Problem 5 (2 points for part a and 3 points each for parts b and c). Suppose that \(\{X_t\} \) is a stationary process with ACVF \(\gamma_X(\cdot) \) and that we subsample it by taking every other value to form a new process defined by \(Y_t = X_{2t} \); i.e., the process \(\{\ldots, Y_{-2}, Y_{-1}, Y_0, Y_1, Y_2, \ldots\} \) is given by \(\{\ldots, X_{-4}, X_{-2}, X_0, X_2, X_4, \ldots\} \)

a. Show that \(\{Y_t\} \) is a stationary process, and determine its ACVF \(\gamma_Y(\cdot) \).

b. If \(\{X_t\} \) is an AR(1) process with parameters \(\phi \) and \(\sigma^2 \), does the process \(\{Y_t\} \) have an ACVF matching that of either an AR(1) process, an MA(1) process or a white noise process? If so, determine the parameters of the matching process in terms of \(\phi \) and \(\sigma^2 \).

c. If \(\{X_t\} \) is an MA(1) process with parameters \(\theta \) and \(\sigma^2 \), does the process \(\{Y_t\} \) have an ACVF matching that of either an AR(1) process, an MA(1) process or a white noise process? If so, determine the parameters of the matching process in terms of \(\theta \) and \(\sigma^2 \).

Problem 6 (2 points for each of the 5 parts). (Here we expand upon a point made on overhead II–63, namely, that values in the sample autocorrelation function are not true correlations.) Suppose that we have two sets of numbers \(u_t \) and \(v_t, t = 1, \ldots, m \), and that we form their sample correlation, for which the standard definition is

\[
\hat{\rho}_X(h) = \frac{\sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(x_t - \bar{x})}{\sqrt{\sum_{t=1}^{n-h} (x_{t+h} - \bar{x})^2 \sum_{t=1}^{n-h} (x_t - \bar{x})^2}},
\]

where \(\bar{x} \equiv \frac{1}{n} \sum_{t=1}^{n} x_t \) are sample means. Given a time series \(x_t, t = 1, \ldots, n \), a proper estimate of the lag \(h > 0 \) autocorrelation would be gotten by letting \(u_t = x_{t+h}, v_t = x_t \) and \(m = n - h \), leading to

\[
\hat{\rho}_X(h) = \frac{\sum_{t=1}^{n-h} (x_{t+h} - \bar{x}_{h+1:n})(x_t - \bar{x}_{1:n-h})}{\sqrt{\sum_{t=1}^{n-h} (x_{t+h} - \bar{x}_{h+1:n})^2 \sum_{t=1}^{n-h} (x_t - \bar{x}_{1:n-h})^2}},
\]

where \(\bar{x}_{j:k} \equiv \frac{1}{k-j+1} \sum_{t=j}^{k} x_t \).

By contrast, the sample autocorrelation is

\[
\hat{\rho}_X(h) = \frac{\sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(x_t - \bar{x})}{\sum_{t=1}^{n} (x_t - \bar{x})^2} \text{ with } \bar{x} \equiv \frac{1}{n} \sum_{t=1}^{n} x_t,
\]

which, in the context of stationary processes, has some intuitive appeal over \(\hat{\rho}_X(h) \) (e.g., on average, \(\bar{x} \) should be a better estimate of the process mean than either \(\bar{x}_{h+1:n} \) or \(\bar{x}_{1:n-h} \)).

Suppose now that \(x_t = \alpha + \beta t, t = 1, \ldots, n \), where \(\alpha \) and \(\beta \neq 0 \) are constants.
a. Derive an expression that describes how the scatter plot of x_{t+h} versus x_t depends upon α, β and h. Make a plot of x_{t+70} versus x_t, $t = 1, \ldots, 30$, for the specific case $\alpha = 1$, $\beta = 2$ and $n = 100$, and verify that your theoretical expression matches the plot.

b. Derive an expression for $\hat{\rho}_X(h)$ that is valid for the assumed $\{x_t\}$ and $h = 0, 1, \ldots, n-1$. Use the function `acf` in R (or equivalent software) to create a plot of $\hat{\rho}_X(h)$ versus $h = 0, 1, \ldots, 99$ for the specific case $\alpha = 1$, $\beta = 2$ and $n = 100$, and verify that your theoretical expression matches the plot. Two facts that might prove useful are

$$
\sum_{t=1}^{m} t = m(m+1)/2 \quad \text{and} \quad \sum_{t=1}^{m} t^2 = m(m+1)(2m+1)/6.
$$

c. Based upon the expression derived in part b, argue that, for large n, $\hat{\rho}_X(h)$ achieves a minimum value at approximately $h = n/\sqrt{2}$ and that the minimum value is approximately $1 - \sqrt{2} \approx -0.41$. How well do these approximations match up with the plot called for in part b?

d. Show that $\hat{\rho}_X(h) = 1$ for $0 \leq h \leq n - 1$. Hint: argue that $x_{t+h} - \bar{x}_{h+1:n} = x_t - \bar{x}_{1:n-h}$.

e. For the specific case considered in part a, how does $\hat{\rho}_X(70)$ compare to $\tilde{\rho}_X(70)$? Which one is the appropriate summary of the scatter plot requested in part a?

Problem 7 (3 points for each of the 2 parts). Given a time series $\{x_t\}$, let $\{w_t\}$ be the output from a two-sided moving average filter:

$$
w_t = \frac{1}{2q + 1} \sum_{j=-q}^{q} x_{t-j},
$$

where q is a nonnegative integer (see overhead III–26).

a. Show that, if the time series is locally linear at t, i.e., $x_{t-j} = a + b(t-j)$ for $j = -q, \ldots, q$, then $w_t = x_t$.

b. Suppose now that x_t is a realization of $X_t = m_t + Z_t$, where $\{m_t\}$ is a deterministic trend and $\{Z_t\} \sim WN(0, \sigma^2)$. Under the assumption that $m_{t-j} \approx a + b(t-j)$ for $j = -q, \ldots, q$, show that w_t is a realization of an approximately unbiased estimator of m_t, and determine the variance of this estimator.

Problem 8 (3 points for each of the 2 parts). Let $\{Y_t\}$ be a stationary process with ACVF $\gamma_Y(\cdot)$, and let k be any positive integer.

a. Show that $\{\nabla^k Y_t\}$ is a stationary process (Appendix D at the end of Chapter 5 of Cryer & Chan defines and discusses the unit-lag difference operator ∇; see also overheads III–79 and III–80). Note: you need not determine an explicit expression for the ACVF for $\{\nabla^k Y_t\}$.

2
b. Show that, if $X_t = m_t + Y_t$, where $m_t = \sum_{j=0}^{k} c_j t^j$ is a kth order polynomial (which implies that $c_k \neq 0$), then $\{\nabla^k X_t\}$ is a stationary process, whereas $\{\nabla^{k-1} X_t\}$ is not.

Solutions are due Friday, January 22, at the beginning of the class.