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Overview: I

• scientific problem: given data from DART buoys and models
for unit magnitude earthquakes from various tsunami source
locations, determine actual magnitudes (slips) and location(s)
of actual earthquake

• will describe elements of basic inversion algorithm

• start with detided DART buoy data, noting need for detrending

• look at model for single buoy, noting need for interpolation

• introduce least squares criterion by looking at estimation of slip
for single source model based upon data from one buoy

• consider assessing statistical variability in estimated slip

• look at effect of using varying amounts of buoy data

• considering adding data from a second DART buoy
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Overview: II

• look at using more than one source

• discussion of various ‘bells and whistles’ currently implemented

− imposing constraints on slips

− allowing shifting and stretching of source models

• discussion of work in progress

− use of statistical tests to select sources

• demo of R implementation of algorithm (if time permits)

• will motivate basic ideas behind algorithm using the Kuril Is-
land event of Nov 2006
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Detided DART Buoy Data for Kuril Island Event
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Detrending

• inversion procedure assumes data have been successfully de-
tided, which is not the case here

• data subjected to simple detrending procedure

− identify region before start of first wave

− fit line to this data using least squares procedure

− extend fitted line through all the data

− subtract extended line from data, yielding detrended data

• detrended data used as input to inversion procedure
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Detided DART Buoy Data for Kuril Island Event
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Line Fitted to Bouy Data Before First Wave
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Extending Fitted Line Through All Data
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Detrended DART Buoy Data for Kuril Island Event
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Models for DART Buoys

• consider source locations for Kuril Island event

• for a given source location (e.g., a12), can generate a model of
what we would expect to see at each bouy if the earthquake
came from just that source

• each model is generated over a grid of discrete times, which
might or might not correspond to the times at which DART
buoy data are collected

• use cubic spline to interpolate model, so can regard model g(t)
and its first derivative g′(t) as being defined for all times t

• as an example, consider model from a12 source for buoy 21414
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a12 Source Model for Buoy 21414
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Fitting Models to DART Buoy Data: I

• model from a12 source for buoy 21414 generated under assump-
tion of a unit magnitude for the earthquake
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• poor match, so multiple model g(t) by A to get a better fit,
where A is interpreted as earthquake magnitude (the ‘slip’)
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Fitting Models to DART Buoy Data: II

• let xt represent the DART buoy data at time t

• we entertain the model

xt = A · g(t) + et,

where et is a residual term (mismatch between data and model)

• if we let A range over a grid of values, then we can compute
corresponding residuals et = xt − A · g(t) for any given A

• as an example, let’s compute residuals from fit of a12 source to
buoy 21414 data for A = 1.0, 1.2, 1.4, . . ., 10.0, marking resid-
ual with largest absolute value with a red dot (for discussion
later on)
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Matching a12 Model to 21414 Data by Varying Slip
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Fitting Models to DART Buoy Data: III

• Q: what is the ‘best’ choice for A?

• set A such that residuals et are ‘small’ by some measure

• many measures are possible – here are three common ones:

– make sum of squared residuals as small as possible:∑
t

e2
t =

∑
t

[xt − A · g(t)]2 ≡ f2(A)

– make sum of magnitudes of residuals as small as possible:∑
t

|et| =
∑

t

|xt − A · g(t)| ≡ f1(A)

– make largest magnitude of residuals as small as possible:

max
t

|et| = max
t

|xt − A · g(t)| ≡ f∞(A)

14



Fitting Models to DART Buoy Data: IV

• here is a specialized one:

– make sum of squared residuals at peak and trough as small
as possible:

e2
t0

+ e2
t1

=
[
xt0 − A · g(t0)

]2
+

[
xt1 − A · g(t1)

]2 ≡ fpt(A),

where t0 and t1 are such that

g(t0) = max
t

{g(t)} and g(t1) = min
t

{g(t)}

• let’s look at plots of f (A) versus A for the four measures, where,
as before, A = 1.0, 1.2, 1.4, . . ., 10.0 (for explanation of ‘bath-
tub’ appearance of f∞(A) vs. A, study evolution of red dots
on plots of residuals)
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Four Residual Measures f (A) versus Slip A
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Fitting Models to DART Buoy Data: V

• estimated slips are Â2 = 4.2, Â1 = 5, Â∞ = 3.8 and Âpt = 4.2

• two measures based on least squares, i.e., f2(A) and fpt(A),
have certain advantages, including:

− no need to do grid search because location of minimum of

f (A) ≡
∑

t

[xt − A · g(t)]2

is given by a simple formula:

Âls =

∑
t xtg(t)∑
t [g(t)]2

, here yielding Â2
.
= 4.17 and Âpt

.
= 4.26

(follows from taking equation f ′(A) = 0 and solving for A)

− statistical variation in Âls easy to quantify
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Assessing Variability in Âls: I

• reformulate model xt = A · g(t) + et in vector notation as
x = Ag + e, where x is column vector containing the xt’s etc.

• least squares estimate of A is Âls = gTx/gTg

• need to consider statistical properties of residuals et

• if residuals were Gaussian (normally) distributed and uncorre-
lated with a common variance σ2

e, then Âls is Gaussian dis-
tributed with mean A and variance σ2

e/g
Tg

• allows us to compute standard deviations (SDs) and to write
Â2 = 4.17 ± 0.59 and Âpt = 4.26 ± 2.69 (note size of SDs)

• assumptions of uncorrelatedness and common variance are dicey,
as can be seen from plot of residuals associated with Â2
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Least Squares Estimate Â2 of Slip for a12 & 21414
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Assessing Variability in Âls: II

• assumption of common variance of et’s not viable for data be-
fore first wave, but, because g(t) = 0 there, these data have no

effect on estimate Âls =
∑

t xtg(t)/
∑

t [g(t)]2

• while assumption of common variance reasonable for data be-
ginning at first wave, assumption of uncorrelatedness is not

• can model correlation using a first order autoregressive process:

et = φet−1 + wt,

where wt is Gaussian white noise

• implies that correlation between et and et+τ given by φ|τ |

• estimate of φ via correlation between et & et+1 yields φ̂
.
= 0.86
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Assessing Variability in Âls: III

• theory says Âls is Gaussian distributed with mean A and vari-
ance σ2

e · gTV g/(gTg)2, where V is matrix whose (j, k)th el-

ement is φ|j−k|

• yields Â2 = 4.17 ± 1.33, which has larger SD than what was
obtained under questionable assumptions (Â2 = 4.17 ± 0.59)
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Least Squares (LS) as Criterion for Estimating Slips

• inversion algorithm uses LS as criterion for estimating slip A

• user must decide amount of DART data to use

• two extremes: all available data or just two data points

• use of more data should yield estimator Â with smaller variance
if model is valid over entire range of data

• if model decreases in validity as time increases, should limit
data to, say, first quarter wave or first full wave

• real-time constraints also dictate interest in use of limited amount
of data

• starting with a quarter wave of data, let’s look at LS fits in-
volving varying amounts of data

22



LS Fit of a12 Model to Selected 21414 Data
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Mean Squared Errors and Â for Selected 21414 Data
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Incorporating Data from a Second Buoy: I

• so far, have modeled data from buoy 21414 in terms of an
earthquake coming from source a12

• in vector notation, we have x = Ag + e

• in preparation for looking at additional buoys and additional
sources, let’s rewrite model as x1 = Aa12 · g1,a12 + e1, where

− x1 is a vector containing data from first buoy (here 21414)

− Aa12 is a scalar representing slip associated with source a12

− g1,a12 is a vector containing unit slip model for what first
buoy should see from earthquake originating at source a12

− e1 is a vector of residuals (represents combination of mea-
surements errors and model inaccuracies)
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Incorporating Data from a Second Buoy: II

• in this notation, LS estimator of Aa12 is given by

Âa12 = gT
1,a12x1/g

T
1,a12g1,a12 =

(
gT

1,a12g1,a12

)−1
gT

1,a12x1

(last expression of interest for generalizations to come)

• now consider data x2 from a second buoy (46413)

• model this data as x2 = Aa12 · g2,a12 + e2

• note that, while g2,a12 for buoy 46413 is different from g1,a12
for buoy 21414, both models have the same slip Aa12

• given our estimate Âa12
.
= 4.17 based upon just x1, let’s see

how well x2 and Âa12 · g2,a12 match up (‘cross-validation’)
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a12 Slip from 21414 Data Applied to 46413 Data
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a12 Slip from 21414 Data Applied to 21414 Data
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Incorporating Data from a Second Buoy: III

• can also estimate Aa12 using just data from 46413:

Âa12 =
(
gT

2,a12g2,a12

)−1
gT

2,a12x2

• yields Âa12
.
= 3.22, whereas we had Âa12

.
= 4.17 from 21414

• can look at plots corresponding to the ones we had before
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a12 Slip from 46413 Data Applied to 46413 Data
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a12 Slip from 46413 Data Applied to 21414 Data
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Incorporating Data from a Second Buoy: IV

• another approach is to use data from both buoys to get a joint
estimate for Aa12

• joint model is x1:2 = Aa12 · g1:2,a12 + e1:2, where

− x1:2 is a vector formed by stacking x1 on top of x2

− Aa12 is a scalar representing slip associated with source a12

− g1:2,a12 is a vector formed by stacking g1,a12 on top of g2,a12

− e1:2 is a vector of residuals

• LS estimator of Aa12 now takes the form

Âa12 =
(
gT

1:2,a12g1:2,a12

)−1
gT

1:2,a12x1:2

• yields Âa12
.
= 3.68 (cf. 4.17 from 21414 and 3.22 from 46413)

• can look at plots corresponding to the ones we had before
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a12 Slip from Both Buoys Applied to 46413 Data
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a12 Slip from Both Buoys Applied to 21414 Data
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Using Linear Combinations of Sources: I

• so far, have modeled data in terms of a single source (a12)

• in vector notation, our model is x1:2 = Aa12 · g1:2,a12 + e1:2

• suppose earthquake is actually a linear combination of two
sources, namely, a12 and b13

• our model is now x1:2 = Aa12 · g1:2,a12 + Ab13 · g1:2,b13 + e1:2

• can reexpress this model as x1:2 = GA + e1:2, where

− G is a matrix with two columns, namely, g1:2,a12 and g1:2,b13

− A is a vector with two elements, namely, Aa12 and Ab13

• LS estimator of A is given by Â = (GTG)−1GTx1:2, which is
similar in form to

Âa12 =
(
gT

1:2,a12g1:2,a12

)−1
gT

1:2,a12x1:2
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Using Linear Combinations of Sources: II

• complication: models from two sources can be very similar!

• in worse case scenario, have g1:2,b13 = αg1:2,a12 ≡ αg

• in this case, G = [g, αg] and

GTG =

[
gTg αgTg

αgTg α2gTg

]
,

which has a determinant of zero, so (GTG)−1 does not exist

• instead of using Â = (GTG)−1GTx1:2, can handle this case
by solving equation GTGÂ = GTx1:2 with help of a singular
value decomposition (SVD) of the matrix GTG

• in general, use of SVD yields protection against problems of
numerical stability in computing Â
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Using Linear Combinations of Sources: III

• using sources a12 and b13 to model data from buoys 21414 and
46413, LS estimates of slips are

Â ≡ [Âa12, Âb13]
T .

= [2.61, 3.81]T

• fitted model and residuals for 21414 are given by

f1 ≡ Âa12 · g1,a12 + Âb13 · g1,b13 and e1 = x1 − f1

likewise, fitted model and residuals for 46413 are given by

f2 ≡ Âa12 · g2,a12 + Âb13 · g2,b13 and e2 = x2 − f2

• can use this model to predict what a third buoy should see:

f3 ≡ Âa12 · g3,a12 + Âb13 · g3,b13

(‘cross-validation’)
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Data, Fitted Model and Residuals for 21414
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Data, Fitted Model and Residuals for 46413
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Data, Fitted Model and Residuals for 46408

2.5 3.0 3.5 4.0 4.5

0.
05

0.
00

0.
05

m
et

er
s

data
model

2.5 3.0 3.5 4.0 4.5

0.
05

0.
00

0.
05

re
si

du
al

s 
(m

et
er

s)

40



Bells & Whistles

• current implementation of inversion algorithm allows for

− constraints on slips (either A ≥ 0 or A ≤ 0)

− shifting of source models, i.e., use of

g̃(t) = g(t − a),

where a is a shift that can be constrained to interval [al, au]

− stretching/shrinking of source models, i.e., use of

g̃(t) = g(t/b),

where b is a stretch/shrink factor that can be constrained to
interval [bl, bu]

– shifting and stretching/shrinking together, i.e., use of

g̃(t) = g([t − a]/b)

with constraints on both a and b
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Future Directions

• inversion algorithm requires choice of sources as part of input

• seismic information might suggest, say, eight sources

• currently user can do a joint fit and then manually select sources

• want to investigate use of statistical tests to select sources

• two approaches: step-up and step-down

• step-up approach starts with one source and uses statistical
tests to add other sources one at a time

• step-down approach starts with, say, eight sources and uses
statistical tests to remove sources one at a time

• idea is that these approaches might provide guidance on source
selection for users
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Demo of R Implementation

• R is an interpretive statistical language freely available from

http://www.r-project.org/

under the General Public License (GPL)

• R is popular in the statistical community for

− testing out new ideas in statistics,

− performing statistical analysis and

− creating graphics

• inversion algorithm has been bread-boarded in R

43


