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Abstract. Water temperature measurements from Wivenhoe Dam of-3

fer a unique opportunity for studying fluctuations of temperatures in a sub-4

tropical dam as a function of time and depth. Cursory examination of the5

data indicate a complicated structure across both time and depth. We pro-6

pose simplifying the task of describing these data by breaking the time se-7

ries at each depth into physically meaningful components that individually8

capture daily, subannual and annual (DSA) variations. Precise definitions9

for each component are formulated in terms of a wavelet-based multireso-10

lution analysis. The DSA components are approximately pairwise uncorre-11

lated within a given depth and between different depths. They also satisfy12

an additive property in that their sum is exactly equal to the original time13

series. Each component is based upon a set of coefficients that decomposes14

the sample variance of each time series exactly across time and that can be15

used to study both time-varying variances of water temperature at each depth16

and time-varying correlations between temperatures at different depths. Each17

DSA component is amenable for studying a certain aspect of the relation-18

ship between the series at different depths. The daily component in general19

is weakly correlated between depths, including those that are adjacent to one20

another. The subannual component quantifies seasonal effects and in par-21

ticular isolates phenomena associated with the thermocline, thus simplify-22

ing its study across time. The annual component can be used for a trend analy-23

sis. The descriptive analysis provided by the DSA decomposition is a use-24

ful precursor to a more formal statistical analysis.25
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1. Introduction

The Queensland Bulk Water Supply Authority (henceforth ‘Seqwater’) is the bulk water26

supplier for South-East Queensland (SEQ), Australia. The overall mission of Seqwater27

is to manage catchments, water storages and treatment services to ensure the quantity28

and quality of water supplies to SEQ (see www.seqwater.com.au for details). To help29

fulfill this mission, Seqwater recently upgraded their ongoing monitoring program by the30

permanent installation of YSI 6955 vertical profiling systems within the Lake Wivenhoe31

dam to monitor a number of water quality indicators at different depths every 2 hours32

(see www.ysi.com for details about the profiler). In addition to temperature (the focus33

of this paper), these water quality indicators include pH, turbidity, dissolved oxygen,34

specific conductivity, blue green algae and chlorophyll-a. This upgrade was in response35

to a need for a greater frequency in sampling because of concerns that algae blooms,36

conductivity spikes, anoxic events and lake turnovers might be inadequately captured37

and/or represented under the old monitoring program. The ability to collect data more38

frequently and automatically both expands the scope of the old monitoring program (in39

which the time between samples might be up to 3 weeks) and reduces costs involved with40

the need for a greater frequency in sampling.41

For this paper we conduct a detailed study of temperature because it is an important42

driver for other water quality indicators. We examine a 600 day segment of temperatures43

collected by the profiling system at depths of 1, 5, 10, 15 and 20 meters at two hour44

intervals starting on 1 October 2007. These data offer a unique chance to study the45

depth/temporal evolution of dam temperatures in a subtropical climate. Figure 1 shows46
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plots of the temperature series at these five depths. A cursory examination of this figure47

indicates a complicated structure both across time and down different depths. We propose48

simplifying the task of describing these data by breaking each series up into components49

that individually capture the daily, subannual (seasonal) and annual (DSA) variations50

in the series. As discussed in Section 2, we formulate precise definitions for each of51

these components in terms of a wavelet-based multiresolution analysis (MRA). The DSA52

components are such that (1) they are approximately pairwise uncorrelated; (2) they53

satisfy an additive property in that their sum is exactly equal to the original time series;54

and (3) they are based upon coefficients that can be used to decompose the sample variance55

of each time series exactly across time and that are amenable for studying the relationships56

between the series at different depths. Our analysis is mainly descriptive, but provides57

insight into what components would be needed for a complete statistical model of water58

temperatures as a function of time and depth. Our results are also of potential interest59

for comparison with physical models of how dam water temperatures evolve over depth60

and across time.61

The remainder of this paper is organized as follows. Section 2 gives an overview of62

standard wavelet analysis and the adaptations we have made. Section 3 describes the63

preparations we have made to the data prior to our analysis. Section 4 presents our64

analysis, followed by a discussion in Section 5. We summarize our main results and65

technical contributions in Section 6. Appendices A to E contain some technical details.66

2. Wavelet-Based Analysis and Its Adaptation for Dam Water Temperatures

The analysis of dam water temperatures we present in this paper is an adaptation of67

standard wavelet analysis. Prior to describing our adaptations in Section 2.2, we review68
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the key ideas behind wavelet analysis for time series in the following subsection, with69

technical details deferred to Appendix A.70

2.1. Overview of wavelet analysis of time series

Let X denote a column vector whose elements Xt, t = 0, 1, . . . , N − 1, represent a time

series of N regularly sampled observations; i.e., the time associated with Xt is t0 + t∆,

where t0 is the time at which X0 was observed, and ∆ is the sampling time between

adjacent observations (∆ = 2 hours for the water temperature time series). The wavelet

analysis of a time series is based upon a linear transformation of X, expressed as

fW = fWX. (1)

Here fW is a matrix that takes the time series and produces a vector of so-called maxi-71

mal overlap discrete wavelet transform (MODWT) coefficients fW (Percival and Guttorp,72

1994). This type of wavelet transform is essentially the same as ones going under the names73

‘undecimated DWT’ (Shensa, 1992), ‘shift invariant DWT’ (Beylkin, 1992; Lang et al.,74

1995), ‘wavelet frames’ (Unser, 1995), ‘translation invariant DWT’ (Coifman and Donoho,75

1995; Liang and Parks, 1996; Del Marco and Weiss, 1997), ‘stationary DWT’ (Nason and76

Silverman, 1995), ‘time invariant DWT’ (Pesquet et al., 1996) and ‘non-decimated DWT’77

(Bruce and Gao, 1996).78

There are two types of MODWT coefficients in fW, namely, wavelet coefficients and79

scaling coefficients. While each element Xt in X is associated with a time index t, each80

wavelet coefficient fWj,t in fW has two indices, namely, a so-called scale index (or level) j,81

where j = 1, 2, . . . , J0, and a time index t (as explained below, we select J0 = 9 as the82

maximum level to be entertained for the water temperature time series, but this choice is83
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application dependent). The time index for fWj,t can be related to the time index for Xt84

and says that, in forming this coefficient, we are only making use of values in X centered85

at a particular time. The scale index j indicates how many values from X are in effect86

being used to form fWj,t. If j is small (large), then fWj,t depends mainly upon a small87

(large) number of values from X. A complementary interpretation of the level j is as an88

index for an interval of frequencies f defined by 1/(2j+1 ∆) < f ≤ 1/(2j ∆). With this89

interpretation, we say that fWj,t is summarizing the frequency content in a subset of values90

from X over the interval of frequencies Ij = (1/(2j+1 ∆), 1/(2j ∆)].91

The scaling coefficients are the other type of coefficients in fW. Like the wavelet co-92

efficients, each scaling coefficient has a level index and a time index t, but the former93

assumes only the single value J0. We denote the scaling coefficients by eVJ0,t. The index t94

in eVJ0,t has the same interpretation as in fWj,t, but the associated interval of frequencies95

is now I0 = [0, 1/(2J0+1 ∆)]. Note that the union of Ij, j = 0, 1, . . . , J0, is [0, 1/(2∆)],96

which comprises all of the physically meaningful frequencies in a Fourier decomposition97

of X. Collectively, we can think of the wavelet and scaling coefficients as forming local-98

ized Fourier analyses of X, where the first index on a coefficient indicates the interval99

of frequencies with which the coefficient is associated, while the second index t indicates100

what part of the time series is being looked at. The scaling coefficients capture the local-101

ized low-frequency variations in X, whereas the wavelet coefficients do the same over the102

frequency intervals Ij, j = 1, 2, . . . , J0.103

Let us now place all the wavelet coefficients in fW that are associated with level j into the

vector fWj, and all the scaling coefficients into the vector fVJ0 . Each of these vectors has

the same number of elements N as the original time series X (hence, in Equation (1), the
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matrix fW is of dimension (J0 +1)N ×N , and the vector fW has (J0 +1)N elements). Let

kXk2 ≡ P
t X

2
t denote the square of the Euclidean norm of the vector X. One important

property of the wavelet transform of X is that the MODWT coefficients preserve the sum

of squares of the original data; i.e., kfWk2 = kXk2. Since the union of the elements of fW1,

fW2, . . ., fWJ0 and fVJ0 comprises all the elements of fW, we also have

kXk2 =
J0X

j=1

kfWjk2 + kfVJ0k2. (2)

The interpretation of kfWjk2 is that it is the part of kXk2 attributable to localized Fourier104

coefficients associated with the frequency interval Ij; on the other hand, kfVJ0k2 is asso-105

ciated with the low-frequency interval I0. Letting X =
P

t Xt/N represent the sample106

mean of X, we can express its sample variance as107

σ̂2
X ≡

1

N

N−1X

t=0

≥
Xt −X

¥2
=

1

N
kXk2 −X

2
=

J0X

j=1

1

N
kfWjk2 +

µ
1

N
kfVJ0k2 −X

2
∂

≡
J0X

j=1

σ̂2
j + σ̂2

0, (3)

where σ̂2
j and σ̂2

0 can be interpreted as sample variances associated with fWj and fVJ0 (the108

nature of the wavelet transform is such that the sample mean of fVJ0 is X also, whereas109

the coefficients in fWj can be considered as coming from a population whose theoretical110

mean value is zero). We thus can break up the sample variance of X into J0 + 1 parts,111

J0 of which (the σ̂2
j ’s) are attributable to fluctuations in the intervals of frequencies Ij,112

and the last (σ̂2
0), to fluctuations in X over the low-frequency interval I0. We refer to113

the decomposition of σ̂2
X afforded by Equation 3 as a wavelet-based analysis of variance114

(ANOVA).115

In addition to a wavelet-based ANOVA, we can use the MODWT coefficients to obtain

a wavelet-based additive decomposition known as a multiresolution analysis (MRA). For-
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mally the MRA follows from the fact that we can readily recover X from its MODWT

coefficients fW via the synthesis equation

X = fWT fW. (4)

By an appropriate partitioning of both fW and fW, we can rewrite the synthesis equation

as

X =
J0X

j=1

eDj + eSJ0 , (5)

where eDj and eSJ0 are N -dimensional vectors known as, respectively, the jth level ‘detail’116

and the J0th level ‘smooth.’ The vector eDj depends just upon fWj and those rows in117

fW used to create fWj from X, so we can interpret eDj as the portion of the additive118

decomposition due to fluctuations in the interval of frequencies Ij; an analogous argument119

says that we can interpret eSJ0 as the part of the MRA due to low-frequency fluctuations.120

The components of an MRA are intended to capture distinct aspects of a time series and,121

if proper care is taken, can be regarded as approximately pairwise uncorrelated.122

2.2. Wavelet analysis adapted for use with dam water temperatures

Two important physical drivers of dam water temperature time series can ultimately be

traced to the daily rotation of the earth and to the revolution of the earth about the sun.

We seek an additive decomposition of the series with components that isolate diurnal and

annual variations. Such a decomposition should facilitate analysis of water temperatures

because we can then study their physically motivated components individually. Since

∆ = 2 hours here, the frequency intervals I3, I2 and I1 correspond to [0.75, 1.5], [1.5, 3]

and [3, 6] cycles per day. Any purely periodic daily variation in a time series that is sam-

pled every two hours can be expressed exactly with a Fourier decomposition involving a
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constant and sinusoids with (at most) six frequency components, namely, the fundamental

frequency f1 = 1 cycle/day and its five harmonics fk = kf1, k = 2, 3, . . . , 6 cycles/day.

This fact suggests that, in a wavelet-based MRA, daily fluctuations are captured primar-

ily in details eD1, eD2 and eD3. On the other hand, the smooth eS9 in a level J0 = 9 MRA

captures fluctuations that are lower in frequency than 1/(210 ∆) .= 4.3 cycles/year. Em-

pirically, as shown in Fig. 2, eS9 is preferable to either eS8 or eS10 as a representation of

interannual fluctuations: the former is arguably undersmoothed (containing fluctuations

better ascribed to intra-annual variations), while the latter is somewhat oversmoothed

(hence distorting the interannual fluctuations). With the choice of eS9, we can lump to-

gether the remaining details eD4, eD5, . . . , eD9 in a level J0 = 9 MRA into a component

that captures frequency fluctuations lower than those associated with daily variations,

but higher than those with annual variations, leading to the following the modified MRA:

X = D + S +A, (6)

where

D = eD1 + eD2 + eD3, S = eD4 + eD5 + · · ·+ eD9 and A = eS9.

We refer to D, S and A as the daily, subannual (or seasonal) and annual components and123

to the modified MRA as the DSA decomposition. We denote the tth elements of D, S124

and A by Dt, St and At.125

We can formulate an ANOVA corresponding to the DSA decomposition in two ways. An

obvious approach is to just combine together the squared wavelet coefficients from each of

the levels involved in forming the daily and subannual components; however, the statistical

properties of such a combination are difficult to ascertain because we need to know the

relative influence of squared coefficients from the different fWj’s. A second approach,
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which leads to a more tractable ANOVA and is described in detail in Appendix B, is to

define a new transform, say, U = UX, with a corresponding synthesis equation X = UTU.

Here U has dimension 3N×N , and U contains three types of transform coefficients, which

we place in the N -dimensional vectors D, S and A. These coefficients lead to the sum of

squares decomposition

kXk2 = kDk2 + kSk2 + kAk2, (7)

where

kDk2 =
3X

j=1

kfWjk2, kSk2 =
9X

j=4

kfWjk2 and kAk2 = kfVJ0k2.

In the same way that the sum of squares decomposition of Equation (2) led to the ANOVA

of Equation (3), the above gives us an ANOVA based upon the U transform:

σ̂2
X =

1

N
kDk2 +

1

N
kSk2 +

µ
1

N
kfAk2 −X

2
∂
≡ σ̂2

D + σ̂2
S + σ̂2

A, (8)

where

σ̂2
D =

3X

j=1

σ̂2
j , σ̂2

S =
9X

j=4

σ̂2
j and σ̂2

A = σ̂2
0

A manipulation of the synthesis equation leads to exactly the same additive decomposition126

as given by Equation (6). In essence, we have ‘collapsed’ the 3N wavelet coefficients127

in fW1, fW2 and fW3 into the N coefficients D, and, using just D, we can determine128

D = eD1 + eD2 + eD3; likewise, the 6N wavelet coefficients in fW4, fW5, . . . , fW9 collapse into129

the N -dimensional vector S, and we only need S in order to form S. Henceforth we refer130

to U as the DSA transform. We refer to D, S and A collectively as the DSA transform131

coefficients (or just DSA coefficients) and individually as the daily, subannual and annual132

coefficients.133
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3. Data Preparation

The monitoring system at Wivenhoe Dam is designed to measure water temperature134

and other variables at depths of 1, 2, . . . , 20 m every two hours (to simplify tables and135

figures presented later on, we concentrate on the representative depths of 1, 5, 10, 15136

and 20 m). For the most part, this protocol was successfully adhered to, but, as can be137

seen from Fig. 1, there are a number of gaps in the data, and there is also some jitter138

in the collection times (e.g., a measurement is collected a minute later than anticipated).139

Jittering is unlikely to impact our analysis significantly, but gaps in the data are more140

problematic. There is wavelet methodology for handling gappy time series but currently141

only for univariate time series (see, e.g., Hall and Turlach, 1997, Sardy et al., 1999, Mondal142

and Percival, 2010, and Porto et al., 2010). Since we are interested in the relationships143

between time series collected at different depths, we have elected to fill in the gaps using144

a scheme documented in Appendix C. The gap-filled series are then amenable to analysis145

via the techniques discussed in the previous two sections.146

The nature of the water temperature data also dictates that we pay close attention to147

how the MODWT and the DSA transforms handle boundary conditions. The procedure148

we used is described in Appendix D and is designed to minimize distortions that can arise149

in the analysis at the starts and ends of the various time series.150

4. Data Analysis

Here we present our analysis of the Wivenhoe Dam water temperature time series based151

upon the wavelet and DSA transforms described in Section 2. Figure 3 shows the DSA152

decomposition for water temperature time series Xt at depths 1, 5, 10, 15 and 20 m153

(these decomposition are based on interpolated series; the uninterpolated series are shown154
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in Fig. 1). In terms of explaining the variability in Xt, the relative importance of the155

three DSA components is qualitatively easy to see from this figure, where the distance156

between adjacent vertical tick marks represents 2 degrees Celsius in all fifteen plots. For157

each depth, the annual variation is clearly the dominant component, with the subannual158

variation being second in importance. Overall the daily component seems to contribute159

the least to the overall variability of Xt, although there are some limited stretches of time160

over which the daily component apparently has greater variability than the subannual161

component.162

To quantify the relative importance of the three components globally (i.e., when consid-163

ered across the entire 600 day stretch of data) and to explore the relationship between the164

MODWT and DSA coefficients, let us first consider the wavelet-based ANOVA given by165

Equation (3). Figure 4 shows the sample wavelet variances σ̂2
j versus levels j = 1, 2, . . . , 9,166

for the five depths, along with σ̂2
0 (the variance associated with the scaling coefficients eV9).167

The wavelet variances for depths of 15 and 20 m are quite similar in their overall patterns,168

and those for 1 and 5 m are also, except for some divergence at levels j = 6, 7 and 8. The169

10 m depth has a pattern that represents a transition between the patterns at shallower170

and deeper depths. While the absolute levels are different, the gross patterns of variability171

in the wavelet variances are by and large the same at all depths: an increase from j = 1172

to j = 3 (with the single exception of 15 m), followed by a drop between j = 3 and 4,173

and a tendency to increase after that. As noted previously, the fundamental frequency of174

a periodic time series with a period of a day is trapped by the nominal frequency interval175

I3 associated with level j = 3, while its associated harmonics are contained in I1 and I2.176

The fact that, with the exception of 15 m, the wavelet variance at level j = 3 is larger177
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than those at levels 1 and 2 indicates that the fluctuations with a frequency content close178

to the fundamental frequency are stronger than those associated with the harmonics. The179

sum of the wavelet variances indexed by j = 1, 2 and 3 accounts for the portion of the180

total variance of Xt attributable to daily variations; similarly, the sum of those indexed by181

j = 4, . . . , 9 accounts for the variance ascribable to subannual variations. The rest of the182

variance of Xt is accounted for by the variance of the annual coefficients, which is the same183

as that of the level J0 = 9 scaling coefficients and is shown for each depth in the upper184

right-hand corner of Fig. 4. The top part of Table 1 gives the DSA analysis of variance185

for the water temperature data at the five depths (the bottom part has the corresponding186

standard deviations). At each depth, the variance attributable to annual coefficients is187

one or two orders of magnitude greater than that for subannual coefficients, which in turn188

is greater by at least a factor of two than the variances attributable to daily coefficients.189

The variance of the annual coefficients decreases monotonically with depth, while the190

variances of the subannual and daily coefficients decrease also, with minor exceptions to191

this general pattern.192

As shown in Figure 3, the patterns of the annual components for the five depths are193

qualitatively similar, but there are some interesting differences (aside from the overall194

decrease in temperature with increasing depth). The vertical dotted lines in these plots195

indicate the locations of the peak values in 2008 and 2009 and the minimum in 2008. The196

dates of the peaks and minima in 2008 increase with depth, with the peak and minimum197

at 20 m occurring about a month later than the ones at 1 m. The dates of the peaks198

in 2009 also increase with depth, but now the 20 m peak occurs about three months199

later than 1 m peak. If we subtract the height of the 2008 peak from the 2009 peak, the200
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differences decrease with increasing depth and switch from being positive to a negative201

value at 20 m. The annual components at different depths thus do not consistently track202

one another in their fine details across the 600 days of data, and there are noticeable203

variations from one year to the next in the annual pattern, even though we have observed204

less than two full years of data.205

Figure 3 suggests that the variability associated with subannual and daily components206

is not constant across time. We can explore the time-varying variability by studying the207

subannual and daily coefficients from the DSA transform. The square of any individual208

coefficient is a time-localized contribution to the overall variance of the time series. We209

can track changes in variance across time by locally smoothing the squared coefficients.210

Figure 5 shows plots of the squared coefficients after applying a Gaussian-shaped smoother211

with an effective bandwidth of about a month (solid curves), along with lower and upper212

limits of pointwise 95% confidence intervals (CIs); see Appendix E for details. When213

averaged over all 600 days, the variance of the coefficients typically decreases with depth214

for both components (the 600-day average variances are indicated by the horizontal lines).215

The CIs for the variance fluctuations in the daily coefficients rule out the hypothesis that216

the variance is constant across time; the same holds for the subannual component, but217

less dramatically so. There are statistically significant fluctuations in the variance of the218

daily coefficients at a depth of 1 m, but, at greater depths, the relative fluctuations are219

greater (e.g., about three orders of magnitude difference between the largest and smallest220

variances at 10 m). Thus, while variance of the 1 m daily coefficients is relatively stable221

across time, the same cannot be said for the lower depths. The opposite pattern seems222
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to be the case for the subannual fluctuations: the three lower depths seem to have more223

homogenous variances than the two shallower ones.224

Let us now turn to a study of the global cross-correlations between the DSA coefficients225

at the 5 depths. We have a total of 15 sets of coefficients in all, so there are
≥

15
2

¥
= 105226

cross-correlations to consider. Of these, 75 are between two different types of coefficients,227

either at the same depth or different depths. These between-type cross-correlations are228

generally small: 6 are between 0.1 and 0.15, while the remaining 69 are less than 0.1 and229

greater than −0.03. The fact that these cross-correlations are so small lends credence230

to the claim that the DSA transform is separating the Xt series into coefficients whose231

different types (i.e., daily, subannual or annual) are approximately uncorrelated. The232

remaining 30 cross-correlations involve pairs of within-type coefficients at different depths233

and are shown in Table 2, along with the cross-correlations between the Xt series them-234

selves. The daily cross-correlations tend to be quite small, with the largest (0.22) being235

between depths of 5 and 10 m. In particular, there seems to be little correlation between236

the surface (1 m) and other depths. If we lag one of the daily coefficients by ±2, ±4, . . . ,237

±22 hours and look at the cross-correlations between it and the other coefficients, there is238

virtually no difference between these and the unlagged cross-correlations. This rules out239

the hypothesis that there might be a simple lead/lag relationship between the daily coeffi-240

cients at different depths. On the other hand, as is to be expected from an examination of241

the first column of Fig. 3, there are strong cross-correlations between annual coefficients,242

with the correlation decreasing as the distance between the depths increases. There is243

little difference between these cross-correlations and the corresponding ones for the Xt se-244

ries themselves (see the two tables in the bottom row of Table 2). The cross-correlations245
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between subannual coefficients are all positive and are larger (smaller) than between the246

corresponding daily (annual) components. Thus, while the original time series Xt are247

highly correlated, the DSA transform allows us to quantify the fact that this correlation248

is largely due to the annual pattern and to examine how the series are related on a daily249

and subannual basis once the annual pattern has been taken away. The weaker cross-250

correlations between sub-annual components might be explained by atmospheric events.251

The severity of an event could determine how many depths are affected. If a rainfall event252

is strong enough, the surface and middle layers might mix, resulting in similar changes at253

all depths; however, a weaker event might only affect the surface conditions, and not the254

deeper depths.255

Figures 6 and 7 explore the consistency across time in the cross correlations between256

different depths in the daily and subannual coefficients. Here we compute sample cross-257

correlation coefficients on a month-by-month basis. There are some interesting changes in258

the subannual correlations at the deeper depths (Fig. 6). For example, there is a stretch of259

high positive correlations between the 15 and 20 m coefficients from February to September260

in 2008, followed by a gradual decline after that. This stretch of high correlation seems261

to coincide with a stretch of decreased variability at both depths as evidenced in Figs. 3262

and 5. The cross-correlations in the daily coefficients in Fig. 7 tend to be smaller and263

to be less time dependent than those for the subannual coefficients. In particular, the264

cross-correlations between the 1 m coefficients and those at different depths are small265

overall, indicating little direct daily co-temporaneous relationship between temperatures266

near the surface and those at deeper levels. (We also looked at cross-correlations on a267
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week-by-week basis for the daily coefficients, but focusing on shorter intervals did not268

yield correlations that were markedly stronger.)269

The periods of high correlation seem to be well aligned with known periods of stratifi-270

cation in the lake. Stratification often occurs during the summer period when the surface271

water is heated, creating a warm and well mixed surface layer (epilimnion). The deeper272

water remains cold, well mixed and much denser, thus creating a thermocline (a range of273

depths that show a rapid change in temperature) between the surface and bottom layers.274

The surface water cools leading up to winter, creating a much denser and cooler surface275

layer that will exchange with the bottom, resulting in an overturn of the lake. This mix-276

ing process is evident in Figure 6 during autumn/winter, where the monthly correlations277

between depths are positive and strong. This mixing process is also associated with the278

periods of decreased variability. The correlations between 1 m and 20 m depth appear279

to be showing a period of overturn between and April and September 2008. The sudden280

decrease in correlation after September 2008 might identify the beginning of the stratifi-281

cation of the lake. With surface and bottom temperatures separated by a thermocline, we282

would expect there to be lower correlations between the surface and bottom temperatures.283

5. Discussion

The biggest contributors to the overall variability of each temperature series Xt are the284

annual coefficients, which determine the annual component in the DSA decomposition.285

Even though the available data span just 600 days, it is evident from our analysis that the286

annual component at a particular depth can vary considerably from year to year. More287

data are needed to develop an overall depth/time model for the annual component, but288

a study of sparsely sampled historical data could potentially help identify explanatory289
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covariates that might drive the distortions from a purely periodic pattern (e.g., indicators290

of weather patterns, average surface temperatures and total depth of water in the dam).291

The second biggest contributors to the variance of Xt are the subannual coefficients,292

while the daily coefficients are the weakest contributors. The subannual coefficients show293

some indication of increased variability at 1 m depth when compared to the temperatures294

at 20 m, yet the reverse is true for the variability of the daily coefficients. The smaller295

variability in daily coefficients occurs at 1 m, with the largest variability at a depth of296

20 m. The surface temperatures are affected very much by atmospheric conditions such297

as wind and air temperature. Changes in atmospheric conditions will result in changes in298

the surface temperatures, thus creating a less stable system on the subannual scale. The299

bottom depths, however, are not as strongly related to the atmospheric conditions, and300

this is particularly the case when lake stratification has occurred. A substantial change301

in surface temperatures would be required – or a minor change for an extended period of302

time – to have a significant impact on the bottom temperatures, resulting in much more303

stable conditions at the deeper depths.304

Finally we note that global statistics do not necessary reflect localized patterns in the305

time series. To see this, let us consider the daily coefficients. These coefficients correspond306

to what is contributing to the level j = 1, 2 and 3 wavelet variances. Figure 4 shows these307

variances track each other quite closely at depths of 1 and 5 m and, to a lesser extent,308

at depths of 15 and 20 m. The upper left-hand parts of Figs. 5 and 7 indicate that this309

global similarity for 1 and 5 m does not translate into similarity in localized variability310

or significant correlation between daily coefficients. By contrast, the global similarity for311

15 and 20 m exhibited at the three wavelet variances is matched by a similar pattern312
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in localized variability in the lower left-hand plots of Fig. 5 and by significant positive313

correlations in the lower right-hand plot of Fig. 7. The fact that similarity between global314

summary statistics might or might not correspond to similarity between localized measures315

stresses the need for a localized analysis such as is afforded by the DSA transform.316

6. Summary

As can be see from a cursory examination of Fig. 1, Wivenhoe Dam water temperatures317

vary in a complex manner across both depth and time. We can simplify the task of318

describing these data through our proposed DSA decomposition, which is a variation on319

wavelet-based MRA. The motivation for this variation is to combine components from the320

usual MRA into components that capture daily, subannual and annual fluctuations. The321

partitioning afforded by the DSA transform leads to a simple way of quantifying the key322

sources of variability in the data, yielding a component-based description of how water323

temperatures vary across time and how they are related at different depths. This approach324

is largely descriptive, but addresses some of the questions that could be answered more325

formally through a statistical modeling approach. Our exploratory analysis suggests what326

components would be needed in a formal depth/time model to address questions of interest327

to scientists (e.g., how exactly the thermocline manifests itself across depth/time in terms328

of correlations). An item for future work is to study the other water quality indicators329

collected by the profiling system (particularly chlorophyll-a, turbidity, dissolved oxygen330

and specific conductivity) and their relationship to temperature.331

In addition to our analysis of water temperatures, our paper makes four technical con-332

tributions. We propose a frequency-domian method for constructing a filter that is collec-333

tively combines the wavelet coefficients across different levels into a single set of coefficients334
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that can be used to track inhomogeneity of variance across time (Appendix B). We devise335

a scheme for filling in gaps in the water temperature data based upon the DSA decom-336

position (Appendix C), and we propose a method for handling boundary conditions that337

is appropriate for our data (Appendix D). Finally, we adapt the statistical theory for the338

standard ‘boxcar windowed’ wavelet variance estimator to work with a ‘Gaussian win-339

dowed’ variance estimator based upon the daily and subannual coefficients from the DSA340

transform (Appendix E).341

Appendix A: Wavelet-Based Analysis of Time Series

Here we provide some technical details about standard wavelet analysis of time series342

to complement our discussion in Section 2.1 (see Percival and Walden, 2000, for further343

details using notation consistent with usage below).344

The starting point in a wavelet-based analysis of {Xt} is a Daubechies wavelet filter

{h̃1,l, l = 0, 1, . . . , L1 − 1}, where, for convenience, we define h̃1,l = 0 for l < 0 or l ≥ L1.

By definition, this filter must satisfy three properties:

X

l

h̃1,l = 0,
X

l

h̃2
1,l = 1/2 and

X

l

h̃1,lh̃1,l+2n = 0, n = ±1,±2, . . . . (A1)

We denote the transfer function (i.e., discrete Fourier transform (DFT)) for {h̃1,l} by

fH1(f) ≡
X

l

h̃1,le
−i2πfl,

and its associated squared gain function by fH1(f) ≡ |fH1(f)|2. Both functions are peri-345

odic with a period of unity, and, since fH1(−f) = fH∗
1 (f) and fH1(−f) = fH1(f), we need346

only be concerned about f ∈ [0, 1/2] (here z∗ denotes the complex conjugate of z). The347

wavelet filter in turn is used to define a scaling filter g̃1,l ≡ (−1)l+1h̃1,L1−l−1. We denote348

its corresponding transfer and squared gain functions by eG1(f) and eG1(f). (In dealing349
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with a time series with a sampling interval of ∆ 6= 1, we must map the interval [0, 1/2] of350

standardized frequencies over to the interval [0, 1/(2∆)] of physically meaningful frequen-351

cies. It is convenient to let f ∈ [0, 1/2] denote a standardized frequency in what follows,352

but then to let f ∈ [0, 1/(2∆)] denote a physical frequency when dealing with an actual353

time series.)354

The simplest wavelet filter is the Haar wavelet filter, which has width L1 = 2 and

filter coefficients h̃1,0 = 1/2 and h̃1,1 = −1/2. The Haar scaling filter is g̃1,0 = g̃1,1 =

1/2, The squared gain functions for the Haar wavelet and scaling filters are given by

fH1(f) = sin2(πf) and eG1(f) = cos2(πf). These functions are shown in Figure 8(a) versus

f ∈ [0, 1/2]. The wavelet filter is a high-pass filter with a nominal pass-band defined by

f ∈ (1/4, 1/2], whereas {g̃1,l} is a low-pass filter with pass-band dictated by f ∈ [0, 1/4].

Note that, for all f ,

fH1(f) + eG1(f) = 1. (A2)

Figure 8(b) shows the squared gain functions for the Daubechies ‘least asymmetric’ (LA)

wavelet and scaling filters of width L1 = 8, which are the ones used in the analysis

presented in this paper. These filters are better approximations to ideal high- and low-

pass filters than the Haar filters, where the ideal filters would have

H1(f) =

(
0, f ∈ [0, 1/4],
1, f ∈ (1/4, 1/2],

and G1(f) =

(
1, f ∈ [0, 1/4],
0, f ∈ (1/4, 1/2].

The figure also suggests that Equation (A2) still holds for the LA(8) filters, which in fact355

is true for all wavelet and related scaling filters.356

Using just the basic wavelet and scaling filters {h̃1,l} and {g̃1,l}, we can create so-called

‘higher-level’ wavelet and scaling filters. We denote these by {h̃j,l, l = 0, 1, . . . , Lj−1} and

D R A F T June 15, 2010, 8:28am D R A F T



X - 22PERCIVAL, LENNOX, WANG AND DARNELL: WAVELET-BASED ANALYSIS OF DAM WATER TEMPERATURES

{g̃j,l, l = 0, 1, . . . , Lj−1}, where j = 2, 3, . . . is the level index, and Lj = (2j−1)(L1−1)+1

(the basic filters are thus associated with level j = 1). We denote the squared gain

functions for these filters by fHj(f) and eGj(f). The filter {h̃j,l} is approximately a band-

pass filter with a pass-band given by f ∈ (1/2j+1, 1/2j], while {g̃j,l} is approximately a

low-pass filter with pass-band f ∈ [0, 1/2j+1]. An extension to Equation (A2) is

J0X

j=1

fHj(f) + eGJ0(f) = 1 (A3)

for all f and any J0 ≥ 1. The plausibility of this equation for the LA(8) wavelet is357

illustrated in the top portion of Fig. 9.358

Upon filtering {Xt} with {h̃j,l}, j = 1, . . . , J0, and {g̃J0,l}, we obtain the MODWT

wavelet and scaling coefficients:

fWj,t ≡
Lj−1X

l=0

h̃j,lXt−l mod N and eVJ0,t ≡
Lj−1X

l=0

g̃J0,lXt−l mod N , t = 0, 1, . . . , N − 1,

which form the elements of the vectors fWj and fVJ0 ; here ‘t− l mod N ’ should be inter-359

preted as ‘(t− l) mod N ’ (for integer u, we define u mod N to be u if 0 ≤ u ≤ N − 1; if360

not, its definition is u+nN , where n is the unique integer such that 0 ≤ u+nN ≤ N−1).361

While creating fWj,t formally involves Lj values from the time series, many of the h̃j,l coef-362

ficients are quite close to zero. The effective width of {h̃j,l} is 2j, which is better indication363

than Lj of how much of the time series is influencing fWj,t (likewise, the effective width of364

{g̃J0,l} is 2J0). The first Lj − 1 coefficients of fWj involve a linear combination of values365

from both the beginning and end of the time series, as do the first LJ0 − 1 coefficients of366

fVJ0 These so-called ‘boundary’ coefficients can be difficult to interpret and hence merit367

further consideration (see Appendix D). The relationship between the vectors fWj and368

X can be expressed as fWj = fWjX, where fWj is an N × N matrix whose elements are369
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dictated by the filter {h̃j,l}; likewise, we can write fVJ0 = eVJ0X, where the matrix eVJ0 de-370

pends just on {g̃J0,l}. Stacking fW1, fW2, . . ., fWJ0 and eVJ0 together yields the (J0+1)N×N371

matrix fW in Equation (1) expressing the MODWT.372

Two key descriptors for a time series that the MODWT provides are the ANOVA of

Equation (2) and the MRA of Equation (5). The ANOVA follows from an application

of Parseval’s theorem and Equation (A3). As noted in the discussion surrounding Equa-

tions (4) and (5), appropriate partitioning of fW and fW yields the details and smooth

comprising the MRA, namely,

eDj = fWT
j

fWj and eSJ0 = eVT
J0

fVJ0 .

Based upon the above, we can write the tth elements eDj,t and eSJ0,t of eDj and eSJ0 explicitly

as

eDj,t ≡
Lj−1X

l=0

h̃j,l
fWj,t+l mod N and eSJ0,t ≡

LJ0−1X

l=0

g̃J0,l
eVJ0,t+l mod N , t = 0, 1, . . . , N − 1.

The components of an MRA are intended to capture distinct aspects of a time series and373

ideally should be approximately pairwise uncorrelated (the approximation improves as374

the width L1 is increased, which is one reason for preferring the LA(8) wavelet over the375

Haar wavelet).376

Appendix B: Construction of DSA Transform

We can cast the DSA transform as a special case of the following theorem (the proof of377

which is in Percival, 2010).378

Theorem 1: Let {Xt, t = 0, 1, . . . , N − 1} be a real-valued time series, and let {am,l},

m = 1, . . . ,M , be a set of M filters with corresponding squared gain functions Am(f) such

that
PM

m=1Am( k
N ) = 1, k = 0, 1, . . . , N − 1. Define Ym,t ≡

P
l am,lXt−l mod N−1 and Zm,t ≡
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P
l am,lYm,t+l mod N−1, t = 0, 1, . . . , N − 1. Then we have the following decompositions:

MX

m=1

N−1X

t=0

Y 2
m,t =

N−1X

t=0

X2
t and

MX

m=1

Zm,t = Xt.

We note in passing that the component {Zm,t} of the additive decomposition depends379

only on the squared gain function Am(f) and not on the phase function for the filter380

{am,l}.381

To construct the DSA transform, consider the following three squared gain functions:

A1(f) ≡
3X

j=1

fHj(f), A2(f) ≡
9X

j=4

fHj(f) and A3(f) ≡ eG9(f).

It follows from Equation (A3) with J0 = 9 that A1(f) + A2(f) + A3(f) = 1 for all f ,382

as required by Theorem 1. The bottom part of Figure 9 shows A1(f), A2(f) and A3(f)383

based upon the fHj(f)’s and eG9(f) arising from the LA(8) filters. The corresponding384

filtering operations are implemented in the frequency domain by simply multiplying the385

DFT of {Xt} (denote this as {Xk}) by {A1/2
m ( k

N ), k = 0, 1, . . . , N −1} and then taking the386

inverse DFT of the resulting sequence {A1/2
m ( k

N )Xk}. The squared gain function for each387

implicitly defined filter {am,l}, m = 1, 2 and 3, is given by {Am( k
N )}, hence satisfying388

the conditions required by Theorem 1 and thus providing the desired sum of squares389

decomposition stated by Equation (7). The outputs from the filtering operations that are390

obtained from the inverse DFTs form the elements of the N -dimensional vectors D, S and391

A. An additional advantage of this frequency-domain approach is that the filters have a392

zero phase function, which makes it easy to align the elements of D, S and A with those393

of X; for details, see Section 4.8 of Percival and Walden, 2000.394
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Appendix C: Gap-Filling via Stochastic Interpolation

The dam water temperature measurements have time-varying features acting on the395

daily and subannual components of the DSA decomposition. Any gap-filling scheme must396

pay careful attention to what is going on around each gap in both components. In addition,397

filling in the gaps using realizations from locally adapted stochastic models allows us to398

evaluate the effect of the gap-filling scheme by generating many different realizations.399

Accordingly, we start by linearly interpolating the gappy time series to produce a gap-400

free series, which we subject to the DSA decomposition. Noting the start/stop locations401

of a particular gap in the original time series, we then go to the same locations in the D402

and S components. In the case of D, we locate K values before – and K values after –403

the start/stop locations in D that correspond to actual measured values in the original404

time series (we set K = 36 so that data from at least three days before and after the gap405

are utilized). Using least squares, we then fit a harmonic model to these 2K values using406

sine and cosine terms with a fundamental frequency of 1 cycle per day and with L = 3407

of its harmonics. The values currently in the gap in D are replaced by an extrapolation408

from the fitted harmonic model, with the addition of a sample from a Gaussian white409

noise process whose variance is dictated by the sum of squares of the residuals from the410

least squares fit.411

In the case of S, spectral analysis of its various subseries suggests that the correlation412

structure is relatively constant across time, but that this component is subject to fluc-413

tuations in its variance. Accordingly, we fill in a gap by sampling from a multivariate414

Gaussian distribution with a mean vector and covariance matrix dictated by (1) condi-415

tioning on the two values observed just before and after the gap, (2) an estimate of the416
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autocorrelation sequence for S and (3) a localized variance estimate based on K = 36417

actual values before – and K values after – the start/stop locations of the gap (for details,418

see Appendix B of Percival et al., 2008).419

Letting eD and eS represent the altered versions of D and S, the gap-filled series is taken420

to be eD+ eS+A, where A is from the DSA decomposition of the linearly interpolated series421

(note that the components in the DSA decomposition of the gap-filled time series will not422

in general be equal to eD, eS and A). Figure 11 shows three stochastic interpolations of423

the dam water temperature series at 10 m. While this figure indicates that the gappy424

filling procedure is visually reasonable, the scheme is inherently univariate and cannot425

mimic cross-correlations in the time series at different depths. This defect is mitigated426

somewhat by the facts that, with a few notable exceptions, most of the gap lengths are427

small and that any assessment that an observed cross-correlation based on gap-filled data428

is significantly different from zero will tend to be conservative.429

Appendix D: Boundary Conditions for Wavelet Transforms

As is true for the discrete Fourier transform, the MODWT and the DSA transform treat430

a time series {Xt, t = 0, 1, . . . , N −1} such that Xt for t < 0 or t ≥ N is implicitly defined431

to be Xt mod N ; i.e., the unobserved values X−1, X−2, . . . that are needed to compute certain432

transform coefficients are taken to be equal to XN−1, XN−2, . . .. If there is a significant433

mismatch between the beginning and end of a time series, certain transform coefficients434

(termed ‘boundary’ coefficients) can be adversely affected, leading to undesirable artifacts435

in the wavelet-based MRA or DSA decomposition near t = 0 and t = N − 1. To reduce436

these artifacts, we need better surrogates for X−1, X−2, . . ..437
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One approach that sometimes yields better surrogates is to form a new time series of

length 2N by taking {Xt} and tacking on its time-reversed version, yielding

{X 0
t, t = 0, 1, . . . , 2N − 1} ≡ {X0, X1, . . . , XN−2, XN−1, XN−1, XN−2, . . . , X1, X0}.

The boundary coefficients for {X 0
t} should be less prone to introducing artifacts in an

MRA or DSA decomposition because the beginning and end of {X 0
t} might match up

better than those for {Xt}. For the time series of interest here, the reflection trick does

not work well because of rapid increases or decreases at the beginning and/or end of some

series, leading to an undesirable cusp in {X 0
t}. We can handle a increase or decrease that is

approximately linear at the end of {Xt} by tacking on a reversed and flipped upside-down

version of the original series; i.e., we construct

{Yt, t = 0, 1, . . . , 2N − 1} ≡ {X0, X1, . . . , XN−2, XN−1, c−XN−1, c−XN−2, . . . , c−X0},

where c is a constant. To set c, assume Xt ≈ α+βt for t close to N −1. Since Yt = Xt for438

t ≤ N − 1 and Yt = c−X2N−1−t for t ≥ N , setting c = 2α +β(2N − 1) ensures continuity439

of the approximation across the two regions. In particular, if α and β are determined440

solely based upon XN−2 and XN−1, then c = 3XN−1−XN−2. We can handle the fact that441

the beginning and end of {Yt} need not match up by tacking on its time-reversed version442

to create a series {Y 0
t } of length 4N for use with the MODWT or DSA transform.443

To handle approximate linear increases or decreases at both ends of {Xt}, we construct

the following time series {Zt} of length 3N :

{a−XN−1, . . . , a−X1, a−X0, X0, X1, . . . , XN−2, XN−1, b−XN−1, b−XN−2, . . . , b−X0},

where a and b are constants that can be set as before. Assuming Xt ≈ α0 +β0t for t close444

to 0 and Xt ≈ α1 + β1t for t close to N − 1, the appropriate settings are a = 2α0 − β0445
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and b = 2α1 + β1(2N − 1). Determination of α0 and β0 using just X0 and X1 yields446

a = 3X0 − X1; likewise, b = 3XN−1 − XN−2 when based upon just XN−2 and XN−1.447

Again, for use with the MODWT or DSA transform, we can tack on a time-reserved448

version of {Zt} to create a series {Z 0
t} of length 6N .449

Although formally the MRAs and DSA decompositions for {X 0
t}, {Y 0

t } and {Z 0
t} con-450

sist of components of length, respectively, 2N , 4N and 6N , we need only extract those451

portions that correspond to the original series {Xt}; i.e., the portions corresponding to452

{X 0
t, t = 0, 1, . . . , N − 1}, {Y 0

t , t = 0, 1, . . . , N − 1} and {Z 0
t, t = N,N + 1, . . . , 2N − 1}.453

Figure 10 compares the A component of the DSA decomposition (i.e., the smooth eS9 of454

the corresponding MRA) based upon {Xt}, {X 0
t}, {Y 0

t } and {Z 0
t} (with a = 3X0 − X1455

and b = c = 3XN−1 −XN−2). Arguably the component based upon {Z 0
t} gives the best456

representation of the large-scale behavior of the time series at its beginning and end.457

The different definitions for the boundary coefficients have an impact on the wavelet-458

based analysis of variance. For the reflection-based approach, the sample means X for459

{Xt} and {X 0
t} are identical by construction, as are their sample variances σ̂2

X , so the460

empirical wavelet variance for {X 0
t} can serve as an analysis of the sample variance of the461

original series also. The sample variances of {Y 0
t } and {Z 0

t}, say σ̂2
Y and σ̂2

Z , are related462

to σ̂2
X via463

σ̂2
Y = σ̂2

X +
c2

4
− cX + X

2

σ̂2
Z = σ̂2

X +
2(a2 − ab + b2)− 4(a + b)X + 8X

2

9
.

We can use these equations to translate the wavelet-based decomposition of σ̂2
Y or σ̂2

Z into464

a decomposition of σ̂2
X if we are willing to make the ad hoc assumption that the correction465

terms should be applied solely to the ANOVA component due to σ̂2
0 in Equation (3) or466
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to σ̂2
A in Equation (8). The justification for this assumption is that the obvious difference467

between {Xt} and either {Y 0
t } or {Z 0

t} is in the artificial creation of large-scale variations468

in the latter, and such variations are captured by the scaling coefficients in the MODWT469

or the annual coefficients in the DSA transform.470

Appendix E: Variance Estimators Based on Daily and Subannual Coefficients

Let Ct stand for the tth element of either the daily coefficients D or subannual co-

efficients S from the DSA transform of a water temperature time series X. Consider

a weighted sum of squares of M consecutive coefficients, which, for convenience (and

without loss of generality), we take to be indexed by t = 0, 1, . . . ,M − 1:

σ̂2
C ≡

M−1X

t=0

gtC
2
t

where the gt’s are a set of nonnegative weights such that
P

t gt = 1; here we set M = 801

and set gt approximately equal to f(t− 400), where f is the probability density function

for a Gaussian random variable (RV) with mean zero and variance σ2, with the choice

σ = 180/
√

π giving a bandwidth measure ∆/
P

t g
2
t of 30 days (recall that ∆ = 2 hours;

the gt weights are very close to f(t−400) – but not exactly so – because they are actually

generated via convolutions carried out in the frequency domain). Under the assumption

that the observed coefficients are a realization of a portion C0, C1, . . . , CM−1 of a stationary

process with mean zero and variance σ2
C , we can regard σ̂2

C as an estimator of the variance

σ2
C (the assumption that the process has zero mean is reasonable because of differencing

operations embedded in the wavelet filters used to construct the DSA transform – for

details, see Chapter 8, Percival and Walden, 2000). Following a standard approach, we

assume that σ̂2
C has approximately the same distribution as the RV σ2

Cχ2
η/η, where χ2

η is
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a chi-square RV with η degrees of freedom. We can estimate η via

η̂ =
σ̂4

C
Pm−1

τ=−(m−1) ŝ2
τ

PM−|τ |−1
l=0 gl+|τ |gl

,

where ŝτ is the biased estimator of the autocovariance sequence for C0, C1, . . . , CM−1 after

multiplication by a Parzen lag window:

ŝτ =
wm,τ

M

M−|τ |−1X

t=0

Ct+|τ |Ct and wm,τ =






1− 6 (τ/m)2 + 6 (|τ |/m)3 , |τ | ≤ m/2;
2 (1− |τ |/m)3 , m/2 < |τ | < m;
0, |τ | ≥ m;

here we set m = 30. The approximate 95% confidence intervals for the various σ2
C shown

in Figure 5 are given by
"

η̂σ̂2
C

Qη̂(0.975)
,

η̂σ̂2
C

Qη̂(0.025)

#

,

where Qη(p) is the p× 100% percentage point from the χ2
η distribution.471
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1 m 5 m 10 m 15 m 20 m

σ̂2
D 0.07 0.07 0.03 0.01 0.01

σ̂2
S 0.58 0.38 0.08 0.05 0.06

σ̂2
A 11.74 10.56 9.88 9.14 7.98

σ̂2
X 12.39 11.00 9.99 9.20 8.06

σ̂D 0.26 0.26 0.17 0.10 0.11
σ̂S 0.76 0.61 0.28 0.23 0.25
σ̂A 3.43 3.25 3.14 3.02 2.83
σ̂X 3.52 3.32 3.16 3.03 2.84

Table 1. Decomposition of sample variance of water temperature series into variances of

daily, subannual and annual coefficients (upper part of table), along with corresponding standard

deviations in degrees C (lower part) (see Equation (8)).

Dt

1 m 5 m 10 m 15 m

5 m −0.09
10 m 0.03 0.22
15 m 0.05 0.01 0.06
20 m 0.05 −0.18 −0.07 0.12

St

1 m 5 m 10 m 15 m

5 m 0.61
10 m 0.20 0.48
15 m 0.21 0.28 0.56
20 m 0.05 0.04 0.19 0.43

At

1 m 5 m 10 m 15 m

5 m 0.99
10 m 0.92 0.95
15 m 0.79 0.84 0.96
20 m 0.68 0.74 0.89 0.97

Xt

1 m 5 m 10 m 15 m

5 m 0.97
10 m 0.89 0.94
15 m 0.77 0.83 0.96
20 m 0.66 0.73 0.88 0.97

Table 2. Global cross-correlations between daily, subannual and annual coefficients at different

depths, along with cross-correlations between original series.
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Figure 1. Water temperature time series from Wivenhoe Dam as recorded at five depths.
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Figure 2. Comparison of smooths eSJ0 (solid curves) based upon the LA(8) wavelet for the

10 m water temperature series (dots) with (a) J0 = 8, (b) J0 = 9 and (c) J0 = 10. Arguably some

parts of the J0 = 8 smooth are better regarded as a subannual variation (e.g., the month-long

dip following the start of 2008), while the J0 = 10 smooth appears to be oversmoothing the data

over some long stretches (e.g. March to July of 2008).
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Figure 3. DSA decomposition based upon the LA(8) wavelet for 1, 5, 10, 15 and 20 m depths

(top to bottom rows). The daily, subannual and annual components are shown in the left, middle

and right columns. The distance between vertical tick marks represents a temperature change of

2 degrees Celsius in all fifteen plots.
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Figure 4. Wavelet variances σ̂2
j based upon the LA(8) wavelet for five depths and nine levels

j, along with variances of scaling coefficients σ̂2
0 for each depth. The nine wavelet variances for

each depth are connected by lines, while the variance of the corresponding scaling coefficients is

shown as a single character in the upper right-hand corner of the plot. Wavelet variances indexed

by j = 1, 2 and 3 make up the daily component in the DSA decomposition (plotted to left of

vertical dotted line); the remaining six wavelet variances make up the subannual component.

The variance of the scaling coefficients is associated with the annual component. The sum of the

nine wavelet variances along with the variance of the scaling coefficients for a particular depth

is exactly equal to the variance of the time series for that depth (see Equation (3)).
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Figure 5. Variance of daily (left-hand column) and subannual (right) coefficients smoothed

over 30 days for 5 depths (from top to bottom, 1, 5, 10, 15 and 20 m). The upper and lower

dashed lines depict 95% confidence intervals.
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Figure 6. Month-by-month correlations between 5 depths for subannual coefficients (circles).

The upper and lower dotted lines depict 95% confidence intervals computed via an autoregressive

bootstrapping procedure (Davison and Hinkley, 1997) operating under the null hypothesis that

the true correlations are zero (i.e., anything correlation falling above (below) the upper (lower)

dotted line can be regarded as significantly different from zero at the 95% confidence level).
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Figure 7. Month-by-month correlations between 5 depths for daily coefficients. The upper

and lower dotted lines depict 95% confidence intervals formed in the same manner as in Fig. 6.
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Figure 8. Squared gain functions fH1(f) and eG1(f) for Haar wavelet and scaling filters (plot (a),

solid and dotted curves, respectively). Plot (b) shows the corresponding functions for the LA(8)

filters.
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Figure 9. Squared gain functions fHj(f), j = 1, . . . , 9, and eG9(f) based upon the LA(8) wavelet

and filters (top plot, from right to left, alternating solid and dashed curves), and squared gain

functions A1(f), A2(f) and A3(f) associated with the DSA decomposition (bottom plot, from

right to left).
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Figure 10. Comparison of beginning (left-hand column) and end (right-hand column) of

annual component A (solid curves) for 10 m time series (dots) created using (a) original series

only, (b) series extended by reflection, (c) series extended at end by flipping and reflection and

and (d) series extended at beginning and end by flipping and reflection.
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Figure 11. Three stochastic interpolations (bottom three plots) of the 10 m time series (top

plot, without interpolation). The row of vertical hatches at the bottom of each plot indicates

the locations of the gaps.
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