EVOLVING WORLDS: Life from Anaerobes To Aerobes ("From slime to the sublime")

Principal Instructor:David Catling (dcatling@u.washington.edu).Mon, Wed:11am-12.20pmTh*:9.30am-10.20am(review of a recent paper from the literature)*Except for Th Oct 22: A 9.00am-10.20am lecture.Location:Johnson Hall, Room 377 (QRC Library meeting room). 4 credits.

DESCRIPTION

This course reviews the latest geological, biological and chemical research on the most significant times in Earth's history when life grew more complex and the atmosphere and oceans changed from anaerobic to oxygenated. We also discuss the comparative evolution of Mars, the concept of "Snowball Earth", relevant microbiology, bioenergetic change, and thermodynamic metrics concerning what life is and the detection of life.

Wk	Wk start	Session		Faculty			
1	Comparative Planetary Evolution						
	10/5	Ι	Volatile delivery to Earth & Mars	Don Brownlee			
		II	How do planets oxidize? Earth, Mars, Venus	David Catling			
		III	Research Paper Discussion: Mars vs. Earth oxidation.				
2	10/12	Ι	Environments on Early Mars: A mineral perspective	Josh Bandfield			
		II	Hydrothermal systems and early life on Mars & Earth	John Baross			
		III	Paper review: Mars methane				
	Atmos	spheric Chan	ge and "Snowball Earth" at 2.4-2.2 Ga				
3	10/19	Ι	O ₂ evolution and Mass-Independent Isotope Fractionation (MIF) in Sulfur	Mark Claire			
		II	Research Paper Discussion: TBD?				
		III	*Early evidence for photosynthesis	Roger Buick			
4	10/26	Ι	The Rise of Oxygen: Why and How Did It Happen?	David Catling			
		II	Organic Haze	Shawn Domagal- Goldman			
		III	Research Paper Discussion.				
5	11/2	Ι	Paleoproterozoic Snowball Earth:	David Catling			

		II III	Theory and Evidence Research Paper Discussion: Snowball Earth or hailstorm of hype?	Steve Warren		
6	<i>Evolu</i>	John Leigh				
	11/2	I	Veteran's Day Holiday – No Class	John Leigh		
		III	Research Paper Discussion			
7	Bioenergetics and Entropy in an Anerobic vs. Aerobic World					
	11/16	I	Anaerobic Metabolism II: Sulfate reduction	Dave Stahl		
		II	Microbial photosynthesis	Jim Staley		
		III	Research Paper Discussion			
8	11/23	Ι	Oxygen, Metabolism, and the Size of Life	David Catling		
		II	Thanksgiving holiday – No Class			
		III	Thanksgiving holiday – No Class			
9	11/30	Ι	Entropy in Physics vs. Entropy in	David Catling		
			Information Theory; Relation to Life			
		II	Linking it all together: What is Life?	David Catling		
		III	Research Paper Discussion			
10-	Stud	lent Paper Pres	sentations			

11

GRADING:

Students should select a topic to review for a term paper by the end of Wk 5. This written paper will be marked and will also be presented orally by the student in Weeks 10 or 11.

During research paper discussions, students will be asked to present at least one research paper. This part of the course is graded to ensure good presentations.

Research Paper Discussion:	15%
Written term paper:	65%
Presentation of term paper:	20%

SUMMER READING:

Reading that should be undertaken prior to the course:

- Andrew H. Knoll (2003) *Life on a Young Planet: The First Three Billion Years of the Evolution on Earth*, Princeton University Press (\$29.95)
- Erwin Schrodinger (1992) "What is Life?" in *What is Life? With Mind and Matter and Autobiographical Sketches*, Cambridge Univ Press (\$19). This general background to the nature of life is an old classic, originally published in 1944. Amongst other things, in this short essay, Nobel prizewinner Schrodinger first said that life must run on some kind of "code" like a computer program, i.e., he introduced the term "genetic code" to the English language. However, some scientists have criticized aspects of the essay, which we will discuss in the course.