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Overview

e will discuss work in progress on the ‘zephlet’ transform, an
orthonormal discrete wavelet transform (DW'T) based on zero-
phase filters

e will start by giving some background on the DWT as formu-

lated in Daubechies (1992) —see, e.g., Percival & Walden (2000)
or Gengay et al. (2002) for further details

e will then describe the zephlet transform and how it differs from
the usual DW'T', with an illustration of some of its properties



Background on DWT: I

olet X = (X, Xq,... ,XN_l]T be a vector of N time series
values (note: “T" denotes transpose; i.e., X is a column vector)

e for simplicity, assume [V is an even number
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Background on DWT: 11

e DWT is a linear transform of X yielding N DW'T coefhicients

e notation: W = WX, where W is vector of DW'T coeflicients,
and W is N x N orthonormal transform matrix

e orthonormality says W/ W = Iy (N x N identity matrix)

e orthonormality is exploited heavily in, among other uses, DW'T-
based extraction of signals (‘wavelet shrinkage’)

e to focus discussion, will concentrate on so-called unit-level DW'T',
for which W = [WT VlT]T, where the two subvectors contain

— wavelet coefficients W1 = [W7 g, W1 g, ..., W M_l]T and

— scaling coefficients Vi = [V} 9, V10, ..., Vin_
"D

e higher-level DW'T's use unit-level DWTs over and over again
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The Wavelet Filter: 1

e matrix WV is rarely constructed explicitly, but rather is formed
implicitly by use of a wavelet filter

elet {h;:1=0,...,L —1} be a real-valued filter of width L

e for convenience, will define iy =0 forl < Oand ! > L



The Wavelet Filter: 11

e {h;} called a wavelet filter if it has these 3 properties

. summation to zero:
L—1
> h=0
[=0
2. unit ‘energy’ (i.e., squared Euclidean norm):
L—1
> hi=1
[=0
3. orthogonality to even shifts: for all nonzero integers n, have

L—1
> hhyio, =0
[=0

e 2 and 3 together are called the orthonormality property
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The Wavelet Filter: 111

e summation to zero and unit energy relatively easy to achieve

e orthogonality to even shifts is key property & hardest to satisfy
(implies L must be even; common choices are 2,4, ..., 20)

e define transter function for wavelet filter, i.e., its discrete Fourier
transform (DFT), along with its squared gain function:

L—1

H(f)=> e ™ and H(f) = |H(f)

[=0

e orthonormality property is equivalent to
H(f)+H(f+3)=2 forall f

(an elegant — but not obvious! — result)
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The Wavelet Filter: 1V

e simplest wavelet filter is Haar (L = 2): hg = ﬁ & hy = —%

e note that hg + hy = 0 and h% + h% = 1, as required
e orthogonality to even shitts also readily apparent
e squared gain function is

H(f) = 2sin*(x f),

for which

as required



Construction of Wavelet Coefficients: 1

e given wavelet filter {h;} of width L & time series of even length,
obtain wavelet coeflicients as follows

e circularly filter X with wavelet filter to yield output

L1 L1
> WX = MXimedN, t=0,...,N—1;
1=0 =0

i.e., if ¢ — [ does not satisty 0 <t —[ < N — 1, interpret X;_;
as X¢_1 mod N; for example, X_1 = Xy_jand X_9 = Xy_9
e take every other value of filter output to define
L—1

_ N :
Wl,t — Z hMXot41-1mod N» £ =0, o — L
[=0
W/ formed by downsampling filter output by a factor of 2
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Construction of Wavelet Coefficients: 11

e can write W1 = W, X, where, when N > 10 for example,

It P I R s B
wi=| ™ el Dy B hg s hy

Ay By o By 3 By_y By_g oo g Ry g by

e here h) = hy when L < N, but takes different form if L > N;
for example, if N =10 and L = 20, hy = hy + hy11g

e can argue that W1W1T =1 N/2 for all L and N

e WV is the top half of orthonormal transform matrix WV



The Scaling Filter: 1

e create scaling filter {g;} by reversing {h;} and then changing
sign of coefficients with even indices

{h} {h;} reversed {ag:}
A\
O ----f-- - o< O /. .\ ____e-0 -.-;0/- ______ ._\O_),,{o_
N / \ \

e precise definition is g; = (—1)l+1hL_1_l
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The Scaling Filter: 11

e properties 2 and 3 (orthonormality) of {h;} are shared by {g;}:

2. unit energy:
L—1
2
>0 =1
[=0

3. orthogonality to even shifts: for all nonzero integers n, have

L—1
Z 9191+2n = 0
[=0

e squared gain function G(-) for scaling filter satisfies

G(f) :H(f+%) and hence H(f)+G(f) =2

is equivalent way of stating orthonormality property
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Construction of Scaling Coefficients: 1

e orthonormality property of {h;} is all that is needed to prove
W is half of an orthonormal transform (never used ) ; h; = 0)

e going back and replacing h; with g; everywhere yields another
half of an orthonormal transform

e circularly filter X using {g;} and downsample to define scaling
coefficients:
L—1

_ N
vl,tzzng2t+1—lmodN7 t:O,...,7—1
[=0
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Construction of Scaling Coefficients: 11

e have V| = V1 X, where V; is analogous to W;:

99 9 9IN—19N—2 9N-3 " 95 94 93 9>
@) O O @) @) O
V) = 93 9 91 Y9 9INn-1 " 97 Y6 95 94

_g?v—1 IN—2 IN—3 IN—4 IN—5 """ 93 92 91 9

e as before, can argue that VlVlT =1 N/2

e in addition, each row in Wy is orthogonal to each row in V
and hence

w

W= [ !

V1

] 1s an orthonormal transform
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Daubechies Scaling Filters

e Daubechies (1992) constructs a family of scaling filters {g;}
with squared gain functions given by
L_

I < L_ 1+1 ]
Go(f) = 2c0s™(mf) ) (2 ) ) sin” ()
[=0
(corresponding wavelet filter given by hy = (—1)g7 1)

o for given L, there are multiple filters with the same Gp(+), with
these filters being distinguished by their phase functions 6(-);
i.e., their transfer functions can be written as

Z g 6—227Tfl 1/2(f) i0(f)
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Zero-Phase Filters

e Oppenheim and Lim (1981) note that filters with zero phase
(i.e., B(f) = 0 for all f) are important for eliminating distor-
tions in filtered signals (particularly in images)

e zero-phase filters also facilitate aligning filter output with input

e conventional zero-phase filters {a;} must be of odd length, say
L =2M + 1, and take the foorma_; =a; for l = —-M, ..., M

e three examples of zero-phase filters

L=7 L =11 L =15
o o &
O/I\O O/E\O O/ \O
o / - \ 5 O“Ko/o/ : \o\o/‘}‘Q O@”Q‘%Op/ - \%/O’Q\%



‘Least Asymmetric’ Scaling Filters (Symlets)

e in recognition of importance of zero-phase filters, Daubechies
(1992) uses spectral factorization to obtain filters of widths L =
8,10, 12, ... closest to having zero phase (after a reindexing)

e three members of her class of ‘least asymmetic’ scaling filters

L =28 L =12 L =16
0 & &

O/i\ O/i\ O/i\
/ s / e / ' Q
- ‘\(‘)/‘O/-Q O“O\(');o' “-o-pottoe e -4 - >0-0-0-0-

~0O OO
O
ol

e cannot achieve filters with exact zero phase under her scheme
because L must be even
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Zero-Phase Wavelet (Zephlet) Transform: I

e possible to construct orthonormal DW'T' based on filters whose
squared gain functions are consistent with those of Daubechies,
but with exact zero phase, as following theorem states

e let G(-) and H(-) be squared gain functions satisfying
G(§) + G +3) =2 and H(F) + G(4) =2 for all 1

o let {g;} & {h;} be inverse DFTSs of the sequences {91/2(%)}
e k)

N—1
1 .
gl N E g1/2<%>622ﬂklﬂva l — 07 17 ceey N T 17
k=0

with an analogous expression for /;
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Zero-Phase Wavelet (Zephlet) Transform: II

e define the % x NN matrices
b hg hn—1 hy_9 hy_g -+ hs hy h3 hg]

D, — hg  ha  hi ho hy—1--- h7 he hs hy
N1 hy—2 An_3 hy—g hy_5 -+ h3 ho Iy by
and
9o 9gN-1 gN-2 gN-3 GN—4 *-* 94 93 92 91
Cy = 92 91 90 9N-19N-2 " 96 95 94 93

IN—2 gN—-3 GN—4 GN—5 GN—6 """ 92 91 90 GN—1|
(note that, while Dy has a form analogous to W, & Vy, rows
of Cy are circularly shifted to the left by one)
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Zero-Phase Wavelet (Zephlet) Transform: ITI

e then the N x N matrix formed by stacking Dq on top of Cy is
a real-valued orthonormal matrix; i.e,

D = [?1] is such that DI'D = Iy
1

e moreover, the zero-phase circular filters {;} and {g;} are re-
lated by g; = (—1)'h; (note that this is in contrast to what
holds for DWT filters, namely, g; = (—1)"1h; 1))

e proof of above theorem is similar in spirit to proof that W is
orthonormal, but details differ

e algorithms for computing DW'T and zephlet transform are, re-
spectively, O(N) and O(N - logy(N))
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Zero-Phase Wavelet (Zephlet) Transform: IV

e for case V = L = 16, let’s compare values in rows of V; based
on Daubechies’ least asymmetric filter and corresponding Cy
(after alignments for easier comparison)

DWT filter g; = g zephlet transform filter g
o o
4\ /)
/ O /O : Q
_@—@_QG\_C_D:O_ - i‘ - ‘\‘OO/Q‘@GG‘@ ‘@'@‘Q—Q\‘C‘)‘O‘ - - i‘ - - O_Cj/QQG@_@

e for any N and L, squared magnitudes of DF'Ts of {g;'} & {g;}
at fr. = k/N are exactly the same, but phase functions differ,
with that for {g;} given by 0(fi.) =0
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Zero-Phase Wavelet (Zephlet) Transform: V

e for fixed L > 8, values in rows of zephlet transform change as
N increases (DW'T rows just add more 0’s for all N > L)

e consider zephlet transform based on least asymmetric filter for
L = 8 and cases N = 8 (pluses) and N = 32 (circles)

- @@@@@-@-@-@-@-@-@-O\@_@/ p- -\@@@@@@@@@@@@@-@-@- :
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

g = V2 [1 +(=1)1S) 4 + (—1)H151,_} N 2(—1)'y/2

N m(1 — 412)
for large N, where
: 201
sin(7m==)
S) + = sin((21 & 1)7 ¥4 :
[, (( ) AN Lin(w%ﬁj)

e Haar-based {g;} for N = 2:

OO
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

g = V2 [1 +(=1)1S) 4 + (—1)H1Sz,_} N 2(—1)'y/2

N m(1 — 412)
for large N, where
: 201
sin(7m==)
S) + = sin((21 & 1)7 ¥4 :
[, (( ) AN Lin(w%ﬁj)

e Haar-based {g;} for N = 4
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

g = V2 [1 +(=1)1S) 4 + (—1)H1Sz,_} N 2(—1)'y/2

N m(1 — 412)
for large N, where
: 20+1
sin(7m==)
S) 4 = sin((20 + 1)r :
e = sl i
e Haar-based {g;} for N = 6:
A
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

g = V2 [1 +(=1)1S) 4 + (—1)H1Sz,_} N 2(—1)'y/2

N m(1 — 412)
for large N, where
201
sin(7m=5—=)
S, 4+ =sin((20 + 17l 4
[+ — (( ) AM Lm(w%ﬁj)

e Haar-based {g;} for N = &

0
I\
__________________________ oS AN oy

O O
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

g = V2 [1 +(=1)1S) 4 + (—1)H1Sz,_} N 2(—1)'y/2

N m(1 — 412)
for large N, where
201
sin(7m=5—=)
S, 4+ =sin((20 + 17l 4
[+ — (( ) AM Lm(w%ﬁj)

e Haar-based {g;} for N = 10:

i
O
........................ @,Q\. \ N T

O O
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

g = V2 [1 +(=1)1S) 4 + (—1)H1Sz,_} N 2(—1)'y/2

N m(1 — 412)
for large N, where
: 201
sin(7m==)
S) + = sin((21 & 1)7 ¥4 :
[, (( ) AN Lin(w%ﬁj)

e Haar-based {g;} for N = 12:
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 14
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 16:
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 18:
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 20:

O\
OEO

--- @-e-@-@-@-@—&@/- -- - -\09@@—@@@@@ --------------
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 22:

O\
OEO

ERREEEEEEE @-@-@-@-@-O-@—O\—OZ k- —\—09@»@-@—9@@@@ ————————————
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 24

O\
OEO

R @-@-@-@-@-@-@-@—O\@/ k- -\Oz@@»@-@—@@@@@@ ——————————
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 26:

O\
OEO

———————— @@-@-@-@-@-@-@-@—O\@Z k- -\-O@@@-@—@@@@@@@- Smeees
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 28:

O\
OEO

------ @@@-@-@-@-@-@-@-@—O\@Z k- '\'O/Q”@‘@‘@‘@@GG@G@@' S--e-
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 30:

O\
OEO

- @@@@-@-@-@-@-@-@-@—O\@Z k- '\'OQ@@@‘@@@G@@G@@' -
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

1\
=5 [+ (1S + (S ] w2

for large N, where

° 201
- A1\ SIn(TE)
S1 4+ = sin((2l & 1)7= 37 >sin(7r21i1)
AM

e Haar-based {g;} for N = 32:

O\
OEO

-- @@@@@-@-@-@-@-@-@-@—O\@Z - -\@Q@@-@—@@@@@@@@@—@— :
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Comparison of Outputs from LA(8) & Zephlet
Scaling Filters (Input is Doppler Signal)

20 25 30 35 40
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Concluding Remarks

e more work needed to elicit advantages/disadvantages of zephlet
transform over usual DW'T (in particular, for economic appli-
cations)

e can also formulate ‘maximal overlap’ version of zephlet trans-
form (details in Percival, 2010)

e thanks to Ramo Gencay & conference organizers for opportu-
nity to talk!

e research supported in part by U.S. National Science Founda-
tion Grant No. ARC 0529955 (any opinions, findings and con-
clusions or recommendations expressed in this talk are those
of the author and do not necessarily reflect the views of the
National Science Foundation)
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