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Sedimentary challenge to Snowball Earth

Evidence from the magnetic field fossilized in sedimentary rocks suggests that, more than 600 million 

years ago, ice occupied tropical latitudes. A popular explanation for these findings, the Snowball 

Earth concept, envisages a fully frozen Earth for millions of years, caused by a runaway ice–albedo 

feedback. A rapid, catastrophic meltback at very high levels of atmospheric carbon dioxide is thought 

to have ended this extreme climatic state. However, sedimentary rocks deposited during these 

cold intervals indicate that dynamic glaciers and ice streams continued to deliver large amounts of 

sediment to open oceans throughout the glacial cycle. The sedimentary evidence therefore indicates 

that despite the severity of glaciation, some oceans must have remained ice-free. Significant areas of 

open ocean have important implications for the survival and diversification of life and for the workings 

of the global carbon cycle.
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Over the past decade there has been an exponential growth of papers 
devoted to the geology of the Neoproterozoic era (1,000–542 million 
years ago; Myr) in general and to the ‘Snowball Earth’ hypothesis 
specifically. This has enlivened the debate of climate change in ‘deep 
time’, because a profoundly glaciated Earth serves as an example of 
environmental change at the limit. Proponents of the Snowball Earth 
hypothesis1–3 believe that the Earth froze over completely on one or 
more occasions during the period that is appropriately called the 
Cryogenian (approximately 840–635 Myr ago).

A number of observations were connected to form the original 
idea of a Snowball Earth1 and its subsequent elaboration2,3. Chief 
among these were the occurrence of glaciation at a low latitude 
based on palaeomagnetic data; the common occurrence of carbonate 
rocks—normally indicative of warm water—directly above glacially 
derived sedimentary rocks, thereby indicating rapid climatic warming 
following an ice age; and the occurrence of oceanic iron-rich deposits, 
thought to reflect the existence of anoxic ocean waters during a long 
period of ice cover.

The essence of the Snowball Earth concept is the growth of ice 
sheets towards the equator under an ice–albedo feedback on a planet 
with a 6% lower solar constant compared with today, leading to a 
globally frozen Earth. Carbon dioxide emissions from volcanoes over 
very long periods of time (approximately 107 years) are envisaged to 
have built up atmospheric greenhouse conditions, as drawdown of 
CO2 by terrestrial weathering of silicate rocks would be negligible. At 
atmospheric CO2 concentrations several hundred times the present-
day level, the ice covering the surface of the Earth is believed to 
have melted catastrophically in a ‘super-greenhouse’, leading to the 
widespread deposition of oceanic carbonate sediments as sea levels 

rose rapidly. The enhanced carbonate and silicate weathering during 
the transient post-glacial period is used to explain the characteristically 
negative carbon isotope ratios in these carbonate rocks by driving a 
flux of alkalinity into the world’s oceans2.

The idea of a complete global glaciation is not new, having been 
initially suggested by the Swiss natural scientist Louis Agassiz in 1837, 
who used the term “die Eiszeit” for a great ice age that covered the 
Earth and killed all life, after which species were regenerated. The 
compilation of observations identifying ancient glacial deposits on all 
of the present-day continents allowed the idea of a great ‘Infracambrian 
glaciation’ to be established4,5.

The modern concept of Snowball Earth dates from the realization 
that glacial deposits in South Australia, and the carbonate rocks 
that occur immediately above them, must have been deposited 
in low latitudes. This realization was made possible because very 
old sedimentary rocks associated with Neoproterozoic glaciations 
contain a magnetic field that was imparted at the time of deposition. 
On the basis of the inclination of the fossilized magnetic field, 
researchers concluded that ancient glaciations must have taken place 
at low latitudes1,6–10. This conclusion, with the Elatina Formation of 
South Australia as the benchmark study—one that passes all the 
reliability tests for the recovery of the magnetic field present at the 
time of deposition11—has not been fundamentally challenged since. It 
provided the seed for the growth of a further wave of Eiszeit thinking; 
this time placed in an exciting Earth system science context by 
incorporating aspects of geochemistry2,3. Similarly to its precursors, 
this modern concept of Eiszeit has attracted criticism12–14. Although 
one viewpoint is that such a challenging idea will take time to become 
generally accepted15, others believe that the idea is fatally flawed.

The Snowball Earth idea

Since its proposal, many facets of the Snowball Earth concept have 
been investigated. There has been considerable debate on the number 
of glaciations, their timing and duration; the palaeolatitudes at which 
glaciation at sea level took place based on new palaeomagnetic data 
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and the possible role of high obliquity of the ecliptic (the Earth’s axial 
tilt); the impact of the possible clustering of continental masses in 
relatively low latitudes; the sedimentary characteristics, structures 
and isotopic geochemistry of the unusual carbonate rocks that lie 
directly above glacially influenced sediments; the climate modelling 
of the descent into, and escape from, a global frozen condition; the 
modelling of the global carbon cycle; and the importance of oceanic 
iron deposition.

These different facets are all pertinent to the understanding of 
the Neoproterozoic Earth system, and have been reviewed, at least 
partially, before16,17. The irreducible feature that the Snowball Earth 
concept hinges on is the requirement for a truly global ice cover, 
save for the occasional ‘pool’ or ‘oasis’, that effectively sealed off the 
world’s oceans from the atmosphere for a prolonged period—of the 
order of 10 million years. In the Snowball Earth hypothesis, this 
allows atmospheric CO2 concentrations to build up gradually from 
volcanic emissions and to reach the extremely high levels (perhaps 
several hundred times present levels) that are needed to trigger 
sudden, catastrophic melting in a super-greenhouse, notwithstanding 
some consumption of CO2 by submarine weathering of new 
ocean crust18.

A range of models simulate the collapse into, and escape from, 
global glaciation—or the stability of a ‘near-snowball’ or ‘slushball’ 
Earth—with particular attention paid to the levels of atmospheric CO2 
required to promote these climatic states18–29. Despite the intensity 
of climate modelling devoted to understanding the glaciations of 
the Cryogenian, wherein the effects of reduced solar luminosity30; 
increased rotation rate30; high planetary obliquity31–33; different 
atmospheric CO2 concentrations21; different palaeogeographical and 
palaeotopographical configurations governed by plate tectonics30,34,35; 

different ice–albedo feedbacks36,37; incorporation of ocean circulation 
and heat transport37,38; and sea ice dynamics39 have all been investigated, 
there is no consistent explanation of Cryogenian climate change. 
Models variously support the collapse into, and exit from, prolonged, 
Snowball-type global glaciation, some simulate pronounced glaciation 
on low-latitude land masses under high obliquity, and others show 
that partial glaciation with open tropical oceans is plausible.

The novelty and attractiveness of the collection of ideas labelled 
Snowball Earth is that a range of formerly disparate observations 
are brought together into one framework. The collection of diverse 
observations and paradoxes into a single unifying idea had the effect 
of galvanizing the geological and climate science communities. But 
a falsifying test of the Snowball Earth idea has proved difficult to 
perform. One test of the proposal of full, global glaciation can be 
made by considering sedimentological and stratigraphic data.

Environments and processes in the Neoproterozoic Icehouse

Although disagreement remains regarding the precise influence 
of glaciation recorded in sedimentary rocks deposited during 
the Neoproterozoic40,41, many workers have presented a sufficient 
inventory of sedimentary characteristics to support the contention of 
a profound icehouse in that era. Evidence for glaciation is abundant 
in the sedimentary record of the Neoproterozoic5 (Fig. 1), but the task 
of discriminating glacial influence is challenging. It is hampered by 
the fact that glacigenic sediments commonly consist of poorly sorted 
material including pebbles, cobbles and boulders that are set in a finer 
grained matrix, called diamictites (Fig. 1c). However, these features 
are also common to mass flow deposits such as debrites, which lack 
any glacial influence.

D

C

Figure 1 Glacial and non-glacial sedimentary rocks from the Mirbat Group of Dhofar, southern Oman. a, Non-glacial, fluvial, deltaic and shallow marine deposits (light brown, 
foreground) alternating with thick (<200-m-thick) diamictites (dark grey, middle ground) thought to be due to the dropping of debris from floating ice, and the deposition of 
glacially transported debris near the ice grounding line. Such large-scale alternation requires repeated ice advance and recession. The high cliffs in the background are Cretaceous 
carbonates. b, At the base of the non-glacial succession (brown) are large simple clinoforms (C), indicating the progradation of deltas into proglacial lakes or sea. c, Typical 
appearance of clast-poor diamictites interpreted as due to rain-out from floating ice, with a sandstone-filled dyke (D) due to later injection. d, Glacial striations on a siltstone bedding 
plane, demonstrating ice contact on a subglacial sedimentary substrate. All of these features point to a dynamic glacial regime during a prolonged glacial–interglacial epoch.
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Figure 2 Record of the 1.5-km-thick sedimentary succession of the Fiq Formation close to the village of Dabu’t in Wadi Sahtan, al Jabal Akhdar, Oman (data used are from 
ref. 100). The bulk of sedimentary rocks recorded were deposited as coarse and fine-grained sediment gravity flows and shallow marine wave-rippled sandstones, without 
any recognizable glacial influence. These sedimentary units are interleaved with glacimarine diamictites formed by rain-out from floating ice and sediments deposited by 
mobilization from a grounded ice front. Stratigraphic units are delimited by surfaces representing rapid deepening of palaeowater depth (transgressive surfaces). Commonly, 
glacimarine diamictites are overlain by pebbly lags formed by transgression and thin carbonate beds or cementation zones. The thickest carbonate, however, is the Hadash 
‘cap’ carbonate. Nomenclature follows refs 42 and 100. The Fiq Formation is divided into 7 units that can be correlated across the basin. D3, D5, D6 and D7 refer to the 
diamictites found in units 3, 5, 6 and 7. For the different grain sizes: c/s is clay/silt, f is fine sand, m is medium sand, c is coarse sand and g is granules.
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To add to these difficulties, glacially transported sediment is 
commonly remobilized by gravity to form mass flow deposits. 
Consequently, glacially influenced sedimentary successions often 
consist of a mixture of unambiguous debrites, beds rich in isolated 
striated (scratched) and faceted stones attributed to glacial transport, 
and a range of deposits between these two extremes42,43.

The value of sedimentary data to the Snowball Earth debate is that 
they provide insight into the processes and environments of deposition 
during Neoproterozoic glacial periods, with the stratigraphic 
packaging showing how the entire succession was built up over time. 
Some sediment types and structures are particularly informative. For 
example, a common component of Cryogenian successions is the 
fine-grained, muddy (commonly laminated) marine sediment that 
accumulated slowly on the sea bed, containing dispersed sand- to 
cobble-sized clasts (known as dropstones) that pierce the underlying 
laminations and are draped by the overlying laminations. These 
dropstone-rich, or glacial rainout44 intervals alternate with laminated 
mudstones lacking dropstones, strongly suggesting the episodic 
influence of ice rafting or the advance–retreat of glacier-fed ice shelves 
from a fluctuating ice margin. Rarely, bedding surfaces are found with 
grooves and striations, providing conclusive evidence of ice movement 
(Fig. 1d). Ice wedge features identical to those forming in present-day 
periglacial environments are common in Neoproterozoic successions 
from as far afield as Mauritania, Scotland, Spitzbergen, Norway and 
Greenland, and are classically displayed in sedimentary rocks of the 
Stuart Shelf of South Australia45.

The existence of grounded glacier ice in the Neoproterozoic 
Port Askaig Formation, Scotland, is supported by the presence of 

two distinctive units (Great Breccia and Disrupted Beds) containing 
extensive intraformational deformation structures46,47. Although some 
workers regard this deformation as resulting from slope failure and 
mass movements down submarine slopes40,48,49, other interpretations 
involve a glacitectonic origin47,50, most likely in a proglacial thrust–
moraine complex and in subglacial settings under grounded ice. 
Mineralogical and chemical indices from fine-grained sediment in 
the Huqf Supergroup of Oman and the Yangtze Platform of south 
China suggest changes in the intensity of chemical weathering on 
contemporary land surfaces that correlate with glacial (low chemical 
weathering) and inter- or non-glacial (high chemical weathering) 
conditions, which indicate a dynamic climatic state51–53.

Large volumes of sediment were supplied from ice streams and 
outlet glaciers into the ocean over extended periods of time during 
the Neoproterozoic. Sedimentary successions typically show an 
interbedding of glacially derived diamictites with other non-glacial 
rock types in thick kilometre-scale stratigraphic intervals42,43,54–56. 
Non-glacial sediment types include packages of thick-bedded (>1 m) 
turbidites, produced by deposition from sediment-laden gravity flows 
that moved down submarine slopes. Such alternation of glacially 
influenced intervals and thick turbiditic sandstones throughout the 
sedimentary succession points to vigorously operating sediment 
routing systems44,55,56, as one would expect of a glaciated continental 
basin margin.

Extensive, thick prisms of sediment are known to have been 
deposited over the past ~15 million years at the edge of the Antarctic 
ice sheet57. The Antarctic geological drilling programme (ANDRILL) 
recently recovered 1,285 m of sediment core from a location in the 

D
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Figure 3 Glacial and non-glacial sedimentary rocks of the Fiq Formation in the Jabal Akhdar of northern Oman. a, Thick Fiq succession in Wadi Mistal showing multiple 
diamictites (dark brown cliffs, D) embedded in approximately 1 km of stratigraphy, beneath the cliff-forming carbonates of the Permian to Mesozoic. b, The Fiq Formation 
overlies volcanics and volcaniclastics of the Saqlah unit, and is erosionally truncated by the Permian Saiq, Wadi Mu’aydin. The steep brown cliffs of diamictite are embedded 
in non-glacial grey shales and sandstones. Several cycles representing glacial advance and retreat are evident. c, Bedding plane covered in wave ripple marks due to 
agitation of the seabed by surface gravity waves acting on an open water surface, Wadi Sahtan. No ice was present at the time of deposition of structures such as these.
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Ross Sea area. Analysis of the core shows clear evidence of repeated 
advance and retreat of the ice sheet, with diamictites deposited during 
glacial advances, and fine-grained clays and siliceous deposits forming 
during recession, when sea levels rose and coarse-grained sediment 
supply from the ice sheet failed to reach the drilling site. The sediment 
types and their vertical arrangement are highly reminiscent of those 
of the Neoproterozoic. Indeed, up to 17 glacial advance–retreat cycles 
were interpreted in the Neoproterozoic Port Askaig Formation in the 
Garvellach Islands of Scotland46.

Although this does not mean that the deposits of the Antarctic 
margin are perfect analogues for the glacial stratigraphy of the 

Cryogenian, the entire assemblage of siliciclastic sediments deposited 
during the glacial periods of the Cryogenian can be explained 
satisfactorily by reference to modern and geologically young 
examples43,58. In this sense, there is nothing ‘unusual’ about Cryogenian 
glacial stratigraphy.

The Fiq Formation of Oman

The <1.5-km-thick Fiq Formation of the Huqf Supergroup in Oman 
provides important additional evidence of the nature of glaciation 
during the Neoproterozoic42,43,59. Although the age of the Fiq Formation 
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is not known precisely, it contains reworked and transported zircon 
crystals near its top that are as young as 645 Myr ago (ref. 60), 
indicating that it is a late Cryogenian deposit. Glacially influenced 
sediment types are embedded in non- or inter-glacial stratigraphy at 
many levels, indicating that glacial processes alternated with ice-free 
conditions throughout the deposition of the Fiq Formation (Fig. 2). 
Sedimentary rocks showing the influence of glacial activity include 
marine diamictite units (from a few metres to 100 m thick) (Fig. 3a,b) 
commonly containing striated and faceted pebbles dispersed in a 
sandy and silty matrix, as well as laminated mudstones and siltstones 
punctured by small pebbles that have clearly been dropped from 
floating ice at the same time as dilute turbiditic underflows periodically 
swept the sea bed close to a grounded ice margin.

These glacially influenced sediment types are interbedded with 
sediments that show no direct glacial influence (Fig. 1a,b). These 
include conglomerates, pebbly sandstones and pebbly mudstones 
generated by gravitational flow of debris down submarine slopes; 
sandstones deposited by turbulent seabed-hugging currents; 
mudstones deposited from turbid plumes issuing from the ice front; 
and wave-rippled sandstones deposited on the sea-bed within reach of 
surface wind-generated waves (Fig. 3c). The symmetrical, commonly 
trochoidal, profiles and linear crestlines in planform view of the ripple-
marks distinguishes them as generated by wave action, requiring an 
open water body and relatively shallow water depths61. Abundant 
wave-generated ripple-marks occur in other glacial successions such 
as the Elatina Formation62,63. There was clearly no ice cover at such 
times. As wave periods are critically dependent on fetch61, the wave 
ripple-marks of the Fiq require open water bodies much larger than 
an isolated ‘pool’ or ‘oasis’.

Correlation of the distinctive diamictite units across the outcrop 
area in the Jabal Akhdar of northern Oman (Fig. 4) shows that some 
of them are local, preserved close to the basin margin, whereas others 
can be correlated entirely across the approximately 50-km-wide 
basin, demonstrating widespread deposition from icebergs and 
floating ice sheets. The thickest basin-wide diamictite is the youngest, 
and it is directly overlain by carbonates, presumably deposited 
during deglaciation. Evidently, throughout the glacial epoch, glaciers 
advanced and receded, followed by major marine transgression. At 

other localities, such as in the Mirbat area of southern Oman64,65, 
glaciers retreated up valleys leaving terrestrial outwash plains and 
deltas (Fig. 1a,b) before readvancing. A similar picture of repeated 
glaciations, causing glacially influenced diamictites to be encased in 
non-glacial stratigraphy, is found in other Neoproterozoic successions 
in widely scattered localities on several continents46,49,66–68.

Dynamic glaciation and the hydrological cycle

The apparent contradiction between the sedimentological evidence 
for an active hydrological cycle42,44,54-56,58 and the requirements of 
global glaciation in the Snowball Earth concept has been investigated 
by modelling ice sheet growth during the early build-up stage of a 
Snowball cycle22. In model runs, some wet-based, dynamic ice sheets— 
potentially important in promoting ice flow and thereby sediment 
efflux to the ocean69—were simulated on a continental reconstruction 
for the early Cryogenian (760–700 Myr ago). However, the dynamic 
glaciation simulated does not explain an active hydrological cycle 
driving high sediment discharges into open water during the full 
duration of a Snowball cycle. Critical evidence is therefore required as 
to whether deposition of sediments took place in the early build-up 
phase, during recession or essentially occurred continuously during 
a glacial cycle.

In the well-dated Ghaub glacial succession of Namibia, which 
terminated at approximately 635 Myr ago (ref. 70), an erosive trough is 
thought to have been carved by an ice stream at the glacial maximum, 
followed by the deposition of a thick (<600 m) morainic ridge entirely 
during recession71. Such thick ridges of moraine can accumulate 
quickly (<105 years) by analogy with Pleistocene examples72. This 
allows for Ghaub sediments to be deposited in an active hydrological 
regime in open water, but it does not prove that the oceans were 
previously completely covered with ice. Nor does the idea of rapid 
accumulation entirely during recession explain the great thicknesses 
of interbedded glacial and non-glacial stratigraphy typical of many 
Neoproterozoic successions46,49,66–68.

It raises an interesting secondary problem that deposition of 
the cap carbonate would need to be delayed until a precise moment 
towards the end of a long recession, instead of abruptly during a 
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these radiometric dates. Note that dates obtained from different radio-isotopic methods are of variable precision.
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highly contracted, catastrophic meltback (a few thousand years), 
as proposed in the Snowball Earth concept. A prolongation of the 
period of carbonate deposition during deglaciation (one or two 
million years) has been proposed independently using correlation 
of carbon isotopic profiles73, geochemical arguments74 and on the 
basis of the occurrence of several magnetic reversals within the ‘cap’ 
carbonate75,76. A lag before carbonate deposition is also suggested 
by the presence of a fine-grained boundary claystone above the 
Nantuo glacial sedimentary rocks but below the cap carbonate of the 
Doushantuo Formation in south China77.

It is implausible that the cyclical, 1.5-km-thick Fiq Formation, 
and other similar glacial successions, were deposited only during 
catastrophic melting of a previous global glaciation. The most likely 
explanation is also the most obvious: the entire glacial epoch, for 
however long it lasted, was climatically pulsed, just as in the Phanerozoic 
examples of ice ages78 that we are very familiar with — including the late 
Cenozoic era, typified by Antarctica. It is often stated that Antarctica 
provides an analogue for glacial processes in the Snowball events of the 
Cryogenian. We would slant this differently: Antarctica does indeed 
provide an analogue, but of sedimentation along ice-margins in a 
partially glaciated world, not a Snowball-type glaciation.

How many glaciations and when?

If a fundamental keystone of the Snowball Earth concept is the 
previous existence of a small number of prolonged, global glaciations, 
then the supposed global correlation of glacial deposits and the 
distinctive carbonates that directly overlie them takes on some 
importance. Geochronology is vital in the evaluation of such a 
global correlation. However, the interpretation of radiometric dates 
is complicated by the variety of methods used60. For example, some 
high-resolution methods using the U–Pb system in zircons minimize 
the possibility of Pb loss (which causes slight age discordance) 
by chemical abrasion prior to isotope dilution thermal ionization 
mass spectrometry (ID–TIMS). Dates using this method cannot 

be compared in a straightforward way with U–Pb dates obtained 
using other, lower-resolution but more rapid techniques, such as 
laser ablation and ion microprobe. A combination of analytical 
imprecision and the inability to detect Pb loss means that dates 
obtained using lower-resolution methods are commonly younger 
than the true zircon crystallization age. Improvements over time in 
geochronological methods and the wide variety of techniques used has 
resulted in a complex historical mixture of dates that cannot be easily 
deconstructed, making Neoproterozoic correlation problematic.

Early ideas of Neoproterozoic glaciation promoted what might be 
called the two-epoch paradigm, named from localities in Australia 
where Cryogenian glacial deposits have been identified: the ‘Sturtian’ 
and ‘Marinoan’ (refs 79,80). A third, Ediacaran-aged, younger 
glaciation is known as ‘Gaskiers’ or ‘Varangerian’ (refs 81–83). This 
paradigm relied not on radiometric dates, but on the correlation of 
the negative excursions in the 13C/12C ratio in bulk carbonate found 
both below and (especially) above the glacial deposits84, which 
were assumed to be globally isochronous markers. Subsequent to 
the Sturtian and Marinoan glaciations being proposed as the two 
Snowball events of the Neoproterozoic, a very large number of 
radiometric dates have been published, principally from U–Pb dating 
of zircons, and latterly through Re–Os dating of black shales85,86. The 
result is that the semblance of two discrete isochronous glacial epochs 
has dissolved into a picture of many glaciations over the period from 
780–580 Myr ago (ref. 43) (Fig. 5 and Table 1)—although some of this 
variation may be due to the different isotopic methods used.

Some of these glacial deposits are undoubtedly widely correlatable; 
for example the often-quoted Ghaub Formation equivalents of 
northern Namibia and the Nantuo Formation deposits of south 
China, which both indicate glacial termination close to 635 Myr 
ago70,87. This is hardly surprising as the Last Glacial Maximum of the 
Pleistocene also terminated at the same time in both hemispheres88. 
The presence of (partial) synchrony therefore gives no information on 
the occurrence of a global, prolonged freeze, whereas the presence of 
multiple glaciations over the period 780–580 Myr ago, should they be 

Table 1 Geochronological data used to construct Fig. 5, showing the distribution of glacial epochs over the interval from approximately 780–630 Myr ago. 
Geochronological data are selected that best constrain the beginning and end of glaciation, but comparison of dates is problematic because of the different 
methods used (see text). Poorly constrained glacial deposits are not included.

Stratigraphic unit from Fig. 5 Maximum age (Myr ago) Minimum age (Myr ago) Key references
Kaigas Formation, Namibia 771 ± 6 Myr, Granite of Richtersveld Igneous Complex, 

238U–206Pb zircon
741 ± 6  Myr, Rosh Pinah Rhyolite
207Pb–206Pb zircon

101, 102, 103

Grand Conglomerat, Kundelungu 
Basin, Zambia

763 ± 6 and 765 ± 5 Myr, Mwashia Group lavas, SHRIMP 
238U–206Pb zircon

735 ± 5 Myr (syndepositional), altered volcanic pods in contact 
with glacial strata, SHRIMP 238U–206Pb zircon

104

Jequitai Formation, Brazil 900 Myr, detrital zircons in Jequitai Formation, 
238U–206Pb zircon

740 ± 22 Myr, cap carbonate of Bambui Group, 207Pb–206Pb 105, 106

Ghubrah Formation, Huqf 
Supergroup, Oman

723 + 16/-10 Myr, 713.7 ± 0.5 Myr, syndepositional tuffaceous ash near top of Ghubrah Formation, 238U–206Pb zircon 59, 60, 107

Edwardsburg Formation, Idaho, USA 685 ± 7, 684 ± 4 Myr, volcanic rocks interbedded with glacigenic facies of first Windermere Group glaciation, SHRIMP 
238U–206Pb zircon

108

Scout Mountain Member, Pocatello 
Formation, Idaho, USA

709 ± 5 Myr epiclastic tuff breccia immediately below 
Scout Mountain Member, SHRIMP 238U–206Pb zircon

667 ± 5 Myr, reworked air-fall tuff 20 m above uppermost 
diamictite and cap carbonate, SHRIMP 238U–206Pb

109

Areyonga Formation, Amadeus Basin, 
Australia

897 ± 9 Myr, Stuart Dyke Swarm, 87Rb–87Sr 657.2 ± 5.4 Myr, immediately postglacial basal Aralka black 
shales 187Re–187Os

86

Sturt Diamictite, Adelaide Rift 
Complex, Australia

777 ± 7 Myr, Boucat Volcanics >6 km below Sturtian 
glacial deposits, 238U–206Pb zircon

643.0 ± 2.4 Myr, immediately postglacial black shale of 
Tindelpina Shale Member, 187Re–187Os

86

Nantuo Formation, south China 663 ± 4 Myr, tuffaceous bed in basal Datangpo, 
238U–206Pb zircon: 654.5 ± 3.8 Myr, ash immediately 
below Nantuo glacial deposits, ion microprobe (SHRIMP) 
238U–206Pb zircon

635.4 ± 1.3 and 632.4 ± 1.3 Myr 207Pb–206Pb: 635.23 ± 
0.57 and 632.5 ± 0.48 238U–206Pb, volcanic ashes in cap 
above Nantuo

77, 87, 110  

636.3 ± 4.9 Myr, fallout tuff 4.8 m above base of Nantuo, ion microprobe (SHRIMP) 238U–206Pb zircon 77

Ghaub Formation, Namibia 635.5 ± 1.2 Myr, syndepositional ash in uppermost Ghaub Formation 30 m below Keilberg cap, 238U–206Pb zircon 70
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confirmed as more dates become available, is highly damaging to the 
Snowball Earth concept.

Global correlations of carbon isotopic spikes, justified by the 
assumption that they unambiguously reflect the composition of 
Precambrian sea water from which the carbonate was precipitated, 
are also questioned17,89–92 and a meteoric diagenetic, organogenic or 
methanogenic origin cannot be discounted. The widespread similarity 
of the sedimentary and isotopic characteristics of cap carbonates is 
one of the most compelling arguments for a global or near-global 
oceanographic response to deglaciation and has been termed the 
smoking gun of Snowball glaciation3. This looks somewhat more 
uncertain in the light of recent results.

Alternatives to Snowball Earth

In summary, the sedimentological and stratigraphic data suggest that 
although ice probably formed in low latitudes, some of the Earth’s 
oceans remained essentially ice-free and permitted free exchange 
with the atmosphere, and that the water cycle acted vigorously and 
normally throughout glacial epochs.

The Neoproterozoic icehouse was probably characterized by 
a rather large (not yet fully known) number of glacial advances, 
separated by interglacial periods. In some glaciations, ice occupied 
low latitudes. Large seasonal variations of temperature at low latitude 
are indicated by well-preserved periglacial ice wedges45. During 
deglaciation, especially at the end of the Cryogenian, distinctive 
carbonate rocks were deposited diachronously as sea levels rose from 
the exceptionally low levels during the last gasp of the glacial period71. 
Estimates of the magnitude of sea level change caused by the melting 
of land-based ice range up to 0.5 km (ref. 73).

The duration of carbonate deposition accompanying deglaciation 
was long enough to record the reversal of the Earth’s magnetic field 
several times6–9,93. Winds were strong and sustained during the climatic 
transit94. The coastal oceans may have been covered by an extensive 
freshwater lens from the pouring in of meltwater and run-off from 
increased precipitation95. Glaciation on Earth never recurred with 
the intensity of the Cryogenian, but the presence of glacial deposits 
and landforms at low latitude in the Permo-Carboniferous period of 
North America suggests that tropical glaciation at sea level may not 
be unique to the Cryogenian96.

The Neoproterozoic Icehouse had many of the characteristics 
of other Phanerozoic icehouse periods, but on an Earth with a 
fundamentally different biosphere (specifically lacking calcifying 
plankton and biomineralization by metazoa97) and with a reduced 
solar luminosity. This evidently led to glaciation, at least locally at low 
latitude. Whether ice was nucleated on topographic highs associated 
with active tectonics12 is not conclusively known, but climate models 
using topographic effects demonstrate its potential importance in 
focusing precipitation and sourcing glaciers23,98.

There are two states of the Earth system that would accommodate 
the sedimentological data presented above: one involving a high 
planetary obliquity during the Cryogenian, causing coldness and 
extreme seasonality in low latitudes14, and another in which ice 
advance stalled despite the anticipated runaway ice–albedo effect, 
leaving ice-free tropical oceans28, without the requirement of a fully 
glaciated planet.

If the ice advance was stalled, it is an intriguing research question 
of what led to the Earth’s escape from global glaciation. The answer 
may lie in the link between the physical climate system and the carbon 
cycle28. As surface temperatures declined, atmospheric oxygen may 
have been drawn into the ocean, where it could have remineralized 
a vast reservoir of dissolved organic carbon99, which in turn caused 
atmospheric CO2 levels to build up. The resulting greenhouse could 
have stalled ice advance and resulted in recession, with or without 
the positive feedback of warming on the destabilization of methane 

ice92. If this scenario is correct, the Earth may have avoided “death 
enveloping all nature in a shroud”, as Louis Agassiz wrote, by the 
unusual workings of the Neoproterozoic carbon cycle. In the climate 
change game, the carbon cycle is both saint and sinner.

doi:10.1038/ngeo355
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