
1. Introduction
Perchlorate (ClO4 −) contamination of drinking water, food, and air has been an emerging environmental concern 
because of its potentially adverse impacts on thyroid function and hormones, especially for infants and toddlers 
(Calderón et al., 2017; Niziński et al., 2021; Steinmaus, 2016; Wan et al., 2015). Synthetic perchlorate, which 
is manufactured for military purposes, aerospace applications, and other commercial products (e.g., fireworks 
and road flares), sometimes leaks to the environments, creating high perchlorate levels (Dasgupta et al., 2006; 
Urbansky, 2002).

In contrast, non-synthetic perchlorate has more enigmatic origins. High abundance of soil perchlorate has been 
observed in arid regions on Earth and Mars (Hecht et al., 2009; Jackson et al., 2015). Oxygen isotopes suggest 
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that atmospheric ozone (O3) is involved in the formation of perchlorate sampled from the Atacama desert of Chile 
and Death Valley in the US (Bao & Gu, 2004; Jackson et al., 2010). Laboratory experiments have studied various 
perchlorate-production mechanisms, such as aqueous reaction of oxychlorine (ClxOy) in the presence of ozone 
and/or UV light (Dasgupta et al., 2005; Estrada et al., 2021; Kang et al., 2006, 2008, 2009), solid-gas interac-
tions between chloride and ozone (Estrada et al., 2021; Jackson et al., 2018; Kang et al., 2008), photo-catalyzed 
electrochemistry (Carrier & Kounaves, 2015; D. Liu & Kounaves, 2019), and plasma chemistry during electric 
discharge (Dasgupta et al., 2005; Rao, Mohan, et al., 2012; Wu et al., 2018). However, the contribution of these 
mechanisms to the occurrence of non-synthetic perchlorate on Earth remains elusive.

Both synthetic and non-synthetic perchlorate might have contributed to trends in environmental perchlorate. 
Changes in US groundwater perchlorate were attributed to propellant production, rocket testing, fireworks 
disposal, and the use of Chilean fertilizers (Böhlke et al., 2009; Sturchio et al., 2012). Van Stempvoort et al. (2019) 
analyzed samples from the Great Lakes and inferred an increase in perchlorate inputs over the twentieth century. 
Ice-core observations show higher perchlorate deposition fluxes in the Arctic, Antarctica, and mid-latitude 
glaciers since the 1980s (e.g., Jiang et  al.,  2020). Nonetheless, it is still unclear to what extent atmospheric 
processes have driven these trends.

To date, three studies have investigated the atmospheric production of perchlorate using photochemical models. 
Jaeglé et al.  (1996) used a box model to simulate perchlorate production via ClO (g) uptake on stratospheric 
aerosols and suggested that it might explain an unknown inorganic chlorine species observed in the stratosphere 
following Mt. Pinatubo's eruption in 1991. However, the assumed ClO uptake coefficient was later found to 
be two-orders-of-magnitude larger than the upper limit derived from laboratory measurements (Abbatt, 1996). 
Following perchlorate detection on Mars, Catling et al. (2010) and Smith et al. (2014) used 1-D models to simu-
late atmospheric production of perchlorate via gas-phase pathways. They showed that gas-phase chemistry can 
explain the observed perchlorate abundance in the soil of the Atacama desert but not on Mars. However, their 
modeling results were based on a relatively simple parameterization of halogen chemistry and did not quantita-
tively incorporate isotopic information.

In this study, we revisit the importance of atmospheric production of perchlorate using a state-of-the-art 3-D 
chemical transport model that includes a detailed representation of halogen chemistry in the Earth's atmosphere. 
We use the model to interpret perchlorate observations in atmospheric aerosols and deposition samples, as well 
as the observed isotopic composition of perchlorate in pristine arid environments.

2. Methods: Models and Observations
2.1. Global Model of Atmospheric Perchlorate

We use the GEOS-Chem global 3-D chemical transport model (version 13.3.2) to simulate the production, trans-
port, and deposition of perchlorate on Earth. GEOS-Chem has a detailed representation of oxidant-aerosol-ra-
diation interactions in the troposphere and stratosphere (Eastham et  al.,  2014,  2022; X. Wang et  al.,  2021). 
Recent studies evaluated the model's performance in simulating stratospheric composition (Eastham et al., 2022; 
Knowland et al., 2022) and tropospheric halogen chemistry (X. Wang et al., 2021). We use Modern-Era Retro-
spective analysis for Research and Applications Version 2 meteorological dataset (Gelaro et al., 2017) with a 
spatial resolution of 4° latitude × 5° longitude × 72 vertical levels to drive the model and perform simulations 
from 2016 to 2018.

To model the photochemical production of atmospheric perchlorate, we add three species (ClO3 (g), Cl2O4 (g), 
and perchlorate) and nine gas-phase reactions (Table S1 in the Supporting Information S1) to the GEOS-Chem 
chemistry scheme. These reactions include:

ClO3 (g) + OH (g) + M → HClO4 (g) + M (R1)

OClO (g) + O(3P) (g) + M → ClO3 (g) + M (R2)

OClO (g) + O3 (g) → ClO3 (g) + O2 (g) (R3)

For perchloric acid (HClO4 (g)) formation via ClO3 (g)  +  OH (g)  (R1), we use the rate constant estimated 
from ab initio studies (R. S. Zhu & Lin, 2001, 2003). ClO3 (g) has been observed in the laboratory (Grothe & 

Investigation: Yuk-Chun Chan, Lyatt 
Jaeglé, Pedro Campuzano-Jost, David 
C. Catling, Jihong Cole-Dai, Vasile I. 
Furdui, W. Andrew Jackson, Jose L. 
Jimenez, Dongwook Kim, Alanna E. 
Wedum, Becky Alexander
Methodology: Yuk-Chun Chan, Lyatt 
Jaeglé, Becky Alexander
Project Administration: Lyatt Jaeglé, 
David C. Catling, Becky Alexander
Resources: Lyatt Jaeglé, Becky 
Alexander
Software: Yuk-Chun Chan, Lyatt Jaeglé
Supervision: Lyatt Jaeglé, David C. 
Catling, Becky Alexander
Validation: Yuk-Chun Chan
Visualization: Yuk-Chun Chan
Writing – original draft: Yuk-Chun 
Chan
Writing – review & editing: Yuk-Chun 
Chan, Lyatt Jaeglé, Pedro Campuzano-
Jost, David C. Catling, Jihong Cole-Dai, 
Vasile I. Furdui, W. Andrew Jackson, Jose 
L. Jimenez, Dongwook Kim, Alanna E. 
Wedum, Becky Alexander

 19448007, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
102745 by U

niversity O
f W

ashington, W
iley O

nline L
ibrary on [09/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

CHAN ET AL.

10.1029/2023GL102745

3 of 14

Willner, 1994; Kopitzky et al., 2002) and can be produced via OClO (g) + O( 3P) (g) (R2) and OClO (g) + O3 
(g) (R3) (Green et al., 2004; Wayne et al., 1995). We do not include the photolysis of ClO3 (g) or the thermal 
decomposition of ClO3 (g) and Cl2O4 (g) because of the current lack of reliable constraints on the kinetics. Our 
modeled HClO4 (g) production rate via R1 is thus likely an overestimate (the effects of adding ClO3 (g) photolysis 
are discussed in Section 4.1).

Once HClO4 forms in the modeled atmosphere, we assume it quickly condenses onto aerosols, stays in the partic-
ulate phase as a perchlorate ion (ClO4 −(p)), and is chemically inert—similar to the fate of atmospheric H2SO4. In 
our simulation, the only loss of ClO4 −(p) in the stratosphere is via advection to the troposphere and gravitational 
settling of stratospheric aerosols. In the troposphere, we assume ClO4 −(p) undergoes wet and dry deposition to 
the surface and use deposition parameterizations described in Emerson et al. (2020), H. Liu et al. (2001), and Q. 
Wang et al. (2014). Text S1 in the Supporting Information S1 provides details on the model configuration.

2.2. Observations of Atmospheric Perchlorate

Not many studies have reported observations of atmospheric perchlorate because perchlorate occurs at much lower 
concentration than other major inorganic species (e.g., nitrate and sulfate) and is challenging to measure. Murphy 
and Thomson (2000) reported the first detection of ClO4 −(p) in the lower stratosphere from the mass spectra of 
aerosols. Surface observations of ClO4 −(p) are mostly from urban and rural sites in East Asia (Shi et al., 2011; 
Shirahata, 2012; Takeuchi et al., 2012; C. Wang et al., 2017; Yamada et al., 2009, 2012; Yao et al., 2015; Zheng 
et al., 2022; H. Zhu et al., 2021). Observations in more remote locations were reported in Handa et al. (2010) 
(Okinawa, Japan) and Jiang et al. (2021) (from a cruise between Shanghai, China and Antarctica). Measurements 
of perchlorate in deposition samples are available in North America (Andraski et al., 2014; Munster et al., 2009; 
Rajagopalan et al., 2009; Van Stempvoort et al., 2020) and East Asia (Lin et al., 2019; Yamada et al., 2009, 2012). 
Perchlorate concentration in ice-core and snow-pit samples has also been used for inferring deposition fluxes 
(Cole-Dai et al., 2018; Crawford et al., 2017; Du et al., 2019; Furdui et al., 2018; Furdui & Tomassini, 2010; Jiang 
et al., 2016, 2020; Rao, Wake, et al., 2012).

We compile observations of perchlorate in tropospheric aerosols and surface deposition samples from 24 
published studies (see Tables S2 and S3 in the Supporting Information S1 for summary and Figure S1 in the 
Supporting Information S1 for observation locations). To focus on the background conditions, we exclude obser-
vations obtained during and shortly after fireworks displays, which can release synthetic perchlorate into the 
atmosphere (e.g., Munster et al., 2009; Shi et al., 2011).

2.3. Analysis of  17O Excess of Perchlorate Originating From Photochemistry

Measurements and models of  17O excess (Δ 17O ≡ δ 17O − 0.52 × δ 18O) are powerful tools for investigating atmos-
pheric oxidation processes (Thiemens, 2006), and here we use them for understanding the origins of environ-
mental perchlorate. In Earth's atmosphere, a large positive Δ 17O originated from mass-independent fractionation 
during ozone formation and can transfer from ozone to other species via oxidation (Thiemens, 2006). For species 
that have multiple formation pathways (e.g., nitrate and sulfate), Δ 17O provides quantitative information on the 
contribution of ozone-related pathways relative to those involving other oxidants (Alexander et al., 2020; Chan 
et al., 2021; Chen et al., 2016). Environmental observations of high Δ 17O(ClO4 −) (up to +18.4‰) have been inter-
preted as evidence of an atmospheric origin of natural perchlorate (e.g., Bao & Gu, 2004; Jackson et al., 2010), 
but process-based modeling of Δ 17O(ClO4 −) has not been attempted. We conduct a bottom-up estimate of the 
Δ 17O of the perchlorate formed via photochemistry using simulated reaction rates and assumptions about Δ 17O 
in oxidants and intermediate species (Text S2 in the Supporting Information S1).

3. Results
3.1. Modeled Global Budget and Spatial Distribution of Perchlorate

Figure 1a shows the modeled budget of atmospheric perchlorate for 2016–2018. The model predicts that the 
stratosphere dominates perchlorate photochemical production (1.65 Gg ClO4 − yr −1) compared to the troposphere 
(0.01 Gg ClO4 − yr −1) (Figure 1a). Perchlorate production is largest in the stratosphere due to higher concen-
trations of reactive chlorine species (originating from the photolysis of chlorofluorocarbons and CH3Cl) and 
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Figure 1. Average (a) global perchlorate mass budget, (b) perchlorate production via reaction between ClO3 and OH (R1), and (c) perchlorate concentration in 
the modeled stratosphere and troposphere from the model simulation for 2016–2018. The blue-shaded region and the orange bar in the right panel of (c) indicate 
observations by Jiang et al. (2021) and Murphy and Thomson (2000) (⨉ marker: median, range: maximum and minimum), respectively. Standard Temperature and 
Pressure (STP) condition is defined as T = 273 K and P = 1,013 hPa.
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oxidants (OH, O3, and O( 3P)). The average atmospheric lifetime of stratospheric perchlorate (2.7  yr against 
stratosphere-troposphere exchange) is longer than that of tropospheric perchlorate (1.2 months against deposi-
tion). About 96% of the total mass of the modeled atmospheric perchlorate resides in the stratosphere (4.48 Gg). 
Modeled perchlorate accounts for 0.17% of total inorganic chlorine in the stratosphere. Modeled ClO3 and Cl2O4 
account for 0.01% of chlorine in stratospheric gas-phase ClxOy species. The newly added ClO3-Cl2O4-ClO4 – 
chemistry's impacts on the concentrations of major stratospheric chlorine species in the model are negligible 
(Text S3 in the Supporting Information S1). About 97% of the modeled perchlorate is removed from the atmos-
phere via wet deposition (1.62 Gg yr −1).

Figures 1b and 1c show the zonal average of modeled perchlorate production rate and concentration. Photochem-
ical production of perchlorate maximizes in the tropical stratosphere at 30 km altitude as a result of the balance 
between increasing [ClO3 (g)] and decreasing rate constants (R1 are pressure-dependent) at higher altitudes 
(Figure 1b). We find that OClO + O (R2) accounts for 97% of ClO3 production in the stratosphere and that 
most of its production via R2 occurs during the day. The diurnal cycles of OClO and O oppose each other, with 
OClO maximizing at night and O during the day, yet there is still enough OClO during the day to react with O 
(Text S4 in the Supporting Information S1). Our simulation predicts that [ClO4 − (p)] maximize at 32 km (19 ng 
ClO4 − m −3 air at standard conditions ≈4.3 pmol ClO4 − mol −1 air) (Figure 1c). Our results are consistent with 
[ClO4 − (p)] observations by Murphy and Thomson (2000), who reported 0.5–5 pmol mol −1 at 19 km altitude, 
where the modeled global average is 1.6 pmol mol −1 (Figure 1c). After photochemical production in the tropical 
stratosphere, perchlorate is advected poleward by the Brewer–Dobson circulation and eventually crosses the 
tropopause. Once in the troposphere, modeled [ClO4 − (p)] decreases by an order of magnitude owing to stronger 
vertical mixing and the loss via deposition. In the marine boundary layer, perchlorate production increases slightly 
due to the gas-phase chlorine species released from sea-salt aerosols (X. Wang et al., 2021).

3.2. Comparison to Observed Surface Concentrations and Deposition Fluxes

Figure 2a compares modeled and observed near-surface [ClO4 − (p)] as a function of latitude. Modeled values are 
generally lower and have a narrower range (10 −3–10 −1 ng m −3) compared to observations (10 −3–10 2 ng m −3). Our 
modeled average [ClO4 − (p)] (0.002 pmol mol −1) is an order of magnitude lower than observations reported by 
Jiang et al. (2021) at more remote locations (median: 0.023 pmol mol −1). We conducted Mann-Whitney U tests 
(details in Text S5 in the Supporting Information S1) and found that the observations from all published studies 
are statistically distinct from model predictions at the 95% significance level, except for the rural sites in Yuzhong 
County in China (Shi et al., 2011) and Lake Toya in Japan (Shirahata, 2012).

The modeled wet deposition flux ranges from about 0.1 to 10 g km −2 yr −1, with decreasing values toward high 
latitudes (Figure 2b). Catling et al. (2010) estimated a long-term average perchlorate deposition flux of 1.9 × 10 5 
molecules cm −2 s −1 over the Atacama desert, where our model predicts a deposition flux of 6.3 × 10 4 molecules 
cm −2 s −1. At the US sites studied by Rajagopalan et al. (2009) and the ice-cores/snow-pits sites in the northern 
hemisphere, model predictions are within the same order of magnitude as the observations. At other locations, 
however, observed deposition fluxes (10 −1–10 4 g km −2 yr −1) are much larger than the model, especially near 
urban areas and over Antarctica (Figure 2b and Table S4 in the Supporting Information S1). Overall, the model 
significantly underestimates observed near-surface [ClO4 − (p)] (observed median/modeled median ≈ 42) and 
perchlorate deposition flux (observed median/modeled median ≈ 2).

3.3. Modeled Δ 17O of Perchlorate Compared to Observations in Pristine Arid Environments

Figure 3 shows observations of Δ 17O(ClO4 −) in relatively pristine environments where atmospheric deposition 
is likely an important source of perchlorate and other soil salts (e.g., nitrate) (Arenas-Díaz et al., 2022; Jackson 
et al., 2010, 2016; Michalski et al., 2004, 2005). These environments have been arid for 10 4–10 7 yr (Catling 
et al., 2010; Jackson et al., 2016; Li et al., 1996), so soluble species can accumulate near the surface. Measured 
Δ 17O(ClO4 −) of these samples have a median of +9.2‰ and values up to +18.4‰ (Table S5 in the Supporting 
Information S1). These measurements cannot be explained solely by synthetic perchlorate, which has Δ 17O ≈ 0‰ 
because all its oxygen atoms originate from water molecules (Bao & Gu, 2004). The high Δ 17O(ClO4 −) in these 
environments has been interpreted as evidence of an atmospheric origin (Bao & Gu, 2004; Jackson et al., 2010), 
because oxygen atoms originating from ozone and most stratospheric oxidants have large positive Δ 17O (Brinjikji 
& Lyons, 2021).
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Our modeled bottom-up estimates of Δ 17O(ClO4 −) are significantly higher (average = +28.5‰; 2.5th percen-
tile = +25.2‰; 97.5th percentile = +29.5‰) than observed values (Figure 3) The high modeled Δ 17O(ClO4 −) 
originates from OClO (g) (average modeled Δ 17O = +45.5‰), which leads to high Δ 17O in ClO3 (g) and thus 
perchlorate (R1–R3). Virtually all OClO (g) forms via the reactions between ClO, BrO, and IO, which domi-
nantly obtain their oxygen from ozone. Indeed, modeled Δ 17O(ClO4 −) is similar to the measured Δ 17O of the 
perchlorate produced by ozone oxidation of chloride in laboratory experiments (+29.5 to +32.5‰) (Estrada 
et al., 2021). However, this high Δ 17O(ClO4 −) resulting from photochemistry is distinct from published observa-
tions (Figure 3).

A possible interpretation of this discrepancy between modeled and observed Δ 17O is that atmospheric perchlo-
rate production includes additional low-Δ 17O pathways. These pathways could involve low-Δ 17O oxygen atoms 
from O2 (g), tropospheric OH, HO2, H2O2, and/or water to form perchlorate. For instance, if we assume that a 
perchlorate molecule gets two oxygen atoms from tropospheric OClO (g) (average modeled Δ 17O = +39.5‰) 
and another two oxygen atoms from other tropospheric oxidants with Δ 17O = 0‰, the resulting Δ 17O(ClO4 −) 
would be +19.8‰, which is close to the highest observed Δ 17O(ClO4 −).

The second interpretation is that the Δ 17O(ClO4 −) observed in these pristine arid environments is the result of 
mixing high-Δ 17O perchlorate from photochemistry and a low-Δ 17O perchlorate from non-atmospheric-chem-
istry sources. To explain the observed difference between Δ 17O(NO3 −) in aerosols and desert soils, Michalski 

Figure 2. Modeled and observed (a) near-surface concentration of aerosol perchlorate and (b) perchlorate deposition flux as a function of latitude. Concentrations at sites 
where all observations are above the detection limit are shown as mean (⨉ marker), with the error bar indicating the minimum and maximum. For sites with observations 
below the detection limit, the ⨉ marker indicates the median while the inverted-triangle marker's upper side indicates the detection limit. The Jiang et al. (2021) 
cruise observations that are ≥200 km away from the coast are classified as “open-ocean.” For ice-core/snow-pit sites, we show the estimated post-1980 deposition flux 
summarized by Jiang et al. (2020). The gray area in (a) shows the modeled spatial and temporal variability, while in (b) it shows the spatial variability only.
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et al. (2004) suggests that desert nitrate is a mixture of high-Δ 17O atmospheric nitrate and low-Δ 17O biogenic 
nitrate. Jackson et  al.  (2010) discussed similar concepts while interpreting the observed correlation between 
Δ 17O(ClO4 −) and δ 18O(ClO4 −) in desert samples. Estrada et al. (2021) demonstrated that low-Δ 17O perchlorate 
can be produced via UV-activated aqueous oxidation of ClxOy species in the laboratory. Assuming our estimated 
Δ 17O for perchlorate produced from photochemistry is correct and pristine arid environments are influenced by a 
source of perchlorate with Δ 17O = 0‰, the Δ 17O(ClO4 −) = +18.4‰ observation in Death Valley would indicate 
that this non-atmospheric-chemistry source accounts for about 35% of perchlorate mass there.

4. Hypotheses for Explaining Discrepancies Between Observations and Model
Our global model prediction of atmospheric perchlorate is consistent with early measurements of stratospheric 
perchlorate (Figure 1c), observed perchlorate deposition fluxes at US sites studied by Rajagopalan et al. (2009), 
and cryospheric sites in the northern hemisphere (Figure  2b). However, our model simulations significantly 
underestimates observations of near-surface [ClO4 − (p)] and perchlorate deposition flux at many other locations, 
especially those near and downwind of metropolitan areas and Antarctica (Figure 2). In addition, our model 
predicts Δ 17O(ClO4 −) values that are higher than the highest Δ 17O(ClO4 −) observed in soils (Figure 3), suggest-
ing missing atmospheric pathways for perchlorate formation in our model and/or emissions of non-synthetic 
perchlorate. We explore four hypotheses to explain these discrepancies between model and observations.

4.1. Hypothesis I: Gas-Phase Reaction Rates Are Uncertain

Many rate constants in our current ClO3-Cl2O4-ClO4 – chemistry scheme are based on theoretical ab initio studies 
for combustion conditions (in particular R1, T = 300–3,000 K), and have not been experimentally validated. Our 
modeling results are thus inherently uncertain. In addition, we have not included ClO3 photolysis in our main 
simulation due to lack of consensus on its absorption cross-sections. Sensitivity simulations including ClO3 
photolysis result in factors of 3–61 decrease in the production of perchlorate (Text S6 in the Supporting Infor-
mation S1), further exacerbating the model underestimate of observed near-surface [ClO4 − (p)] and perchlorate 
deposition flux. Increasing the rate constant of R1 could offset this decrease in perchlorate. However, this would 
not resolve the current model-observation discrepancy in Δ 17O(ClO4 −).

Figure 3. Comparison of Δ 17O(ClO4 −) observed in pristine arid environments samples (left) and model predictions (right). Observed Δ 17O(ClO4 −) values in Death 
Valley and McMurdo Dry Valleys are shown as individual measurements (horizontal bars), because of small sample sizes. The larger set of published values for the 
Atacama Desert (n = 22) are shown as a box and whisker plot, with whiskers indicating minimum and maximum. The references can be found in Table S5 in the 
Supporting Information S1. For model predictions (Text S2 in the Supporting Information S1), the line indicates the average Δ 17O(ClO4 −) weighted by the modeled 
perchlorate production rate.
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4.2. Hypothesis II: Multi-Phase Atmospheric Production of Perchlorate Is Important

Laboratory experiments demonstrated that perchlorate production is possible via aqueous-phase oxidation 
of ClxOy species or gas-solid-plasma interactions (Carrier & Kounaves, 2015; Dasgupta et  al.,  2005; Estrada 
et  al.,  2021; Jackson et  al.,  2018; Kang et  al.,  2006,  2008,  2009; D. Liu & Kounaves,  2019; Rao, Mohan, 
et  al., 2012; Wu et al., 2018). Some of these reactions could potentially occur on aerosols, in clouds, and/or 
land surfaces. However, these mechanisms require high-UV conditions and are thus unlikely to be important in 
the lower troposphere. In the stratosphere, the higher UV flux and the surfaces provided by stratospheric aero-
sols and polar stratospheric clouds may promote condensed-phase production of perchlorate (Jaeglé et al., 1996; 
Roberts, 2009). However, perchlorate-production chemistry in highly acidic mediums is currently under-studied. 
More observational constraints from laboratory experiments and field measurements are required to understand 
these possible multi-phase pathways for perchlorate production.

4.3. Hypothesis III: Non-Synthetic Perchlorate Emitted From Human Activities and Wildfires Is 
Important

Observations at urban and rural sites often show higher [ClO4 − (p)] and perchlorate deposition flux than back-
ground sites (Figure  2). Dasgupta et  al.  (2006) estimated that the average annual US synthetic perchlorate 
production is about 10.6 Gg yr −1, which is about 10 times the modeled atmospheric production. The leakage of 
synthetic perchlorate into groundwater systems has been reported (Cao et al., 2020; Urbansky, 2002). The direct 
release of synthetic perchlorate into the lower troposphere is also possible, for example, via fireworks and road 
flares (Munster et al., 2009; Munster & Hanson, 2009). However, given the dominantly military applications of 
synthetic perchlorate (Dasgupta et al., 2006), we expect the stockpiles to be stored securely. Even in the case of 
leakage, the short lifetime of perchlorate in the lower troposphere limits the spatial extent of synthetic perchlo-
rate's influence on [ClO4 − (p)] and perchlorate deposition flux. The non-synthetic perchlorate that formed as a 
byproduct during the industrial production of ClxOy disinfection chemicals is likely minor (Dasgupta et al., 2006; 
Stanford et al., 2013) and cannot explain atmospheric observations.

Here, we consider a potential source of perchlorate from combustion by analogy with the well-known source of 
atmospheric sulfate from fuel combustion. Elemental or organic sulfur in fossil fuels and biomass reacts with 
O2 (g) at high temperatures to produce SO2 (g), some of which is further oxidized to sulfate aerosols during 
combustion (Sarbassov et al., 2018). Pyrogenic sulfate has a characteristic Δ 17O ≈ 0‰ because all of its oxygen 
atoms originate from O2 (g) and tropospheric water (Dominguez et al., 2008; Lee et al., 2002). Similar to sulfur, 
chlorine is emitted by the combustion of coal, biofuel, solid waste and biomass, mostly in the form of HCl (g) and 
particulate chloride (Lobert et al., 1999; McCulloch et al., 1999). The inventory of Zhang et al. (2022) reports a 
global emission of 4,675 Gg Cl yr −1 from continental sources, most of which are related to combustion. If only 
0.1% of emitted chlorine was in the form of perchlorate, the resulting source (4.6 Gg Cl yr −1) would exceed our 
modeled photochemical production (0.59 Gg Cl yr −1). In comparison, global emission inventories suggest that a 
few percent of anthropogenic sulfur is emitted as sulfate (Chin et al., 2000; Dominguez et al., 2008). Pyrogenic 
perchlorate, which should have Δ 17O ≈ 0‰, could mix with photochemically produced perchlorate and explain 
the lower Δ 17O(ClO4 −) observed near some urban and/or vegetated regions.

4.4. Hypothesis IV: Perchlorate Is Re-Emitted From Land and Ocean After Deposition

The land and ocean could act as perchlorate reservoirs if atmospheric production of perchlorate and subsequent 
deposition occurs over geologic timescales on Earth. Perchlorate is known to accumulate in arid regions (Jackson 
et al., 2015) and has been detected in oceans, albeit at trace levels of up to 1.2 μg/L (Her et al., 2011; Martinelango 
et al., 2006; Qin et al., 2014). Human activities can also introduce synthetic perchlorate into soil and ocean (e.g., 
via unintended contamination) and alter the geographic distribution of environmental perchlorate (Dasgupta 
et al., 2006; Urbansky, 2002).

We hypothesize that perchlorate in soils and surface ocean could be re-emitted to the atmosphere via dust and 
sea-spray particles. Although re-emission is not a net source of perchlorate in the Earth system, this redistri-
bution between troposphere, land, and ocean reservoirs may still be important for atmospheric perchlorate. 
Re-emissions can increase near-surface [ClO4 − (p)] and deposition flux downwind of deserts and regions with 
perchlorate-contaminated soil. For example, Andraski et al. (2014) suggested that eolian dust fluxes might have 
caused the higher perchlorate deposition flux observed at their desert site.
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Re-emission processes do not involve new perchlorate formation and thus will not directly alter Δ 17O(ClO4 −). 
Nevertheless, post-emission atmospheric transport can mix perchlorate originating from different sources and 
may still affect the final Δ 17O(ClO4 −) observed in environments.

5. Conclusion and Implications
We implement a ClO3-Cl2O4-ClO4 –-chemistry scheme assuming gas-phase production of perchlorate into the 
GEOS-Chem model. While our simulation can explain reported observations of [ClO4 −(p)] in the stratosphere, 
it significantly underestimates observed [ClO4 −(p)] and perchlorate deposition fluxes at many surface sites. Our 
predicted Δ 17O of perchlorate produced from photochemistry is higher than all of the observations of environ-
mental Δ 17O(ClO4 −) to date, suggesting that missing atmospheric production pathways and/or emission sources 
with a low-Δ 17O, that is, not involving ozone in perchlorate production.

To address the discrepancies between observations and model predictions, we discuss four hypotheses: (a) uncer-
tainty in assumed gas-phase kinetics, (b) multiphase chemical production of perchlorate, (c) combustion sources 
of non-synthetic perchlorate, and (d) perchlorate re-emission from Earth's surface. A combination of several of 
these hypotheses may be required to explain perchlorate observations.

New laboratory measurements and field observations are needed to test these hypotheses. These include: (a) 
laboratory measurements of gas-phase perchlorate formation via ClxOy chemistry under atmospheric conditions; 
(b) laboratory measurements of multiphase reactions of ClxOy for acidic aerosols; (c) atmospheric observations of 
[ClO4 −(p)] in wildfire plumes and urban outflow to constrain a potential combustion source; (d) observations of 
[ClO4 −(p)] above the open ocean and deserts to assess the importance of perchlorate re-emissions; and (e) direct 
measurement of Δ 17O(ClO4 −) in aerosols.

Data Availability Statement
Model code, simulation outputs, digitized observation-summary tables, and Python scripts for reproducing the 
analysis results/figures are available on https://doi.org/10.5281/zenodo.7754444.
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