospheres that fail to represent
realistic planetary stratospheres for most planets of the solar
system with atmospheres, including all the giant planets.
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Realistic radiative–convective solutions to temperature pro-
files are commonly computed numerically, for example, using
convective adjustment. In this method, the statically unstable
profile in the deep layer of the atmosphere that is calculated
from radiative equilibrium is fixed to a dry or moist adiabatic
lapse rate, which accounts for convection. However, because set-
ting the vertical temperature gradient changes the energy fluxes,
the tropopause altitude must be adjusted (and temperatures at
all altitudes in the troposphere shifted higher or lower) in nu-
merical iterations until the temperature and upwelling flux are
continuous (Manabe & Strickler 1964; Manabe & Wetherald
1967).

Here, we present an analytic radiative–convective model that
uses two short-wave channels, thus allowing it to be realistically
applied to a wide range of planetary atmospheres. The generality
and novelty of our model is demonstrated by applying it to
a disparate range of worlds, including Jupiter, Venus, and
Titan. Given the wealth of new problems posed by exoplanets,
development of an analytic model with few parameters is likely
to be useful for future application to such worlds for which only
limited data are known.

In this paper, we first derive our analytic model of atmospheric
structure for a planetary atmosphere in radiative–convective
equilibrium (Section 2). We assume that thermal radiative
transfer is gray, and we include two short-wave channels
for absorbed solar (or stellar) light so that the model can
compute stratospheric temperature inversions. A convective
profile is placed at the base of the portion of the atmosphere
that is in radiative equilibrium, and the model ensures that
both the temperature profile and the upwelling flux profile
are continuous across the radiation–convection boundary. In
Section 3 we explore the general behaviors of variants of our
model, demonstrating its ability to provide clear insights, and
including an application to strongly irradiated giant planets,
including hot Jupiters. The utility, validity, and generality of our
model are demonstrated by comparing it to previous results, and
by applying it to Venus, Jupiter, and Titan (Section 4).

2. MODEL DERIVATION

In this section, we describe the steps to develop an analytic
radiative–convective model for a plane-parallel atmosphere, as
follows.

1. We derive a differential equation for the vertical thermal
radiative fluxes in a gray atmosphere as a function of optical
depth and the temperature at each optical depth.

2. We relate the optical depth to pressure. Physics implies
a power-law dependence of optical depth on pressure, as
others have noted previously (Satoh 2004, p. 372).

3. We define temperature in a (convective) troposphere as a
function of pressure (or optical depth using the relation from
Step 2). This temperature is used to derive a new expression
for the vertical thermal fluxes from Step 1, using a boundary
condition of a reference temperature at a reference level,
such as the surface of a rocky planet or the 1 bar level in a
giant planet’s atmosphere.

4. We consider a balance of the net thermal radiative flux with
absorbed stellar flux and any internal energy flux (which
is important for giant planets) to derive expressions for the
temperature and thermal flux profiles in the radiative regime
above a troposphere.

5. We derive our radiative–convective model by requiring that
the analytic expressions for temperature and upwelling

thermal radiative flux are continuous at the join between
the convective regime examined in Step 3 and the radiative
region evaluated in Step 4.

2.1. Gray Thermal Radiative Transfer

The flux profiles of thermal radiation and the atmospheric
temperature profile are key parameters in a radiative–convective
model, and these quantities are inter-related. The forms of these
profiles are different in the regions of the atmosphere that are
convection-dominated versus radiation-dominated. We start by
writing the general equations that describe the relationships
between these key quantities.

In a one-dimensional, plane-parallel atmosphere, the two-
stream Schwarzschild equations for the upwelling and down-
welling thermal radiative fluxes (F + and F−, respectively) are
(Andrews 2010, p. 84)

dF +

dτ
= D(F + − πB) (1)

dF−

dτ
= −D(F − − πB), (2)

where τ is the gray infrared optical depth (0 at the top of the
atmosphere and increasing toward larger pressures), which is
used as a vertical coordinate. For brevity, we will simply refer
to these fluxes as “thermal fluxes” for the remainder of this
paper. The variable B is the integrated Planck function, with

πB (τ ) = σT 4 (τ ) , (3)

where σ is the Stefan–Boltzmann constant (5.67×10−8 W m−2

K−4) and T (τ ) is the atmospheric temperature profile. The
parameter D is the so-called diffusivity factor, which accounts
for the integration of the radiances over a hemisphere. The value
of D is often taken as 1.66, which compares well with numerical
results (Rodgers & Walshaw 1966; Armstrong 1968). Others
commonly set D = 3/2 (Weaver & Ramanathan 1995), or
D = 2, which is the hemi-isotropic approximation. For clarity,
we note that others (e.g., Andrews 2010 or Pierrehumbert 2010)
sometimes absorb the value of D into their definition of τ .
We choose to leave it in our expressions so that the diffusivity
approximation is not hidden. As we shall see in Section 2.3,
Equations (1) and (2) allow us to solve for the upwelling
and downwelling thermal flux profiles if T (τ ) and a boundary
condition are specified.

The net thermal flux, Fnet, is given by

Fnet = F + − F− (4)

so that we can combine Equations (1) and (2) to yield (see
Schuster 1905)

d2Fnet

dτ 2
− D2Fnet = −2πD

dB

dτ
, (5)

which is a differential equation that can be used to solve for
B (τ ), and thus the atmospheric temperature profile, if Fnet (τ )
and a boundary condition is known.

2.2. Relating Optical Depth and Pressure

While the vertical coordinate of the equations governing the
transfer of thermal radiation is optical depth, we must relate this
to atmospheric pressure, which is the natural physical vertical
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coordinate of planetary atmospheres. A vertical pressure coor-
dinate is particularly useful and unifying between atmospheres
when we consider lapse rates in tropospheres (Section 2.3).

We take the relation between gray thermal optical depth and
atmospheric pressure to be given by a power law in the form

τ = τ0

(
p

p0

)n

, (6)

where p is atmospheric pressure, τ 0 is the gray infrared optical
depth integrated down from the top of the atmosphere to the
reference pressure p0, and n is a parameter that controls the
strength of the scaling. In the simplest case, when an absorbing
gas is well mixed and the opacity does not depend strongly on
pressure, we will have n = 1. This can physically correspond
to Doppler broadening. A common scenario is to have a well-
mixed gas providing collision-induced opacity (e.g., H2 in gas
giant atmospheres in the solar system) or pressure-broadened
opacity so that n = 2. Typically, n takes a value between 1
and 2, as has been parameterized into some radiative models
(Heng et al. 2012). In some cases, where the mixing ratio of the
absorbing gas depends strongly on pressure, larger values of n
have been proposed, such as for water vapor in Earth’s lower
troposphere (Satoh 2004, p. 373; Frierson et al. 2006).

2.3. The Convective Regime

In the convection-dominated region of a planetary atmo-
sphere, we take the temperature–pressure profile to be similar
to a dry adiabat, although somewhat less steep because of, for
example, the latent heat released by condensation of volatiles
during convective uplift. By specifying T (p), we can then derive
the expressions for the upwelling and downwelling thermal flux
profiles, which we can join to the profiles from the radiatively
dominated region of the atmosphere.

The dry adiabatic temperature variation in the lower, convec-
tive part of a troposphere is given by Poisson’s adiabatic state
equation (e.g., Wallace & Hobbs 2006, p. 78):

T = T0

(
p

p0

)(γ−1)/γ

. (7)

Here T0 is a reference temperature at a reference pressure p0,
and γ is the ratio of specific heats at constant pressure (cp) and
volume (cv):

γ = cp

cv

. (8)

Kinetic theory also allows us to relate the ratio of specific heats
to the degrees of freedom, N , for the primary atmospheric
constituent(s), where

γ = 1 +
2
N

. (9)

Most appreciable atmospheres in the solar system are dominated
by linear diatomic gases, such as H2 (Jupiter, Saturn, Uranus,
and Neptune), N2 (Titan), or an N2–O2 mixture (Earth). These
molecules have three translational and two rotational degrees
of freedom, so that N = 5. Thus, γ = 7/5 = 1.4 is the
same for these worlds. In the case of Venus and Mars, whose
atmospheres are dominated by CO2, there are 3 translational,
2 rotational, and ∼2 vibrational degrees of freedom (weakly
depending on temperature; Bent 1965), so N = 7 and γ = 1.3.
Thus, in Equation (7), the dry adiabatic temperature T varies

as p0.3 and p0.2 for diatomic- and CO2-dominated atmospheres,
respectively. These T–p scalings will also apply to exoplanet
tropospheres.

Planetary tropospheres do not follow a true dry adiabat,
though, because of the condensation of volatiles during the
convection process, such as the effects of water on Earth
or methane on Titan, or because the degrees of freedom for
the primary atmospheric constituents vary with altitude. Thus,
following Sagan (1962), we modify the temperature structure in
the convection-dominated region of a planetary atmosphere as

T = T0

(
p

p0

)α(γ−1)/γ

. (10)

Here, α is a factor, typically around 0.6–0.9, which accounts for
deviations from the dry adiabatic lapse rate, primarily because
of latent heat release. Physically, α represents the average ratio
of the true lapse rate in the planet’s convective region to the dry
adiabatic lapse rate. While this parameterized representation
of the temperature–pressure profile works well for all of the
worlds of the solar system with thick atmospheres, it breaks
down for very moist atmospheres (Pierrehumbert 2010, p. 108),
and for one-component condensable atmospheres, which will
have temperature varying as 1/ ln (p/p0) according to the
Clausius–Clapeyron relation (Satoh 2004, p. 254).

By solving Equation (6) for p/p0 and inserting this into
Equation (10), we can rewrite the temperature profile with the
gray infrared optical depth as the vertical coordinate

T = T0

(
τ

τ0

)α(γ−1)/nγ

= T0

(
τ

τ0

)β/n

, (11)

where we define β = α (γ − 1) /γ . Inserting this temperature
profile into Equation (1) and solving (see the Appendix), we
obtain an expression for the upwelling thermal flux in the
convective portion of the atmosphere (see also Mitchell et al.
2006; Mitchell 2007; Caballero et al. 2008),

F + (τ ) = σT 4
0 e−D(τ0−τ ) + DσT 4

0

∫ τ0

τ

(
τ ′

τ0

)4β/n

e−D(τ ′−τ)dτ ′,

(12)
where we have used the boundary condition F + (τ0) = σT 4

0 ,
which assumes that the reference location in the atmosphere is
either a solid surface or sufficiently deep so that the opacity is
large enough to drive the upwelling and downwelling thermal
fluxes toward that of a blackbody radiating at the reference
temperature. Using the upper incomplete gamma function Γ
(defined in the Appendix), we can write Equation (12) as

F +(τ ) = σT 4
0 eDτ

[
e−Dτ0 +

1
(Dτ0)4β/n

(
Γ
(

1 +
4β

n
,Dτ

)

− Γ
(

1 +
4β

n
,Dτ0

))]
, (13)

which provides an analytic expression for the upwelling thermal
flux in the convective portion of the atmosphere. The incomplete
gamma function ought to be considered no different from a sine
or cosine, in the sense that it is evaluated with a single function
in modern programming languages, such as MATLAB, IDL,
or Python, so that the flux can be computed readily, if all input
parameters are specified. Note that Equations (12) and (13) only
apply in the region τrc ! τ ! τ0, where τrc is the optical depth at
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the boundary between the convection-dominated region and the
radiation-dominated region. Also, in deriving these expressions,
we have assumed that n, γ , and α are constant parameters
through the convection-dominated region. Physically, the first
expanded term, σT 4

0 e−D(τ0−τ ), in Equation (13) is the upwardly
attenuated contribution to the upwelling thermal flux from the
reference level at temperature T0. The second expanded term is
the flux contribution from the atmosphere above the reference
level.

A similar line of argument (see the Appendix) allows us to
write an expression for the downwelling thermal flux in the
convective region of the atmosphere

F− (τ ) = F− (τrc) e−D(τ−τrc)

+ DσT 4
0

∫ τ

τrc

(
τ ′

τ0

)4β/n

e−D(τ−τ ′)dτ ′, (14)

where the boundary condition is that the downwelling flux
at the top of the convection-dominated region is equal to the
downwelling flux coming from the radiation-dominated region
above. While this equation is not required in order to obtain the
solution to the radiative–convective thermal structure, it does
offer a means to compute the downwelling thermal flux in the
convective region.

2.4. The Radiative Regime

Above the convection-dominated region of the planet’s atmo-
sphere, the temperature profile tends toward radiative equilib-
rium. In this region, emitted thermal radiation, absorbed stellar
radiation, and any source of energy from the planet’s interior are
all in balance. Thus, by writing an expression for the profile of
absorbed stellar flux, we can solve for the thermal flux profiles
and the temperature profile using the results from Section 2.1.

The planetary atmospheres of the solar system exhibit ab-
sorption of solar radiation deep in the atmosphere (in the tropo-
sphere or at the surface) as well as in the stratosphere. The latter
can lead to an inversion in the atmospheric temperature profile,
while the former can cause the upper part of the troposphere to
be radiatively dominated to considerable depth, as in the case of
Titan. Consequently, for generality it is necessary to distribute
the stellar flux across two short-wave channels, and write the
net absorbed stellar flux, F&

net, as

F&
net (τ ) = F&

1 e−k1τ + F&
2 e−k2τ , (15)

where F&
1 and F&

2 are the top-of-atmosphere net absorbed stellar
fluxes in the two channels, and k1 and k2 parameterize the
strength of attenuation in these two channels, and are a ratio
of the visible optical depth to the gray infrared optical depth.
(Note that k1 and k2 effectively incorporate a spatial and time
mean zenith angle.) This description of the absorbed stellar flux
is similar to that of McKay et al. (1999) except that they only
allowed for the attenuation of sunlight in one of their channels.
At the top of the atmosphere (i.e., where τ = 0), the net absorbed
stellar flux must obey

F &
net (0) = (1 − A)

F&

4
, (16)

where A is the planet’s Bond albedo, F& is the stellar flux
incident on the top of the planet’s atmosphere, and the factor of
four accounts for an averaging over both the day and night sides
as well as over the illuminated hemisphere.

A temperature profile results from a balance of fluxes subject
to boundary conditions. Balancing the net thermal flux with the
absorbed stellar flux and any internal energy source requires that

Fnet (τ ) = F&
net (τ ) + Fi, (17)

where Fi is the energy flux from the planet’s interior (e.g.,
∼5 W m−2 for Jupiter; Hanel et al. 1981), which is assumed to
be independent of pressure. By combining Equations (5), (15),
and (17), and using the boundary condition that there is no
downwelling thermal radiation at the top of the atmosphere
(i.e., where τ = 0), we obtain the temperature profile in the
radiation-dominated region (i.e., where 0 ! τ ! τrc)

σT 4 (τ ) = F&
1

2

[
1 +

D

k1
+

(
k1

D
− D

k1

)
e−k1τ

]

+
F&

2

2

[
1 +

D

k2
+

(
k2

D
− D

k2

)
e−k2τ

]

+
Fi

2
(1 + Dτ ) . (18)

The upwelling and downwelling thermal flux profiles in the
region where 0 ! τ ! τrc are then given by

F + (τ ) = F&
1

2

[
1 +

D

k1
+

(
1 − D

k1

)
e−k1τ

]

+
F&

2

2

[
1 +

D

k2
+

(
1 − D

k2

)
e−k2τ

]
+

Fi

2
(2 + Dτ )

(19)

F− (τ ) = F&
1

2

[
1 +

D

k1
−

(
1 +

D

k1

)
e−k1τ

]

+
F&

2

2

[
1 +

D

k2
−

(
1 +

D

k2

)
e−k2τ

]
+

Fi

2
Dτ.

(20)

2.5. The Radiative–Convective Model

The formulae in the preceding sections describe our simple,
one-dimensional radiative–convective climate model. In apply-
ing the model, 10 parameters are often fixed (p0, T0, n, γ , α,
F&

1 , F&
2 , Fi , k1, and k2), which leaves two variables,τ0 and

τrc, that the model provides in a solution. However, if the to-
tal optical depth τ0 is specified then one of the aforementioned
parameters (typically T0) can become a variable. The temper-
ature, upwelling flux, and downwelling flux profiles follow
Equations (18), (19), and (20), respectively, in the radiative
region from the top of the atmosphere down to the optical depth
at the radiative–convective boundary, τrc. For optical depths (or
pressures) below this level in the atmosphere, the temperature
profile follows the adiabat described by Equation (11), and the
upwelling and downwelling flux profiles follow Equations (13)
and (14), respectively.

The requirement that the temperature and upwelling flux
profiles be continuous at the radiation–convection boundary will
implicitly solve for two variables in our model (the downwelling
flux profile is guaranteed to be continuous due to the boundary
condition applied in Equation (14)). Thus, at τrc, the upward
thermal fluxes given by Equation (13) (for the convective
formulation) and Equation (19) (for the radiative formulation)
must be equal. We also require the convective temperature
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(Equation (11)) and radiative temperature (Equation (18)) to
be equal, so that

σT 4
0

(
τrc

τ0

)4β/n

= F&
1

2

[
1 +

D

k1
+

(
k1

D
− D

k1

)
e−k1τrc

]

+
F&

2

2

[
1 +

D

k2
+

(
k2

D
− D

k2

)
e−k2τrc

]

+
Fi

2
(1 + Dτrc) . (21)

These two equalities result in analytic expressions. But these ex-
pressions contain transcendental functions and so must be solved
numerically, for example, using Newton’s scheme. Model pa-
rameters that remain after applying the requirements above must
be specified or fit. Greater simplicity may be justified by the
transparency of an atmosphere, so that one of the stellar chan-
nels can be removed (eliminating F&

2 and k2). Also, an internal
energy source is irrelevant for many worlds (e.g., Earth, Titan,
and Venus), setting Fi = 0 in many cases. As mentioned before,
the value of γ is set by the degrees of freedom associated with
the primary atmospheric constituent, and α is around 0.6–0.9
for worlds in the solar system.

Using the thermal fluxes from Equations (13) and (14), as
well as the parameterized net stellar flux from Equation (15),
the convective flux, Fconv, can be easily computed according to

Fconv (τ ) = Fi + F&
net (τ ) − (F + (τ ) − F−(τ )) (22)

in the region τrc ! τ ! τ0.

2.6. The Simplest Radiative–Convective Model

It is worth considering the simplest form of our
radiative–convective model wherein there is no attenuation of
sunlight (k1 = k2 = 0), so that

F&
net = F&

1 + F&
2 = (1 − A)

F&

4
(23)

at all locations in the atmosphere, which reduces our radiative
equilibrium expressions to those of a single short-wave channel.
In the radiative region, the temperature and thermal flux profiles
then simplify to

σT 4 (τ ) = F&
net + Fi

2
(1 + Dτ ) (24)

F + (τ ) = F&
net + Fi

2
(2 + Dτ ) (25)

F− (τ ) = F&
net + Fi

2
Dτ. (26)

For dealing with the convective region, the equalities that ensure
temperature and upwelling flux continuity now become

σT 4
0

(
τrc

τ0

)4β/n

= F&
net + Fi

2
(1 + Dτrc) (27)

and

σT 4
0 eDτrc

[
e−Dτ0 +

1
(Dτ0)4β/n

(
Γ
(

1 +
4β

n
,Dτrc

)

− Γ
(

1 +
4β

n
,Dτ0

))]
= F&

net + Fi

2

(
2 + Dτrc

)
. (28)

The dependence on the Bond albedo, which is incorporated
into F&

net, can be removed by scaling the temperatures to the
equilibrium temperature, Teq, which is defined by

σT 4
eq = (1 − A)

F&

4
+ Fi. (29)

Note that the simple model described in this section is sim-
ilar to an exercise discussed by Pierrehumbert (2010; see
Problem 4.28, p. 311). However, we (1) generalized the
temperature–pressure relationship in the convection-dominated
region (Equation (10)), (2) generalized the relationship between
optical depth and pressure (Equation (6)), and (3) use the upper
incomplete gamma function to provide an analytic evaluation
of the upwelling thermal radiative fluxes in the convection-
dominated region.

3. GENERAL PROPERTIES OF THE MODEL

The general behavior of the model described in the previous
section provides insights into phenomenon in planetary atmo-
spheres. In this section, we will explore the behavior of (1) our
simplest radiative–convective model, (2) a model with a single
attenuated stellar channel, and (3) a model with a single atten-
uated stellar channel and an internal energy source. Later (in
Section 5), we will see how the properties of atmospheres of
certain worlds within the solar system are explained by some of
the general properties discussed here.

3.1. Properties of the Simplest Radiative–Convective Model

Our simplest radiative–convective model (Section 2.6) allows
us to make straightforward deductions about the location of
radiative–convective boundary over a wide range of conditions.
We can combine Equations (27) and (28) to yield an expression
for τrc:

(
τ0

τrc

)4β/n

e−D(τ0−τrc)
[

1 +
eDτ0

(Dτ0)4β/n

(
Γ

(
1 +

4β

n
,Dτrc

)

− Γ
(

1 +
4β

n
,Dτ0

))]
= 2 + Dτrc

1 + Dτrc
, (30)

which is independent of the net solar flux or the internal energy
flux, and only depends on τ0 and the parameter 4β/n. Figure 1
shows contours of solutions to Equation (30) for Dτrc over
a range of values for τ0 and 4β/n. Since typical values of
4β/n are between 0.3 and 0.5 for worlds in the solar system
(taking n = 2), the shaded region in this figure demonstrates
that Dτrc will typically be less than unity for realistic values
of 4β/n, placing the “radiating level” or “emission level”
of Dτ = 1 in the convective region of the atmosphere. As
was discussed in Sagan (1969), worlds with Dτrc < 1 will
have “deep” tropospheres and “shallow” stratospheres, whereas
worlds with Dτrc > 1 will have “deep” stratospheres and
“shallow” tropospheres.

Figure 1 also shows that, in the limit that τ0 ' 1 and τ0 ' τrc,
the value of τrc becomes independent of the value of τ0. In this
limit, the upwelling flux at the radiative–convective boundary
is no longer sensitive to the radiation coming from the deepest
atmospheric layers, and Equation (30) simplifies to

Γ
(
1 + 4β

n
,Dτrc

)

(Dτrc)4β/n e−Dτrc
= 2 + Dτrc

1 + Dτrc
, (31)
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Figure��. Optical depth of the radiative–convective boundary, τrc, as a function
of 4β/n, computed from Equation (31). Note that these values agree with the
contours in Figure�� for large values of τ0. Also shown are the values of τrc
from Sagan (1969), who took the radiative–convective boundary to be where
the radiative equilibrium profile became unstable to convection. This approach
does not guarantee continuity in the upwelling flux profile and, as a result,
our radiative–convective boundaries are always at smaller optical depths. The
shaded region indicates values of 4β/n which are typical for the solar system.

Figure��. Gray infrared optical depth of the radiative–convective boundary (τrc)
for a range of values for 4β/n and τ0 for a model without solar attenuation.
For the solar system, the value of 4β/n is typically 0.3–0.5 (shown as a shaded
region), so that we expect deep tropospheres. Note that, for large values of τ0,
the value of τrc only depends on 4β/n.

which only depends on the value of 4β/n. Figure 2 shows the
solution to Equation (31), computed over a range of values for
4β/n, which, again, shows that, for common values of 4β/n,
worlds will have deep tropospheres.

Several previous authors (e.g., Sagan 1969; Weaver &
Ramanathan 1995) have shown that the requirement for con-
vective instability in a gray radiative equilibrium model without
solar attenuation is

d log T

d log p
= Dnτ

4 (1 + Dτ )
>

γ − 1
γ

=
(

d log T

d log p

)

ad
, (32)

where the subscript “ad” indicates the (dry) adiabatic value. As
mentioned earlier, γ typically has a value of 1.3–1.4, so that the
right-hand side of this expression is typically between 0.23 and
0.29. Sagan (1969) took the solution to Equation (32) as defin-
ing the radiative–convective boundary, which is also shown in

Figure 3. Example temperature profiles from our model without short-wave
attenuation (labeled “k = 0 (no atten.)”) and from our model with a single
attenuated short-wave channel for several different values of k. Pressure has
been normalized to p0, and we take n = 2 and τ0 = 2. Temperature, shown as
σT 4, has been normalized to the sum of the net absorbed stellar flux and the
internal energy flux for the model without attenuation, and to the net absorbed
stellar flux for the model with attenuation. Thick portions of the curves indicate
where the T–p profile is unstable to convection for a dry adiabat with γ = 1.4
(suitable for a world with an atmosphere dominated by a diatomic gas).

Figure 2 (taking α = 1). Sagan’s solution is not the same as
a true radiative–convective solution as he only ensures conti-
nuity in temperature across the radiative–convective boundary,
whereas a realistic radiative–convective model must also main-
tain upwelling flux continuity across this boundary, which places
our radiative–convective boundary more correctly higher in the
atmosphere. At large values of Dτrc Sagan’s solution agrees
with ours because, in the optically thick limit, the upwelling
flux approaches the local blackbody flux, so that temperature
continuity and upwelling flux continuity are equivalent. Note,
however, that high values of Dτrc are only achieved for values
of 4β/n that are far larger than values in the solar system.

3.2 Properties of a Model with a Single
Attenuated Stellar Channel

The simplest model without a stellar channel is unstable to
convection, as shown in Figure 3. Here, the radiative equilibrium
temperature profile (labeled as “no atten.”), for an atmosphere
with n = 2, has a portion that is unstable to convection (for
γ = 1.4). We can increase the generality of our simplest
model by allowing for a single stellar channel with attenuation,
obtained from Equation (18) by eliminating terms in F "

2 and
Fi , and by dropping the subscripts on the remaining stellar
channel. Figure 3 demonstrates example temperature profiles
(taking n = 2) for such a model for different values of k, which
is the ratio of the stellar optical depth in the single channel
to the gray thermal optical depth. The logarithmic temperature
gradient, or lapse rate, in such a model is

d log T

d log p
= nkτ

4

[
(D2 − k2)e−kτ

kD + D2 + (k2 − D2)e−kτ

]
. (33)

Note that, for k > D, this expression is strictly negative, and,
thus, everywhere stable against convection, and the profile has
a temperature inversion, as shown in Figure 3. This is similar to
an argument in Pierrehumbert (2010, p. 212), albeit in different
notation. For k = D, the temperature profile is isothermal and
is stable against convection for all values of n. However, for a
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Figure��. Optical depth of the radiative–convective boundary, τrc, as a function
of 4β/n, computed from Equation (31). Note that these values agree with the
contours in Figure�� for large values of τ0. Also shown are the values of τrc
from Sagan (1969), who took the radiative–convective boundary to be where
the radiative equilibrium profile became unstable to convection. This approach
does not guarantee continuity in the upwelling flux profile and, as a result,
our radiative–convective boundaries are always at smaller optical depths. The
shaded region indicates values of 4β/n which are typical for the solar system.

Figure��. Gray infrared optical depth of the radiative–convective boundary (τrc)
for a range of values for 4β/n and τ0 for a model without solar attenuation.
For the solar system, the value of 4β/n is typically 0.3–0.5 (shown as a shaded
region), so that we expect deep tropospheres. Note that, for large values of τ0,
the value of τrc only depends on 4β/n.

which only depends on the value of 4β/n. Figure 2 shows the
solution to Equation (31), computed over a range of values for
4β/n, which, again, shows that, for common values of 4β/n,
worlds will have deep tropospheres.

Several previous authors (e.g., Sagan 1969; Weaver &
Ramanathan 1995) have shown that the requirement for con-
vective instability in a gray radiative equilibrium model without
solar attenuation is

d log T
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>

γ − 1
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)

ad
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where the subscript “ad” indicates the (dry) adiabatic value. As
mentioned earlier, γ typically has a value of 1.3–1.4, so that the
right-hand side of this expression is typically between 0.23 and
0.29. Sagan (1969) took the solution to Equation (32) as defin-
ing the radiative–convective boundary, which is also shown in

Figure 3. Example temperature profiles from our model without short-wave
attenuation (labeled “k = 0 (no atten.)”) and from our model with a single
attenuated short-wave channel for several different values of k. Pressure has
been normalized to p0, and we take n = 2 and τ0 = 2. Temperature, shown as
σT 4, has been normalized to the sum of the net absorbed stellar flux and the
internal energy flux for the model without attenuation, and to the net absorbed
stellar flux for the model with attenuation. Thick portions of the curves indicate
where the T–p profile is unstable to convection for a dry adiabat with γ = 1.4
(suitable for a world with an atmosphere dominated by a diatomic gas).

Figure 2 (taking α = 1). Sagan’s solution is not the same as
a true radiative–convective solution as he only ensures conti-
nuity in temperature across the radiative–convective boundary,
whereas a realistic radiative–convective model must also main-
tain upwelling flux continuity across this boundary, which places
our radiative–convective boundary more correctly higher in the
atmosphere. At large values of Dτrc Sagan’s solution agrees
with ours because, in the optically thick limit, the upwelling
flux approaches the local blackbody flux, so that temperature
continuity and upwelling flux continuity are equivalent. Note,
however, that high values of Dτrc are only achieved for values
of 4β/n that are far larger than values in the solar system.

3.2 Properties of a Model with a Single
Attenuated Stellar Channel

The simplest model without a stellar channel is unstable to
convection, as shown in Figure 3. Here, the radiative equilibrium
temperature profile (labeled as “no atten.”), for an atmosphere
with n = 2, has a portion that is unstable to convection (for
γ = 1.4). We can increase the generality of our simplest
model by allowing for a single stellar channel with attenuation,
obtained from Equation (18) by eliminating terms in F "

2 and
Fi , and by dropping the subscripts on the remaining stellar
channel. Figure 3 demonstrates example temperature profiles
(taking n = 2) for such a model for different values of k, which
is the ratio of the stellar optical depth in the single channel
to the gray thermal optical depth. The logarithmic temperature
gradient, or lapse rate, in such a model is

d log T

d log p
= nkτ

4

[
(D2 − k2)e−kτ

kD + D2 + (k2 − D2)e−kτ

]
. (33)

Note that, for k > D, this expression is strictly negative, and,
thus, everywhere stable against convection, and the profile has
a temperature inversion, as shown in Figure 3. This is similar to
an argument in Pierrehumbert (2010, p. 212), albeit in different
notation. For k = D, the temperature profile is isothermal and
is stable against convection for all values of n. However, for a
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Figure��. Optical depth of the radiative–convective boundary, τrc, as a function
of 4β/n, computed from Equation (31). Note that these values agree with the
contours in Figure�� for large values of τ0. Also shown are the values of τrc
from Sagan (1969), who took the radiative–convective boundary to be where
the radiative equilibrium profile became unstable to convection. This approach
does not guarantee continuity in the upwelling flux profile and, as a result,
our radiative–convective boundaries are always at smaller optical depths. The
shaded region indicates values of 4β/n which are typical for the solar system.

Figure��. Gray infrared optical depth of the radiative–convective boundary (τrc)
for a range of values for 4β/n and τ0 for a model without solar attenuation.
For the solar system, the value of 4β/n is typically 0.3–0.5 (shown as a shaded
region), so that we expect deep tropospheres. Note that, for large values of τ0,
the value of τrc only depends on 4β/n.

which only depends on the value of 4β/n. Figure 2 shows the
solution to Equation (31), computed over a range of values for
4β/n, which, again, shows that, for common values of 4β/n,
worlds will have deep tropospheres.

Several previous authors (e.g., Sagan 1969; Weaver &
Ramanathan 1995) have shown that the requirement for con-
vective instability in a gray radiative equilibrium model without
solar attenuation is

d log T

d log p
= Dnτ

4 (1 + Dτ )
>

γ − 1
γ

=
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d log T

d log p

)

ad
, (32)

where the subscript “ad” indicates the (dry) adiabatic value. As
mentioned earlier, γ typically has a value of 1.3–1.4, so that the
right-hand side of this expression is typically between 0.23 and
0.29. Sagan (1969) took the solution to Equation (32) as defin-
ing the radiative–convective boundary, which is also shown in

Figure 3. Example temperature profiles from our model without short-wave
attenuation (labeled “k = 0 (no atten.)”) and from our model with a single
attenuated short-wave channel for several different values of k. Pressure has
been normalized to p0, and we take n = 2 and τ0 = 2. Temperature, shown as
σT 4, has been normalized to the sum of the net absorbed stellar flux and the
internal energy flux for the model without attenuation, and to the net absorbed
stellar flux for the model with attenuation. Thick portions of the curves indicate
where the T–p profile is unstable to convection for a dry adiabat with γ = 1.4
(suitable for a world with an atmosphere dominated by a diatomic gas).

Figure 2 (taking α = 1). Sagan’s solution is not the same as
a true radiative–convective solution as he only ensures conti-
nuity in temperature across the radiative–convective boundary,
whereas a realistic radiative–convective model must also main-
tain upwelling flux continuity across this boundary, which places
our radiative–convective boundary more correctly higher in the
atmosphere. At large values of Dτrc Sagan’s solution agrees
with ours because, in the optically thick limit, the upwelling
flux approaches the local blackbody flux, so that temperature
continuity and upwelling flux continuity are equivalent. Note,
however, that high values of Dτrc are only achieved for values
of 4β/n that are far larger than values in the solar system.

3.2 Properties of a Model with a Single
Attenuated Stellar Channel

The simplest model without a stellar channel is unstable to
convection, as shown in Figure 3. Here, the radiative equilibrium
temperature profile (labeled as “no atten.”), for an atmosphere
with n = 2, has a portion that is unstable to convection (for
γ = 1.4). We can increase the generality of our simplest
model by allowing for a single stellar channel with attenuation,
obtained from Equation (18) by eliminating terms in F "

2 and
Fi , and by dropping the subscripts on the remaining stellar
channel. Figure 3 demonstrates example temperature profiles
(taking n = 2) for such a model for different values of k, which
is the ratio of the stellar optical depth in the single channel
to the gray thermal optical depth. The logarithmic temperature
gradient, or lapse rate, in such a model is

d log T

d log p
= nkτ

4

[
(D2 − k2)e−kτ

kD + D2 + (k2 − D2)e−kτ

]
. (33)

Note that, for k > D, this expression is strictly negative, and,
thus, everywhere stable against convection, and the profile has
a temperature inversion, as shown in Figure 3. This is similar to
an argument in Pierrehumbert (2010, p. 212), albeit in different
notation. For k = D, the temperature profile is isothermal and
is stable against convection for all values of n. However, for a
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Figure��. Optical depth of the radiative–convective boundary, τrc, as a function
of 4β/n, computed from Equation (31). Note that these values agree with the
contours in Figure�� for large values of τ0. Also shown are the values of τrc
from Sagan (1969), who took the radiative–convective boundary to be where
the radiative equilibrium profile became unstable to convection. This approach
does not guarantee continuity in the upwelling flux profile and, as a result,
our radiative–convective boundaries are always at smaller optical depths. The
shaded region indicates values of 4β/n which are typical for the solar system.

Figure��. Gray infrared optical depth of the radiative–convective boundary (τrc)
for a range of values for 4β/n and τ0 for a model without solar attenuation.
For the solar system, the value of 4β/n is typically 0.3–0.5 (shown as a shaded
region), so that we expect deep tropospheres. Note that, for large values of τ0,
the value of τrc only depends on 4β/n.

which only depends on the value of 4β/n. Figure 2 shows the
solution to Equation (31), computed over a range of values for
4β/n, which, again, shows that, for common values of 4β/n,
worlds will have deep tropospheres.

Several previous authors (e.g., Sagan 1969; Weaver &
Ramanathan 1995) have shown that the requirement for con-
vective instability in a gray radiative equilibrium model without
solar attenuation is

d log T

d log p
= Dnτ

4 (1 + Dτ )
>

γ − 1
γ

=
(

d log T

d log p

)

ad
, (32)

where the subscript “ad” indicates the (dry) adiabatic value. As
mentioned earlier, γ typically has a value of 1.3–1.4, so that the
right-hand side of this expression is typically between 0.23 and
0.29. Sagan (1969) took the solution to Equation (32) as defin-
ing the radiative–convective boundary, which is also shown in

Figure 3. Example temperature profiles from our model without short-wave
attenuation (labeled “k = 0 (no atten.)”) and from our model with a single
attenuated short-wave channel for several different values of k. Pressure has
been normalized to p0, and we take n = 2 and τ0 = 2. Temperature, shown as
σT 4, has been normalized to the sum of the net absorbed stellar flux and the
internal energy flux for the model without attenuation, and to the net absorbed
stellar flux for the model with attenuation. Thick portions of the curves indicate
where the T–p profile is unstable to convection for a dry adiabat with γ = 1.4
(suitable for a world with an atmosphere dominated by a diatomic gas).

Figure 2 (taking α = 1). Sagan’s solution is not the same as
a true radiative–convective solution as he only ensures conti-
nuity in temperature across the radiative–convective boundary,
whereas a realistic radiative–convective model must also main-
tain upwelling flux continuity across this boundary, which places
our radiative–convective boundary more correctly higher in the
atmosphere. At large values of Dτrc Sagan’s solution agrees
with ours because, in the optically thick limit, the upwelling
flux approaches the local blackbody flux, so that temperature
continuity and upwelling flux continuity are equivalent. Note,
however, that high values of Dτrc are only achieved for values
of 4β/n that are far larger than values in the solar system.

3.2 Properties of a Model with a Single
Attenuated Stellar Channel

The simplest model without a stellar channel is unstable to
convection, as shown in Figure 3. Here, the radiative equilibrium
temperature profile (labeled as “no atten.”), for an atmosphere
with n = 2, has a portion that is unstable to convection (for
γ = 1.4). We can increase the generality of our simplest
model by allowing for a single stellar channel with attenuation,
obtained from Equation (18) by eliminating terms in F "

2 and
Fi , and by dropping the subscripts on the remaining stellar
channel. Figure 3 demonstrates example temperature profiles
(taking n = 2) for such a model for different values of k, which
is the ratio of the stellar optical depth in the single channel
to the gray thermal optical depth. The logarithmic temperature
gradient, or lapse rate, in such a model is

d log T

d log p
= nkτ

4

[
(D2 − k2)e−kτ

kD + D2 + (k2 − D2)e−kτ

]
. (33)

Note that, for k > D, this expression is strictly negative, and,
thus, everywhere stable against convection, and the profile has
a temperature inversion, as shown in Figure 3. This is similar to
an argument in Pierrehumbert (2010, p. 212), albeit in different
notation. For k = D, the temperature profile is isothermal and
is stable against convection for all values of n. However, for a

6

The Astrophysical Journal, 757:104 (13pp), 2012 September 20 Robinson & Catling

Figure��. Optical depth of the radiative–convective boundary, τrc, as a function
of 4β/n, computed from Equation (31). Note that these values agree with the
contours in Figure�� for large values of τ0. Also shown are the values of τrc
from Sagan (1969), who took the radiative–convective boundary to be where
the radiative equilibrium profile became unstable to convection. This approach
does not guarantee continuity in the upwelling flux profile and, as a result,
our radiative–convective boundaries are always at smaller optical depths. The
shaded region indicates values of 4β/n which are typical for the solar system.

Figure��. Gray infrared optical depth of the radiative–convective boundary (τrc)
for a range of values for 4β/n and τ0 for a model without solar attenuation.
For the solar system, the value of 4β/n is typically 0.3–0.5 (shown as a shaded
region), so that we expect deep tropospheres. Note that, for large values of τ0,
the value of τrc only depends on 4β/n.

which only depends on the value of 4β/n. Figure 2 shows the
solution to Equation (31), computed over a range of values for
4β/n, which, again, shows that, for common values of 4β/n,
worlds will have deep tropospheres.

Several previous authors (e.g., Sagan 1969; Weaver &
Ramanathan 1995) have shown that the requirement for con-
vective instability in a gray radiative equilibrium model without
solar attenuation is

d log T

d log p
= Dnτ

4 (1 + Dτ )
>

γ − 1
γ

=
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d log T

d log p

)

ad
, (32)

where the subscript “ad” indicates the (dry) adiabatic value. As
mentioned earlier, γ typically has a value of 1.3–1.4, so that the
right-hand side of this expression is typically between 0.23 and
0.29. Sagan (1969) took the solution to Equation (32) as defin-
ing the radiative–convective boundary, which is also shown in

Figure 3. Example temperature profiles from our model without short-wave
attenuation (labeled “k = 0 (no atten.)”) and from our model with a single
attenuated short-wave channel for several different values of k. Pressure has
been normalized to p0, and we take n = 2 and τ0 = 2. Temperature, shown as
σT 4, has been normalized to the sum of the net absorbed stellar flux and the
internal energy flux for the model without attenuation, and to the net absorbed
stellar flux for the model with attenuation. Thick portions of the curves indicate
where the T–p profile is unstable to convection for a dry adiabat with γ = 1.4
(suitable for a world with an atmosphere dominated by a diatomic gas).

Figure 2 (taking α = 1). Sagan’s solution is not the same as
a true radiative–convective solution as he only ensures conti-
nuity in temperature across the radiative–convective boundary,
whereas a realistic radiative–convective model must also main-
tain upwelling flux continuity across this boundary, which places
our radiative–convective boundary more correctly higher in the
atmosphere. At large values of Dτrc Sagan’s solution agrees
with ours because, in the optically thick limit, the upwelling
flux approaches the local blackbody flux, so that temperature
continuity and upwelling flux continuity are equivalent. Note,
however, that high values of Dτrc are only achieved for values
of 4β/n that are far larger than values in the solar system.

3.2 Properties of a Model with a Single
Attenuated Stellar Channel

The simplest model without a stellar channel is unstable to
convection, as shown in Figure 3. Here, the radiative equilibrium
temperature profile (labeled as “no atten.”), for an atmosphere
with n = 2, has a portion that is unstable to convection (for
γ = 1.4). We can increase the generality of our simplest
model by allowing for a single stellar channel with attenuation,
obtained from Equation (18) by eliminating terms in F "

2 and
Fi , and by dropping the subscripts on the remaining stellar
channel. Figure 3 demonstrates example temperature profiles
(taking n = 2) for such a model for different values of k, which
is the ratio of the stellar optical depth in the single channel
to the gray thermal optical depth. The logarithmic temperature
gradient, or lapse rate, in such a model is

d log T

d log p
= nkτ

4

[
(D2 − k2)e−kτ

kD + D2 + (k2 − D2)e−kτ

]
. (33)

Note that, for k > D, this expression is strictly negative, and,
thus, everywhere stable against convection, and the profile has
a temperature inversion, as shown in Figure 3. This is similar to
an argument in Pierrehumbert (2010, p. 212), albeit in different
notation. For k = D, the temperature profile is isothermal and
is stable against convection for all values of n. However, for a
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Figure��. Optical depth of the radiative–convective boundary, τrc, as a function
of 4β/n, computed from Equation (31). Note that these values agree with the
contours in Figure�� for large values of τ0. Also shown are the values of τrc
from Sagan (1969), who took the radiative–convective boundary to be where
the radiative equilibrium profile became unstable to convection. This approach
does not guarantee continuity in the upwelling flux profile and, as a result,
our radiative–convective boundaries are always at smaller optical depths. The
shaded region indicates values of 4β/n which are typical for the solar system.

Figure��. Gray infrared optical depth of the radiative–convective boundary (τrc)
for a range of values for 4β/n and τ0 for a model without solar attenuation.
For the solar system, the value of 4β/n is typically 0.3–0.5 (shown as a shaded
region), so that we expect deep tropospheres. Note that, for large values of τ0,
the value of τrc only depends on 4β/n.

which only depends on the value of 4β/n. Figure 2 shows the
solution to Equation (31), computed over a range of values for
4β/n, which, again, shows that, for common values of 4β/n,
worlds will have deep tropospheres.

Several previous authors (e.g., Sagan 1969; Weaver &
Ramanathan 1995) have shown that the requirement for con-
vective instability in a gray radiative equilibrium model without
solar attenuation is

d log T
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)
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where the subscript “ad” indicates the (dry) adiabatic value. As
mentioned earlier, γ typically has a value of 1.3–1.4, so that the
right-hand side of this expression is typically between 0.23 and
0.29. Sagan (1969) took the solution to Equation (32) as defin-
ing the radiative–convective boundary, which is also shown in

Figure 3. Example temperature profiles from our model without short-wave
attenuation (labeled “k = 0 (no atten.)”) and from our model with a single
attenuated short-wave channel for several different values of k. Pressure has
been normalized to p0, and we take n = 2 and τ0 = 2. Temperature, shown as
σT 4, has been normalized to the sum of the net absorbed stellar flux and the
internal energy flux for the model without attenuation, and to the net absorbed
stellar flux for the model with attenuation. Thick portions of the curves indicate
where the T–p profile is unstable to convection for a dry adiabat with γ = 1.4
(suitable for a world with an atmosphere dominated by a diatomic gas).

Figure 2 (taking α = 1). Sagan’s solution is not the same as
a true radiative–convective solution as he only ensures conti-
nuity in temperature across the radiative–convective boundary,
whereas a realistic radiative–convective model must also main-
tain upwelling flux continuity across this boundary, which places
our radiative–convective boundary more correctly higher in the
atmosphere. At large values of Dτrc Sagan’s solution agrees
with ours because, in the optically thick limit, the upwelling
flux approaches the local blackbody flux, so that temperature
continuity and upwelling flux continuity are equivalent. Note,
however, that high values of Dτrc are only achieved for values
of 4β/n that are far larger than values in the solar system.

3.2 Properties of a Model with a Single
Attenuated Stellar Channel

The simplest model without a stellar channel is unstable to
convection, as shown in Figure 3. Here, the radiative equilibrium
temperature profile (labeled as “no atten.”), for an atmosphere
with n = 2, has a portion that is unstable to convection (for
γ = 1.4). We can increase the generality of our simplest
model by allowing for a single stellar channel with attenuation,
obtained from Equation (18) by eliminating terms in F "

2 and
Fi , and by dropping the subscripts on the remaining stellar
channel. Figure 3 demonstrates example temperature profiles
(taking n = 2) for such a model for different values of k, which
is the ratio of the stellar optical depth in the single channel
to the gray thermal optical depth. The logarithmic temperature
gradient, or lapse rate, in such a model is

d log T

d log p
= nkτ

4
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kD + D2 + (k2 − D2)e−kτ

]
. (33)

Note that, for k > D, this expression is strictly negative, and,
thus, everywhere stable against convection, and the profile has
a temperature inversion, as shown in Figure 3. This is similar to
an argument in Pierrehumbert (2010, p. 212), albeit in different
notation. For k = D, the temperature profile is isothermal and
is stable against convection for all values of n. However, for a
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Figure��. Optical depth of the radiative–convective boundary, τrc, as a function
of 4β/n, computed from Equation (31). Note that these values agree with the
contours in Figure�� for large values of τ0. Also shown are the values of τrc
from Sagan (1969), who took the radiative–convective boundary to be where
the radiative equilibrium profile became unstable to convection. This approach
does not guarantee continuity in the upwelling flux profile and, as a result,
our radiative–convective boundaries are always at smaller optical depths. The
shaded region indicates values of 4β/n which are typical for the solar system.

Figure��. Gray infrared optical depth of the radiative–convective boundary (τrc)
for a range of values for 4β/n and τ0 for a model without solar attenuation.
For the solar system, the value of 4β/n is typically 0.3–0.5 (shown as a shaded
region), so that we expect deep tropospheres. Note that, for large values of τ0,
the value of τrc only depends on 4β/n.

which only depends on the value of 4β/n. Figure 2 shows the
solution to Equation (31), computed over a range of values for
4β/n, which, again, shows that, for common values of 4β/n,
worlds will have deep tropospheres.

Several previous authors (e.g., Sagan 1969; Weaver &
Ramanathan 1995) have shown that the requirement for con-
vective instability in a gray radiative equilibrium model without
solar attenuation is

d log T

d log p
= Dnτ

4 (1 + Dτ )
>

γ − 1
γ

=
(

d log T

d log p

)

ad
, (32)

where the subscript “ad” indicates the (dry) adiabatic value. As
mentioned earlier, γ typically has a value of 1.3–1.4, so that the
right-hand side of this expression is typically between 0.23 and
0.29. Sagan (1969) took the solution to Equation (32) as defin-
ing the radiative–convective boundary, which is also shown in

Figure 3. Example temperature profiles from our model without short-wave
attenuation (labeled “k = 0 (no atten.)”) and from our model with a single
attenuated short-wave channel for several different values of k. Pressure has
been normalized to p0, and we take n = 2 and τ0 = 2. Temperature, shown as
σT 4, has been normalized to the sum of the net absorbed stellar flux and the
internal energy flux for the model without attenuation, and to the net absorbed
stellar flux for the model with attenuation. Thick portions of the curves indicate
where the T–p profile is unstable to convection for a dry adiabat with γ = 1.4
(suitable for a world with an atmosphere dominated by a diatomic gas).

Figure 2 (taking α = 1). Sagan’s solution is not the same as
a true radiative–convective solution as he only ensures conti-
nuity in temperature across the radiative–convective boundary,
whereas a realistic radiative–convective model must also main-
tain upwelling flux continuity across this boundary, which places
our radiative–convective boundary more correctly higher in the
atmosphere. At large values of Dτrc Sagan’s solution agrees
with ours because, in the optically thick limit, the upwelling
flux approaches the local blackbody flux, so that temperature
continuity and upwelling flux continuity are equivalent. Note,
however, that high values of Dτrc are only achieved for values
of 4β/n that are far larger than values in the solar system.

3.2 Properties of a Model with a Single
Attenuated Stellar Channel

The simplest model without a stellar channel is unstable to
convection, as shown in Figure 3. Here, the radiative equilibrium
temperature profile (labeled as “no atten.”), for an atmosphere
with n = 2, has a portion that is unstable to convection (for
γ = 1.4). We can increase the generality of our simplest
model by allowing for a single stellar channel with attenuation,
obtained from Equation (18) by eliminating terms in F "

2 and
Fi , and by dropping the subscripts on the remaining stellar
channel. Figure 3 demonstrates example temperature profiles
(taking n = 2) for such a model for different values of k, which
is the ratio of the stellar optical depth in the single channel
to the gray thermal optical depth. The logarithmic temperature
gradient, or lapse rate, in such a model is

d log T

d log p
= nkτ

4

[
(D2 − k2)e−kτ

kD + D2 + (k2 − D2)e−kτ

]
. (33)

Note that, for k > D, this expression is strictly negative, and,
thus, everywhere stable against convection, and the profile has
a temperature inversion, as shown in Figure 3. This is similar to
an argument in Pierrehumbert (2010, p. 212), albeit in different
notation. For k = D, the temperature profile is isothermal and
is stable against convection for all values of n. However, for a
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Figure 4. Maximum value of the logarithmic temperature gradient from a
radiative equilibrium model with a single attenuated stellar channel. Solid lines
are for different values of n (Equation (6)), and the horizontal dashed lines
are the dry adiabatic lapse rates for γ = 1.29 and γ = 1.4, appropriate for a
CO2-dominated atmosphere and an atmosphere dominated by a diatomic gas
(e.g., Earth and the gas/ice giants), respectively. The thickened portions of the
curves indicate the values of k for which models would possess a convectively
unstable region for the two aforementioned dry adiabatic lapse rates.

given n value, it is possible to have a value of k < D but still
be stable against convection, although in this case there is no
temperature inversion.

We investigated this other threshold by examining the maxi-
mum value of the lapse rate. Figure 4 shows the maximum value
of the lapse rate, which is only a function of k and n. This figure
demonstrates that, for a given value of n and γ (which defines
the dry adiabatic lapse rate), there is a threshold value of the
relative stellar absorption, represented by k, above which the
single stellar channel model is everywhere stable against con-
vection. The thick lines in this figure indicate the values of k for
which profiles would be unstable to convection as compared to
dry adiabats in a CO2-dominated atmosphere and an atmosphere
dominated by a diatomic gas. For example, for the n = 2 case,
the threshold value of k in a CO2-dominated atmosphere is 0.2
and is 0.1 for an atmosphere dominated by a diatomic gas.

In general, the gray infrared optical depth of the
radiative–convective boundary in a model with only a single
attenuated stellar channel and no internal heat flux depends on
τ0, k, and 4β/n, and can be computed from the expression

(
τ0

τrc

)4β/n

e−D(τ0−τrc)
[

1 +
eDτ0

(Dτ0)4β/n

(
Γ

(
1 +

4β

n
,Dτrc

)

− Γ
(

1 +
4β

n
,Dτ0

))]
= 1 + D/k + (1 − D/k) e−kτrc

1 + D/k + (k/D − D/k) e−kτrc
,

(34)

which comes from combining the single-channel versions of
Equations (18) and (19) with Equations (13) and (11). Note that
this expression does not depend on the absorbed stellar flux.
Contours of τrc as a function of τ0 and k are shown in Figures 5(a)
and (b) for two different values of 4β/n (appropriate for a CO2-
dominated atmosphere and for an atmosphere dominated by a
diatomic gas, respectively).

Figures 5(a) and (b) demonstrate that, for small values of
k, we have that Dτrc < 1, which corresponds to a deep
troposphere. However, for values of k larger than about 0.1, we
have Dτrc > 1, so that the troposphere is shallow because much

Figure 5. Gray infrared optical depth of the radiative–convective boundary, τrc,
for a model with a single attenuated short-wave channel as a function of k and τ0
for (a) 4β/n = 0.46, which is appropriate for a dry adiabat in a CO2-dominated
atmosphere (assuming n = 2) and (b) 4β/n = 0.57, which is appropriate for
an atmosphere dominated by a diatomic gas (assuming n = 2). In general,
increasing k stabilizes deeper portions of the atmosphere against convection,
pushing the radiative–convective boundary progressively lower.

of the lower atmosphere is stabilized against convection by the
absorption of stellar energy throughout the deep atmosphere,
as opposed to depositing this energy abruptly at p0, which
will happen in the limit of small values of k. As we shall see
later, cases corresponding to Figures 5(a) and (b) are applicable,
respectively, to Venus and Titan. For certain combinations of τ0
and k, there exists two values of τrc which satisfy Equation (34),
but the larger of the two always represents an unphysical solution
where the lapse rate in the radiative regime (from Equation (33))
exceeds that for the adiabat in the convective regime at a range
of pressures above the radiative–convective boundary.

3.3 Properties of a Model with a Single Attenuated Stellar
Channel and an Internal Energy Source

Gray radiative equilibrium models with a single stellar chan-
nel and an internal energy source have been used to understand
certain properties of hot Jupiters (e.g., Hansen 2008; Guillot
2010). We can derive a similar model by dropping all terms
in F&

2 in Equation (18) (and by dropping the subscripts on the
remaining stellar channel). The resulting radiative temperature
profile only depends on n, k, and the ratio of the absorbed stellar
flux to the internal energy flux, F&/Fi . Figure 6 shows example
temperature profiles for this model for two different values of
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Figure 6. Example temperature profiles for a strongly irradiated (F&/Fi = 104)
gas giant for two different values of k, and taking n = 2 and τ0 = 1. Pressure has
been normalized to p0, and temperature, shown as σT 4, has been normalized
to the net absorbed stellar flux. Thick portions of the curves indicate where the
T–p profile is unstable to convection for a dry adiabat with γ = 1.4 (suitable
for a world with an atmosphere dominated by H2).

k where thickened lines show regions unstable to convection.
Both models assume strongly irradiated (F&/Fi = 104) deep
atmospheres with n = 2. In Figure 6, the deep convectively
unstable zone at p/p0 > 100 is caused by the internal flux of the
giant planet rather than the stellar flux. In the case of the curve
with k/D = 0.1, the stellar flux is absorbed around the base of
a detached, convectively unstable zone where the atmosphere is
optically thick in the infrared, and this gives rise to the separate,
detached convective zone.

The lapse rate in the radiative portions of such a model is
given by

d log T

d log p
= nkτ

4

[
D2 + (F&/Fi)(D2 − k2)e−kτ

kD (1 + Dτ ) + (F &/Fi) (kD + D2 + (k2 − D2)e−kτ )

]
,

(35)

which, depending on the values of n, k, and F&/Fi , can either
be (1) everywhere stable against convection, (2) only unstable to
convection deep in the atmosphere, or (3) unstable to convection
in both deep layers and in a detached convective zone, as has
been noticed in more complex, numerical models (Fortney et al.
2007).

To investigate the range of parameter space in which detached
convective zones can form, we plotted contours of the gray
infrared optical depth where Equation (35) first goes unstable to
convection (assuming γ = 1.4, appropriate for an atmosphere
dominated by a diatomic gas) for a range of values for k and
F&/Fi (Figure 7). We see that, for large values of F&/Fi and
for k/D larger than about 0.1, the profile only becomes stable
to convection deep in the atmosphere, where the temperature
profile is dominated by the internal energy flux.

For larger values of k/D, the stellar flux is absorbed higher in
the atmosphere where Dτ < 1 so that the energy can be radiated
to space and there is no detached convective zone. However,
for smaller values of k/D, the stellar flux is absorbed deeper
down where Dτ > 1, so that a steep, super-adiabatic temperature
gradient can cause a detached convective region. We find that
for k/D smaller than about 0.1, a convective zone separate from
that caused by the internal heat flux is possible. This limiting
value of k can be seen in Figure 4 where the n = 2 curve crosses
the dry adiabatic lapse rate for γ = 1.4.

Figure 7. Gray infrared optical depth where Equation (35) first goes unstable
to convection (for a dry adiabat with γ = 1.4) for a range of values of k and
F&/Fi , and taking n = 2. This optical depth is large for most values of k, but,
below k ≈ 0.1, a detached convective region can form in the mid-troposphere
where the lapse rate is dominated by the absorption of sunlight. The shaded
region indicates the portion of parameter space where such detached convective
regions form.

The shaded region of Figure 7 shows the portion of parameter
space where a detached convective region can form, which has a
dependency on the internal heat flux. Note that such a region can
only form in our model for F &/Fi larger than about 3, which
is consistent with the results shown in Fortney et al. (2007).
For a fixed absorbed stellar flux, F&, larger internal fluxes from
a giant planet cause the temperature at depth to increase and
the convective region extends higher and higher upward until it
joins the detached convective zone, making a continuous region
of convection.

4. MODEL COMPARISONS AND APPLICATIONS

In this section, we apply our radiative–convective model
to Venus, Jupiter, and Titan, and compare with observa-
tions, while in Section 5, we discuss the physical insights
of these applications. Venus is a case where we can apply
our simplest radiative–convective model (Section 2.6). With
Jupiter, we demonstrate the differences between radiative and
radiative–convective equilibrium models with and without solar
attenuation, which shows the successive improvements in the
model hierarchy. Finally, for Titan we show the improvement of
using a radiative–convective model compared to the purely ra-
diative equilibrium models of McKay et al. (1999). In the Titan
model, we also demonstrate the behavior when we allow n (see
Equation (6)) to vary with pressure in the radiative portion of the
atmosphere. For clarity, we have summarized the various input
parameters and computed variables for the models presented in
this section in Table 1.

4.1. Venus

Our simplified radiative–convective model can be applied
to Venus, which, due to a lack of a stratospheric inversion
combined with an opaque atmosphere (at thermal wavelengths),
means that we can take k1 and k2 to be roughly equal to zero.
Taking Venus’ Bond albedo to be 0.76 (Moroz et al. 1985),
the mean solar flux absorbed by Venus is about 160 W m−2.
Venus’ atmosphere is primarily CO2, so we take γ = 1.3, and
comparing the average lapse rate in Venus’ lower atmosphere
to an average dry adiabat gives α = 0.8. We take T0 and p0
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Table 1
Parameters and Computed Variables for the Models Described in Section 4

World p0 T0 n γ α 4β/n F&
1 F&

2 Fi k1 k2 τ rc τ 0
(bar) (K) (W m−2) (W m−2) (W m−2)

Venus 92 730 1 1.3 0.8 0.7 0 160 0 0 0 1 400
2 0.4 0.1 2 × 105

Jupiter 1.1 165 2 1.4 0.85 0.5 0 8.3 5.4 0 0 n/a 6
168 0 8.3 0 0 0.3
191 1.3 7.0 100 0.06 0.3

Titan 1.5 94 4/3 1.4 0.77 0.7 1.5 1.1 0 120 0.2 4.8 5.3
var 0.4–0.9 4.0 5.4

Figure 8. Temperature–pressure profiles for Venus. Data are taken from the
Venus International Reference Atmosphere (VIRA; Moroz & Zasova 1997).
Models for n = 1 (dotted) and n = 2 (dashed) are shown.

to be the surface temperature and pressure (730 K and 92 bar,
respectively), set Fi = 0, and explore two cases where either
n = 1 or n = 2, which bounds the two extremes of n that we
would expect.

Figure 8 shows a comparison between Venus’ observed
temperature–pressure profile and our model-generated profiles
for these cases. Our Venus model solves for τrc and τ0, and
finds these to be 1 and 400, respectively, for the n = 1 case.
These values put the boundary between convection-dominated
and radiation-dominated, prc, to be 0.2 bar. For the n = 2 case,
we find τrc = 0.1, τ0 = 2 × 105, and prc = 0.07. Our values
for prc agree with the observed boundary, which is located at
0.1–0.3 bar, and varies with latitude (Tellmann et al. 2009).
Performing a correlation analysis on the data and the n = 1 and
n = 2 models yields a square of the correlation coefficient, r2, of
0.99 for both models, indicating a very good fit of the model to
the observed temperature–pressure profile. Note that extensive
overlap of absorption lines at high pressures may cause the
pressure dependence of the optical depth to be less steep than
the n = 2 case deep in the Venusian atmosphere.

In Figure 9, we compare our model-generated thermal fluxes
(from our n = 1 case) to those from a line-by-line radiative
transfer model that has seen extensive application to Venus
(Crisp 1986, 1989; Meadows & Crisp 1996), the Spectral
Mapping Atmospheric Radiative Transfer (SMART) model.
The agreement is quite good (considering we are using an
analytic gray model), with differences tending to be at or below
about 10%. Also shown is the curve representing σT (p)4

for our model-generated temperature–pressure profile, which

Figure 9. Thermal fluxes from our n = 1 Venus model (dashed) and those
from a line-by-line calculation from the line-by-line SMART model (provided
by D. Crisp; solid). Also shown is our model profile corresponding to σT (p)4

(dotted), which our model thermal fluxes approach at large optical depths.

demonstrates the expected result that our model thermal fluxes
approach the local blackbody flux at high pressure where there
are large optical depths.

4.2. Jupiter

Jupiter provides a case in which we compare a hier-
archy of approaches to analytically computing atmospheric
temperature–pressure profiles. We apply three different versions
of our analytic model to Jupiter: a radiative equilibrium model
without solar attenuation, a radiative–convective model without
solar attenuation, and a radiative–convective model with solar
attenuation. Steps up this chain of models incorporate additional
physics and, thus, require larger numbers of parameters.

For our purely radiative equilibrium model without solar
attenuation, we use Equation (24) to compute the temperature
profile, with a modification to include an internal energy source,
taking A = 0.34, F& = 50 W m−2, and Fi = 5.4 W m−2

(Hanel et al. 1981). In addition, we take p0 = 1.1 bar as a
reference level, n = 2, and τ0 = 6. The 1.1 bar reference level
was selected to coincide with a value reported in the observed
profile, and the value of τ0 was computed from the broadband
Rosseland mean opacity tables from Freedman et al. (2008) by
interpolating to Jupiter’s metallicity. A Rosseland mean opacity
was chosen (rather than a Planck mean) because it should apply
in the optically thick, deep atmosphere where we set p0.

Our radiative–convective model without solar attenuation
builds on the previous model. In the convective regime, we
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Figure 10. Temperature profiles from our hierarchy of Jupiter models and from
observations (solid; Moses et al. 2005). Model “a” (dotted) is our purely radiative
equilibrium model without solar attenuation (which goes super adiabatic in
troposphere), model “b” (dash-dotted) is our radiative–convective model without
solar attenuation, and model “c” (dashed) is our radiative–convective model with
solar attenuation.

specify the ratio of specific heats as γ = 7/5 and the average
ratio of the lapse rate to dry adiabatic lapse rate as α =
0.85. We then add solar attenuation to this model, which
develops a stratospheric inversion. Using outputs from the model
atmospheres of Fortney et al. (2011), we set F1 = 1.3 W m−2

(taken as the solar flux absorbed above 0.1 bar) and F2 =
7 W m−2 (taken as the solar flux absorbed below 0.1 bar).
About 2 W m−2 are absorbed between 0.1 bar and 1.1 bar, so
that k2 = − ln ((7 − 2) /7) /τ0 = 0.06, and the value of k1 is
found to be 100 by comparing the model temperature profile
to the known temperature at the top of Jupiter’s stratosphere
(165 K; see Equation (18)).

Figure 10 shows the temperature–pressure profiles from these
models as compared to a measured profile synthesized from a
number of observations (Moses et al. 2005). The radiative equi-
librium model with solar attenuation (model “a”) fits through
the upper troposphere, but is super-adiabatic at deeper levels.
This is corrected in the radiative–convective model without so-
lar attenuation (model “b”), but both aforementioned models
cannot match the stratospheric temperature profile since they
ignore solar absorption. The radiative–convective model with
solar attenuation (model “c”) more closely matches the observed
temperature–pressure profile, even through the stratosphere.
This model finds prc = 0.25 bar, while the radiative–convective
model without solar attenuation finds prc = 0.22 bar, which
can be compared to the ∼0.5 bar boundary found in non-
gray numerical radiative–convective models (Appleby & Hogan
1984). Performing a correlation analysis on the data and the
radiative–convective model with solar attenuation yields a cor-
relation coefficient of r2 = 0.92, indicating a good fit to the
observed temperature–pressure profile, despite having only a
few parameters in our model.

In Figure 11 we show the flux profiles from our
radiative–convective model with solar attenuation. The differ-
ence between the net solar flux and the net thermal flux at
the top of the atmosphere is equal to the internal energy flux
(5.4 W m−2), and, as is the case for our Titan models (see
below), the net solar flux profile shows some structure that is
related to its parameterization. An important characteristic of
our model is that it can easily compute a convective flux, which
is also shown in Figure 11.

Figure 11. Flux profiles from our radiative–convective model of Jupiter that
includes solar attenuation. Net solar and thermal fluxes (long dashed) are labeled,
and their difference at the top of the atmosphere is equal to the internal energy
flux. Also shown are the upwelling and downwelling thermal fluxes (short
dashed), and the convective flux (dotted).

4.3. Titan

McKay et al. (1999) applied simple, analytic radiative
equilibrium models to Titan. They were able to fit Titan’s
temperature–pressure curve using a model similar to our
Equation (18), except that attenuation was ignored in one of
their channels (i.e., extinction of sunlight was ignored in Ti-
tan’s troposphere, setting k2 = 0). These authors took n = 4/3,
which is intermediate between the dependence in the tropo-
sphere (n = 2) and high stratosphere (n = 1). Other model
parameters were determined by comparing the temperatures in
the analytic model to the known temperature–pressure curve
(Lellouch et al. 1989) at the surface, tropopause, and the top of
the atmosphere, giving τ0 = 3 and k1 = 160.

For our model, we take p0 = 1.5 bar and T0 = 94K (the
known surface pressure and temperature), α = 0.77 (the average
ratio of the lapse rate in Titan’s troposphere to the dry adiabatic
lapse rate), and γ = 7/5. We also take F&

1 = 1.5 W m−2 and
F&

2 = 1.1 W m−2, which represent the solar flux absorbed in
Titan’s stratosphere and troposphere, respectively. The division
of these fluxes between the stratosphere and troposphere follows
McKay et al. (1991), while the sum of these fluxes matches
the net solar flux absorbed by Titan, and is in agreement with
Titan’s Bond albedo of roughly 0.27 (Neff et al. 1985) and mean
insolation of about 3.6 W m−2. Since Titan has no appreciable
internal heat flux, we set Fi = 0.

Of the 1.1 W m−2 that is absorbed in the troposphere,
only about 0.35 W m−2 is absorbed at the surface (McKay
et al. 1991). This gives an optical depth of roughly unity to
sunlight in this channel, so that k2 ≈ 1/τ0, and k1 is then
determined by comparing the model temperature profile to the
known temperature at the top of Titan’s stratosphere (175 K, see
Equation (18)). As was mentioned earlier, the requirement that
the temperature and upwelling flux remain continuous across
the radiation–convection boundary allows us to fit for τrc and τ0.

Figure 12 shows a comparison between our radiative–
convective model and the best-fit model from McKay et al.
(1999). We show two radiative–convective models: one with
n = 4/3 and the other in which, following the optical depth
profile from McKay et al. (1999) and the parameterizations
from Frierson et al. (2006) and Heng et al. (2012), the power of
the τ–p relationship varies smoothly from ∼2 at the top of the
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Figure 12. Temperature profiles for Titan from a variety of models and from
observations (solid line; Lellouch et al. 1989). The dotted line is the best-fit
analytic radiative equilibrium model from McKay et al. (1999) which takes
n = 4/3, the dash-dotted line is for our radiative–convective model which also
takes n = 4/3, and the dashed line is from our model which allows n to vary
smoothly between ∼2 near the surface to ∼1 in the upper atmosphere.

convective region to ∼1 at the top of the atmosphere according
to

τ (p) = τrc

[
f

p

prc
+ (1 − f )

(
p

prc

)n]
. (36)

Here f controls the extent of the region of the atmosphere that
is dominated by collision-induced absorption (n = 2), the top
of which we place at roughly 0.2 bar.

For our n = 4/3 model, we find τrc = 4.8, τ0 = 5.3,
k1 = 120, and prc = 1.4 bar. Our value of τ0 is larger than that of
McKay et al. (1999) because we consider attenuation of sunlight
in Titan’s troposphere, which then requires a larger greenhouse
effect (i.e., more infrared-opaque atmosphere) to maintain the
same surface temperature. This also causes our value of k1 to be
slightly smaller, since it is inversely proportional to τ0.

Our variable n model finds τrc = 4.0, τ0 = 5.4, k1 = 120,
and prc = 1.3 bar. Note that our low values for prc are in
agreement with observations (McKay et al. 1997; Fulchignoni
et al. 2005) and results from models (Flasar 1983, 1998). We
discuss the shallowness of Titan’s convective region below in
Section 5 in the context of general model behaviors presented
in Section 3. Both our variable n model and the n = 4/3 model
produce good fits to the observed temperature–pressure profile,
with the variable n model (dashed line in Figure 12) performing
quite well in both the lower and upper atmosphere (yielding a
correlation coefficient, r2, of 0.99 when compared to the data).
Figure 13 shows the thermal fluxes from our variable n model,
and compares the net thermal flux from our model to that from a
validated Titan radiative transfer model (Tomasko et al. 2008).
The agreement is reasonably good, with discrepancies typically
less than 30%, and additional structure appearing in our model
due to our parameterization of the net solar flux (Equation (15)).

5. DISCUSSION

The radiative–convective equilibrium model of atmospheric
structure we have derived provides a simple and intuitive method
for analytically computing planetary temperature–pressure pro-
files. The model also provides straightforward expressions for
calculating thermal and convective fluxes. The expressions
presented in this work allow for a hierarchical approach to
computing atmospheric temperature profiles, with the simplest

Figure 13. Thermal fluxes from our variable n Titan model. Upwelling and
downwelling fluxes (short dashed) are labeled, and their difference is the net
thermal flux (long dashed). Also shown is the net thermal flux from a Titan
radiative transfer model (Tomasko et al. 2008).

approach being a radiative equilibrium case without attenu-
ation of sunlight, and the most complex approach being a
radiative–convective equilibrium case that includes an internal
energy source and the attenuation of sunlight in both the upper
and lower atmosphere in two distinct channels.

Our two Venus cases, which had values of 4β/n equal to
either 0.7 (for n = 1) or 0.4 (for n = 2) can be compared to
the results from the general behavior of a model without stellar
attenuation in the large τ0 limit shown in Figure 2. The n = 1
case yields a radiative–convective boundary with Dτrc ≈ 2,
placing the emission level (Dτ = 1) in the radiative portion of
the atmosphere. However, since we expect pressure broadening
and collision-induced absorption to strongly influence infrared
opacities throughout much of the Venusian atmosphere, the
n = 2 case should be more realistic. In this case, we have
Dτrc ≈ 0.2, and the emission level is in the convective portion
of the atmosphere. As we expect planetary tropospheres to
typically have n = 2 (or larger), deep tropospheres that radiate
from their convective regions will be common for worlds where
short-wave opacities are much smaller than long-wave opacities,
as can be seen for the shaded regions in Figures 1 and 2
for worlds with no short-wave opacity. Figures 5(a) and (b)
show that strong short-wave absorption can result in shallow
tropospheres because it stabilizes a greater vertical extent of the
temperature profile.

By applying a variety of models to Jupiter, we demonstrated
how radiative equilibrium models produce super adiabatic
regions in a planet’s troposphere. Our radiative–convective
model corrects this unphysical behavior, and produces a good
match to Jupiter’s observed temperature–pressure profile. This is
especially true of our model that includes attenuation of sunlight
in Jupiter’s upper atmosphere. This model used k1 = 100,
creating a stratospheric inversion where the temperature is
decreasing with increasing pressure, as per the discussion in
Section 3.2 for single stellar channel models with k > D. The
tropospheric channel in this model has k2 = 0.06, or k/D =
0.06/D = 0.04, so that we expect it to become convectively
unstable in comparing to the general model behavior of Figure 4.
This model found Dτrc = 0.5, so that the emission level is in the
convective regime, and which is consistent with our generalized
discussion of a single stellar channel with k/D = 0.04.
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In applying our radiative–convective model to Titan, we were
successful in reproducing the measured temperature–pressure
profile and the known result that Titan’s atmosphere is only
convective in the lowest portions of its “troposphere”, from
the surface at 1.5 bar to about 1.3–1.4 bar (Flasar 1998). This
shallow convective region demonstrates the awkwardness of ap-
plying terrestrial nomenclature to other planetary atmospheres.
The term “troposphere” (from the Greek tropos for turning, or
convective) is universally used to describe the layer below the
temperature minimum at ∼50 km altitude on Titan, but most of
this troposphere is radiative, not convective.

Absorption of sunlight in Titan’s deep atmosphere makes the
air very stable against convection. By analyzing Voyager radio
occultation data, McKay et al. (1997) noted that Titan’s tropo-
sphere is everywhere stable against dry convection, but is un-
stable to moist convection. More recently, Mitchell et al. (2006)
used a Titan general circulation model with gray radiative trans-
fer to show that the convective portions of Titan’s troposphere
tend to be isolated to a narrow range of latitudes whose position
varies seasonally. Strong and more vertically extensive con-
vection than the global one-dimensional mean occurs near the
poles at the solstices. Such an approach demonstrates the utility
of using gray gas models to provide insight into complicated
systems.

In our model, the tendency for the absorption of sunlight
to make Titan’s lower atmosphere largely stable to convection
is seen in the relatively large value of k2, which we found to
be 0.2. Recalling our discussion of a single stellar channel
model (Section 3.2), we note that, with this value of k and
with τ0 ∼ 5 (as is appropriate for Titan), we expect a shallow
troposphere and a deep stratosphere (see Figure 5(b) with
k/D ≈ 0.2/1.66 = 0.12).

In general, our analytic radiative–convective model is a
useful tool that can be used to provide insight into behaviors
appearing in more complex models and to explain observed
phenomenon in planetary atmospheres. Future work could
include adding an infrared window to our derivations (see,
e.g., V. Parmentier et al. 2012, in preparation), thus creating a
windowed-gray radiative–convective model. Another potential
application would be to incorporate our model into retrieval
schemes that are currently being developed for exoplanets (Line
et al. 2012; Benneke & Seager 2012). As our model incorporates
the essential physics of a one-dimensional planetary atmosphere
with only a small number of free parameters, it is well suited to
extracting information from exoplanet observations, which are
typically sparse.

6. CONCLUSIONS

We have derived a simple, one-dimensional analytic
radiative–convective equilibrium model for planetary atmo-
spheric structure. The expressions presented in this work
allow for the straightforward calculation of a planet’s
pressure–temperature profile, thermal flux profiles, and convec-
tive flux profile. We have demonstrated the ability of our model
to span a wide range of complexity, with the simplest form
of our model being fully described by six parameters and two
variables (which are solved for implicitly). The model has been
successfully applied to a wide range of planetary environments,
including Venus, Jupiter, and Titan. Interactive Data Language
(IDL) implementations of the analytic model are freely avail-
able upon request from the authors for research or pedagogical
purposes.
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discussions and insights provided during this project. We also
thank Ray Pierrehumbert for an insightful and friendly review.

APPENDIX

The differential equation that describes the upwelling thermal
radiative flux in the convective region is obtained by inserting
Equation (11) into Equation (1)

dF +

dτ ′ = D

(

F + − σT 4
0

(
τ ′

τ0

)4α(γ−1)/nγ
)

. (A1)

Rearranging this expression, and defining β = α (γ − 1) /γ ,
gives us

dF +

dτ ′ − DF + = −DσT 4
0

(
τ ′

τ0

)4β/n

. (A2)

Multiply both sides of this expression by an integrating factor
of e−Dτ ′ gives

e−Dτ ′ dF +

dτ ′ − DF +e−Dτ ′ = d(F +e−Dτ ′
)

dτ ′

= −DσT 4
0 e−Dτ ′

(
τ ′

τ0

)4β/n

. (A3)

This gives us the relation
∫ F +(τ )e−Dτ

F +(τ0)e−Dτ0

d(F +e−Dτ ′
) = −

∫ τ

τ0

DσT 4
0

(
τ ′

τ0

)4β/n

e−Dτ ′
dτ ′,

(A4)
and using the boundary condition that F + (τ0) = σT 4

0 gives us

F + (τ ) e−Dτ = σT 4
0 e−Dτ0 +

∫ τ0

τ

DσT 4
0

(
τ ′

τ0

)4β/n

e−Dτ ′
dτ ′.

(A5)
Thus, multiplying by eDτ the integral form of the expression for
the upwelling thermal radiative flux is (see Equation (12))

F + (τ ) = σT 4
0 e−D(τ0−τ ) + DσT 4

0

∫ τ0

τ

(
τ ′

τ0

)4β/n

e−D(τ ′−τ)dτ ′.

(A6)
A standard solution of −τ 4β/n+1E−4β/n(Dτ ) applies to an
indefinite integral of the form

∫
e−Dτ τ 4β/ndτ,

where En (x) is the exponential integral defined as

En (x) ≡
∫ ∞

1
t−ne−xtdt. (A7)

Consequently, Equation (A6) has a solution:

F +(τ ) = σT 4
0 e−D(τ0−τ ) + DσT 4

0 eDτ

×
[

τ

(
τ

τ0

)4β/n

E−4β/n (Dτ ) − τ0E−4β/n (Dτ0)

]

.

(A8)
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The exponential integral is related to the upper incomplete
gamma function, defined as

Γ (a, x) ≡
∫ ∞

x

ta−1e−t dt (A9)

by
En (x) = xn−1Γ (1 − n, x) (A10)

so that we can rewrite Equation (A8) as

F + (τ ) = σT 4
0 e−D(τ0−τ ) +

σT 4
0 eDτ

(Dτ0)4β/n

× [Γ (1 + 4β/n,Dτ ) − Γ (1 + 4β/n,Dτ0)] , (A11)

which gives us Equation (13). Note that Pierrehumbert (2010,
p. 201) derives an analytic expression for the upwelling thermal
radiative flux in a convective atmosphere under the assumption
that the temperature profile follows a dry adiabat and in the limit
that τ0 → ∞. While this limit is valid for runaway greenhouse
studies, it is not generally true for real planetary atmospheres
(e.g., the Titan models in this work).

In a similar fashion, we can solve for the downwelling thermal
radiative flux by inserting Equation (11) into Equation (2) to give
us

dF−

dτ ′ = −D

(

F− − σT 4
0

(
τ ′

τ0

)4β/n
)

(A12)

Following the steps above, and multiplying by an integrating
factor of eDτ ′

, gives us

eDτ ′ dF−

dτ ′ + DF−eDτ ′ = d(F−eDτ ′
)

dτ ′ = DσT 4
0 eDτ ′

(
τ ′

τ0

)4β/n

(A13)
which gives us the relation

∫ F−(τ )eDτ

F−(τrc)eDτrc

d(F−eDτ ′
) =

∫ τ

τrc

DσT 4
0

(
τ ′

τ0

)4β/n

eDτ ′
dτ ′.

(A14)
The integral form of the expression for the downwelling thermal
radiative flux is then

F− (τ ) = F− (τrc) e−D(τ−τrc)

+ DσT 4
0

∫ τ

τrc

(
τ ′

τ0

)4β/n

e−D(τ−τ ′)dτ ′. (A15)
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