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Overview

e will discuss work in progress on the ‘zephlet’ transform, an
orthonormal discrete wavelet transform (DWT) based on zero-
phase filters

e will start by giving some background on the DWT as formu-
lated in Daubechies (1992) — see, e.g., Percival & Walden (2000)
or Gengay et al. (2002) for further details

e will then describe the zephlet transform and how it differs from
the usual DW'T, with an illustration of some of its properties

Background on DWT: I

olet X = [Xy, X1,..., Xn_1]7 be a vector of N time series
values (note: “I"” denotes transpose; i.e., X is a column vector)

e for simplicity, assume N is an even number
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Background on DWT: II

e DWT is a linear transform of X yielding N DW'T coefficients

e notation: W = WX, where W is vector of DW'T coefficients,
and Wis N x N orthonormal transform matrix

e orthonormality says WIW = Iy (N x N identity matrix)

e orthonormality is exploited heavily in, among other uses, DW'T-
based extraction of signals (‘wavelet shrinkage’)

e to focus discussion, will concentrate on so-called unit-level DW'T,
for which W = [WT, VT]7 where the two subvectors contain

— wavelet coefficients Wy = [W7 g, W1, ..., W N 1]T and
9T
— scaling coefficients V1 = [V] 9, V10, ..., V1 M_l]T
2
e higher-level DW'Ts use unit-level DWTs over and over again
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The Wavelet Filter: 1

e matrix W is rarely constructed explicitly, but rather is formed
implicitly by use of a wavelet filter

elet {h;:1=0,...,L —1} be a real-valued filter of width L

e for convenience, will define h; =0 for [ <0 and [ > L

The Wavelet Filter: 11

o {hy} called a wavelet filter if it has these 3 properties

1. summation to zero:
L—-1
Sty
=0
2. unit ‘energy’ (i.e., squared Euclidean norm):
L—1
2
> k=1
=0
3. orthogonality to even shifts: for all nonzero integers n, have

L1
> Wihiion =0
1=0

e 2 and 3 together are called the orthonormality property
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The Wavelet Filter: III

e summation to zero and unit energy relatively easy to achieve

e orthogonality to even shifts is key property & hardest to satisfy
(implies L must be even; common choices are 2,4, . .., 20)

e define transfer function for wavelet filter, i.e., its discrete Fourier
transform (DFT), along with its squared gain function:

L-1
H(f) =Y e and H(f) = |H()P
=0

e orthonormality property is equivalent to
H(f)+H(f + %) =2 forall f

(an elegant — but not obvious! — result)
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The Wavelet Filter: IV

e simplest wavelet filter is Haar (L = 2): hy = ﬁ & hy = —ﬁ

e note that hg + hy =0 and h% + h% = 1, as required

e orthogonality to even shifts also readily apparent

e squared gain function is

H(f) = 2sin*(rf),
for which
H(f) +H(f + 1) = 2sin®(rf) + 2sin®(x[f + 3])

— 2sin?(nf) 4 2cos’(n f)
=2,

as required




Construction of Wavelet Coefficients: 1

e given wavelet filter {h;} of width L & time series of even length,
obtain wavelet coefficients as follows

e circularly filter X with wavelet filter to yield output

L-1 L-1
S X =Y WXy jmean, t=0,...,N—1
=0 =0
Le., if t — 1 does not satisty 0 <t —1 < N — 1, interpret X;_;
as Xy_1 mod N; for example, X_1 = Xy_jand X_o=Xy_o
e take every other value of filter output to define
L—-1
_ N .
Wit=> mXoptmod N» =0, 5 —1;
=0
W, formed by downsampling filter output by a factor of 2
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Construction of Wavelet Coefficients: I1

e can write W1 = WX, where, when N > 10 for example,
h,‘cf) h§ ?V;l h?VO—Q ZV*?’ h§ hz h§ h§
wi=| Mt B hg by Ry ke hs
hiy_y hiy_o By_g hiy_y hiy_5 -+ h3 h3 hy Iy
e here hy = hy when L < N, but takes different form if L > N;
for example, if N =10 and L = 20, hj = hy + hy4q9
e can argue that W1W1T = 1IN/ for all L and N

e W is the top half of orthonormal transform matrix W

The Scaling Filter: 1

e create scaling filter {g;} by reversing {h;} and then changing
sign of coefficients with even indices

{hi} {h} reversed {a:}

o precise definition is g; = (—1)hy
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The Scaling Filter: 11

e properties 2 and 3 (orthonormality) of {h;} are shared by {g;}:

2. unit energy:
L

|
_

2
gy =1
=
3. orthogonality to even shifts: for all nonzero integers n, have

L1
> Gigiron =0
1=0

e squared gain function G(-) for scaling filter satisfies
G(f) = H(f +3) and hence H(f) + G(f) =2

is equivalent way of stating orthonormality property

o
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Construction of Scaling Coefficients: I

e orthonormality property of {h;} is all that is needed to prove
W is half of an orthonormal transform (never used »; by = 0)

e going back and replacing h; with g; everywhere yields another
half of an orthonormal transform

e circularly filter X using {¢;} and downsample to define scaling
coefficients:
L-1

_ N
Vit = Z 91 Xot+1—lmod N: t=0,...,5 =1
1=0
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Construction of Scaling Coefficients: II

e have V| = VX, where V; is analogous to Wy:

90 9 9IN-19N-29N-3 " 95 91 93 95
o O (e} (e} (o] o o] (o] o]
V= g3 9 91 9o IN-1 " 97 96 95 94

IN-1 IN-2 IN—3 IN—4 IN-5 """ 93 92 97 90
e as before, can argue that V1V1T = IN/Q

e in addition, each row in W is orthogonal to each row in Vi
and hence

W = P;Vl] is an orthonormal transform
1
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Daubechies Scaling Filters

e Daubechies (1992) constructs a family of scaling filters {g;}
with squared gain functions given by

ULy
Q(D)(f)EQCosL(Wf)Z<2 z )sian(wf)

=0
(corresponding wavelet filter given by hy = (—1)lgz_1_;)

e for given L, there are multiple filters with the same Gp)(+), with
these filters being distinguished by their phase functions 6(-);
i.e., their transfer functions can be written as

L—1
G(f) =3 g = G ()
=0

14

Zero-Phase Filters

e Oppenheim and Lim (1981) note that filters with zero phase
(ie., O(f) = 0 for all f) are important for eliminating distor-
tions in filtered signals (particularly in images)

e zero-phase filters also facilitate aligning filter output with input

e conventional zero-phase filters {a;} must be of odd length, say
L =2M + 1, and take the foom a_; =a; for il = —-M,..., M

e three examples of zero-phase filters
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‘Least Asymmetric’ Scaling Filters (Symlets)

e in recognition of importance of zero-phase filters, Daubechies
(1992) uses spectral factorization to obtain filters of widths L =
8,10,12, ... closest to having zero phase (after a reindexing)

e three members of her class of ‘least asymmetic’ scaling filters

8 L=12 L =16

A A A

o

e cannot achieve filters with ezact zero phase under her scheme
because L must be even
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Zero-Phase Wavelet (Zephlet) Transform: I

e possible to construct orthonormal DWT based on filters whose
squared gain functions are consistent with those of Daubechies,
but with exact zero phase, as following theorem states

e let G(+) and H(-) be squared gain functions satisfying
Q(%) + g(% +1)=2 and H(%) + g(%) =2 for all %
elet {g;} & {Rh;} be inverse DFTs of the sequences {g1/2(§)}
& AR P (R)):
7:iN_l 12k Gi2nkl/N 1 _ 4 N1
gl—NkZOg (N)e ) p Ly )

with an analogous expression for I
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Zero-Phase Wavelet (Zephlet) Transform: II

e define the % x N matrices
hi hy hy_y hn_9 hn_3 -+ hs hy h3 hy

- hs  hy hy  hy hy_qi -+ hy hg hs by
L= : H : ; : T
hy—1 hn—o hy_3 hy—g hy_5 -+ hg ha hy hy
and
90 9gN-1 GN—2 gN-3 GN—4 "** 94 93 92 g1
C, = g2 91 90 9gN-19N-2 " 96 95 94 93

IN—2 gN-3 gN—4 GN—-5 GN—6 """ 92 91 90 GN—-1
(note that, while Dy has a form analogous to Wy & Vy, rows
of Cy are circularly shifted to the left by one)
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Zero-Phase Wavelet (Zephlet) Transform: III

e then the N x N matrix formed by stacking Dy on top of Cy is
a real-valued orthonormal matrix; i.e,

D= [Zgl} is such that DTD = Iy
1

e moreover, the zero-phase circular filters {h;} and {g;} are re-
N S
lated by g; = (—1)'h; (note that this is in contrast to what
holds for DWT filters, namely, g; = (—1)!" hy ;)

e proof of above theorem is similar in spirit to proof that W is
orthonormal, but details differ

e algorithms for computing DW'T and zephlet transform are, re-
spectively, O(N) and O(N - logy(N))

19




Zero-Phase Wavelet (Zephlet) Transform: IV

e for case N = L = 16, let’s compare values in rows of V| based
on Daubechies’” least asymmetric filter and corresponding Cq
(after alignments for easier comparison)

DWT filter g; = ¢ zephlet transform filter g
i A
4\ s
/ : o\ 01 Q
—@@-—Qo\—&o— - 500000 0eRL S 5P eeoo

o for any N and L, squared magnitudes of DFTs of {g7} & {g;}
at fr. = k/N are exactly the same, but phase functions differ,
with that for {g;} given by 6(f;.) =0
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Zero-Phase Wavelet (Zephlet) Transform: V

o for fixed L > 8, values in rows of zephlet transform change as
N increases (DWT rows just add more 0’s for all N > L)

e consider zephlet transform based on least asymmetric filter for
L = 8 and cases N = 8 (pluses) and N = 32 (circles)
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Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

21 (1)l + (1) ]~ 22

0 =" T or(1—42)
for large N, where
. 20+1
sin(m& =
S; 4+ =sin((20 £ I)W%A}l) } ( 2li1)
) Sln(ﬂ'm)

e Haar-based {g;} for N = 32:
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Comparison of Outputs from LA(8) & Zephlet
Scaling Filters (Input is Doppler Signal)

20 25 30 35 40
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Concluding Remarks

e more work needed to elicit advantages/disadvantages of zephlet
transform over usual DWT (in particular, for economic appli-
cations)

e can also formulate ‘maximal overlap’ version of zephlet trans-
form (details in Percival, 2010)

e thanks to Ramo Gencay & conference organizers for opportu-
nity to talk!

e research supported in part by U.S. National Science Founda-
tion Grant No. ARC 0529955 (any opinions, findings and con-
clusions or recommendations expressed in this talk are those
of the author and do not necessarily reflect the views of the
National Science Foundation)
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