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Overview: 1

e scientific problem: given data from DART buoys and models
for unit magnitude earthquakes from various tsunami source
locations, determine actual magnitudes (slips) and location(s)
of actual earthquake

e will describe elements of basic inversion algorithm
e start with detided DART buoy data, noting need for detrending
e look at model for single buoy, noting need for interpolation

e introduce least squares criterion by looking at estimation of slip
for single source model based upon data from one buoy

e consider assessing statistical variability in estimated slip
e look at effect of using varying amounts of buoy data

e considering adding data from a second DART buoy
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Overview: 11

e look at using more than one source
e discussion of various ‘bells and whistles’ currently implemented

— Imposing constraints on slips

— allowing shifting and stretching of source models
e discussion of work in progress
— use of statistical tests to select sources
e demo of R implementation of algorithm (if time permits)

e will motivate basic ideas behind algorithm using the Kuril Is-
land event of Nov 2006



Detided DART Buoy Data for Kuril Island Event
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Detrending

e inversion procedure assumes data have been successfully de-
tided, which is not the case here

e data subjected to simple detrending procedure

— identity region before start of first wave
— fit line to this data using least squares procedure
— extend fitted line through all the data

— subtract extended line from data, yielding detrended data

e detrended data used as input to inversion procedure



Detided DART Buoy Data for Kuril Island Event
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detided data (meters)

Line Fitted to Bouy Data Before First Wave
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detided data (meters)

Extending Fitted Line Through All Data
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Detrended DART Buoy Data for Kuril Island Event
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Models for DART Buoys

e consider source locations for Kuril Island event

e for a given source location (e.g., al2), can generate a model of
what we would expect to see at each bouy if the earthquake
came from just that source

e cach model is generated over a grid of discrete times, which
might or might not correspond to the times at which DART
buoy data are collected

e use cubic spline to interpolate model, so can regard model g(t)
and its first derivative ¢/(t) as being defined for all times ¢

e as an example, consider model from al2 source for buoy 21414



al2 Source Model for Buoy 21414
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Fitting Models to DART Buoy Data: 1

e model from al2 source for buoy 21414 generated under assump-
tion of a unit magnitude for the earthquake
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e poor match, so multiple model g(t) by A to get a better fit,
where A is interpreted as earthquake magnitude (the ‘slip’)
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Fitting Models to DART Buoy Data: 11

e let x4 represent the DART buoy data at time ¢
e we entertain the model
xp=A-g(t) + et
where ey is a residual term (mismatch between data and model)

o if we let A range over a grid of values, then we can compute
corresponding residuals e = xy — A - g(t) for any given A

e as an example, let’s compute residuals from fit of al2 source to
buoy 21414 data for A = 1.0, 1.2, 1.4, ..., 10.0, marking resid-

ual with largest absolute value with a red dot (for discussion
later on)
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Matching al2 Model to 21414 Data by Varying Slip
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Fitting Models to DART Buoy Data: III

e (): what is the ‘best’ choice for A?
e set A such that residuals e; are ‘small” by some measure
e many measures are possible — here are three common ones:

— make sum of squared residuals as small as possible:

NTei = lm— A gt = f(A)
t t

— make sum of magnitudes of residuals as small as possible:
Y et = lwe— A-g(t) = fi(A)
t t

— make largest magnitude of residuals as small as possible:

max eg] = max g — A g(0)] = foo(A)
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Fitting Models to DART Buoy Data: IV

e here is a specialized one:

—make sum of squared residuals at peak and trough as small
as possible:

e%ﬁ—e% = |14, — A- g(to)]2+ iy — A g(tl)}Q = fp(A),

where ¢y and £ are such that
g(ty) = maxqg(t)} and g(t1) = min1g(t)}

e let’s look at plots of f(A) versus A for the four measures, where,
as before, A =1.0, 1.2, 1.4, ..., 10.0 (for explanation of ‘bath-
tub’ appearance of foo(A) vs. A, study evolution of red dots
on plots of residuals)
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f 2

Four Residual Measures f(A) versus Slip A
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Fitting Models to DART Buoy Data: V

e estimated slips are 1212 = 4.2, 1211 = D, Aso = 3.8 and flpt = 4.2

e two measures based on least squares, i.c., fo(A) and fy(A),
have certain advantages, including:

— no need to do grid search because location of minimum of

FLA =) o — A gt)”

L
is given by a simple formula:

) / ) )
Al = 21719 %, here yielding Ag =4.17 and Ay, = 4.26
2_t19(t)

(follows from taking equation f/(A) = 0 and solving for A)

— statistical variation in Aj, easy to quantify
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Assessing Variability in 12118: I

e reformulate model z; = A - g(t) + e; in vector notation as
x = Ag + e, where x is column vector containing the x;’s etc.

e least squares estimate of A is Al g = gTX / ng
e need to consider statistical properties of residuals ey

e if residuals were Gaussian (normally) distributed and uncorre-
lated with a common variance (fg7 then Aj, is Gaussian dis-
tributed with mean A and variance o2/g! g

e allows us to compute standard deviations (SDs) and to write
A9 = 4.1740.59 and Ay = 4.26 £ 2.69 (note size of SDs)

e assumptions of uncorrelatedness and common variance are dicey,
as can be seen from plot of residuals associated with As
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Least Squares Estimate 1212 of Slip for al2 & 21414
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Assessing Variability in AZS: I1

e assumption of common variance of e;’s not viable for data be-
fore first wave, but, because g(t) = 0 there, these data have no

effect on estimate Al s=>47t9(t)/> 419 (75)]2

e while assumption of common variance reasonable for data be-
ginning at first wave, assumption of uncorrelatedness is not

e can model correlation using a first order autoregressive process:
er = gep 1 + wy,
where w; is Gaussian white noise
e implies that correlation between e; and e, given by qﬁm

e estimate of ¢ via correlation between e; & e41 1 yields qAb = (.86
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Assessing Variability in Als: I11

e theory says fll ¢ is Gaussian distributed with mean A and vari-

ance o2 - g Vg/(g!'g)?, where V is matrix whose (j, k)th el-

ement is ¢U_k‘

e yields 1212 = 4.17 £ 1.33, which has larger 5D than what was
obtained under questionable assumptions (A9 = 4.17 + 0.59)
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Least Squares (LS) as Criterion for Estimating Slips

e inversion algorithm uses LS as criterion for estimating slip A
e user must decide amount of DART data to use
e two extremes: all available data or just two data points

e use of more data should yield estimator A with smaller variance
if model is valid over entire range of data

e if model decreases in validity as time increases, should limit
data to, say, first quarter wave or first full wave

e real-time constraints also dictate interest in use of limited amount
of data

e starting with a quarter wave of data, let’'s look at LS fits in-
volving varying amounts of data
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LS Fit of al2 Model to Selected 21414 Data
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Mean Squared Errors and A for Selected 21414 Data
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Incorporating Data from a Second Buoy: 1

e S0 far, have modeled data from buoy 21414 in terms of an
earthquake coming from source al2

e in vector notation, we have x = Ag + e

e in preparation for looking at additional buoys and additional
sources, let’s rewrite model as x1 = Ay19 - 81 412 + €1, where
— X1 i8 a vector containing data from first buoy (here 21414)

— A,19 1s a scalar representing slip associated with source al2

— g1 412 18 a vector containing unit slip model for what first
buoy should see from earthquake originating at source al2

— e is a vector of residuals (represents combination of mea-
surements errors and model inaccuracies)
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Incorporating Data from a Second Buoy: Il

e in this notation, LS estimator of A9 is given by

aS

Aq12 = 81 419%1/81 41281.a12 = (g1T,Q12g1,a12) - g1 4191
(last expression of interest for generalizations to come)

e now consider data x9 from a second buoy (46413)

e model this data as x9 = Ay19 - €2 412 + €2

e note that, while g9 419 for buoy 46413 is different from gj 419
for buoy 21414, both models have the same slip A2

e given our estimate flalg = 4.17 based upon just x1, let’s see
how well x9 and Ay12 - g2 412 match up (‘cross-validation’)
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residuals (meters)

al2 Slip from 21414 Data Applied to 46413 Data
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meters

residuals (meters)

al2 Slip from 21414 Data Applied to 21414 Data
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Incorporating Data from a Second Buoy: 111

e can also estimate A,1o using just data from 46413:

N

—1
T T
Ag12 = (g27a12g2,a12) 82.a12%2

e yields 121@12 = 3.22, whereas we had Aalg = 4.17 from 21414

e can look at plots corresponding to the ones we had before

29



meters

residuals (meters)

al2 Slip from 46413 Data Applied to 46413 Data
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meters

residuals (meters)

al2 Slip from 46413 Data Applied to 21414 Data
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Incorporating Data from a Second Buoy: IV

e another approach is to use data from both buoys to get a joint
estimate for A,19

e joint model is X1.0 = Ag12 - 81:2,412 + €12, Where

— X1.9 18 a vector formed by stacking x1 on top of x9

— A9 1s a scalar representing slip associated with source al2
— 812,412 18 a vector formed by stacking g1 412 on top of g9 419
— e1.9 1s a vector of residuals

e LS estimator of A,19 now takes the form

N

G (T Lo
al2 = { 81:2.41281:2,a12 81:2.a12%1:2

o vields A9 = 3.68 (cf. 4.17 from 21414 and 3.22 from 46413)

e can look at plots corresponding to the ones we had before
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al2 Slip from Both Buoys Applied to 46413 Data
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al2 Slip from Both Buoys Applied to 21414 Data
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Using Linear Combinations of Sources: 1

e 5o far, have modeled data in terms of a single source (al2)
e in vector notation, our model is X1.0 = Ay19 - €1:2. 412 + €19

e suppose earthquake is actually a linear combination of two
sources, namely, al2 and bl3

e our model is now x1.0 = Ag12 - 812,412 + Ap13 - 812,513 + €12
e can reexpress this model as x1.90 = GA + eqy.9, where

— G 18 a matrix with two columns, namely, g1.2 412 and g1.9 p13
— A is a vector with two elements, namely, A,12 and A3

e LS estimator of A is given by A= (GTG)_lGTXM, which is
similar in form to

N

Joo— (o o7
al2 = | 81:2,41281:2,a12 81:2,a12%1:2
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Using Linear Combinations of Sources: 11

e complication: models from two sources can be very similar!
® in worse case scenario, have g1.9 513 = ag1:2,412 = 8

e in this case, G = |g, ag| and

g'g ag'g

GlG =
aglg o’gle

which has a determinant of zero, so (GT'G)™! does not exist

o instead of using A = (GTG) 1GT><:1 9, can handle this case
by solving equation G GA = G1xq.5 with help of a singular
value decomposition (SVD) of the matrix GI'G

e in general, use of SVD yields protection against problems of
numerical stability in computing A
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Using Linear Combinations of Sources: 111

e using sources al2 and b13 to model data from buoys 21414 and
46413, LS estimates of slips are

A =[Au1, Ayl =[2.61,3.81]"
e fitted model and residuals for 21414 are given by

f] = Ag12 - 81a12 + Ap13 - 81p13 and e = x| — £
likewise, fitted model and residuals for 46413 are given by

fo = Aa12 - 82,012 + Ap13 - 82413 and e = x9 — £
e can use this model to predict what a third buoy should see:

f3 = Ag12 - 83,012 + Ap13 - 83,413

(‘cross-validation’)
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Bells & Whistles

e current implementation of inversion algorithm allows for

— constraints on slips (either A > 0 or A < 0)
— shifting of source models, i.e., use of
g(t) = gt —a),

where a is a shift that can be constrained to interval |a;, aq]

— stretching /shrinking of source models, i.e., use of
g(t) = g(t/b),

where b is a stretch /shrink factor that can be constrained to

interval by, by
— shifting and stretching/shrinking together, i.e., use of

g(t) = g([t — al/b)
with constraints on both a and b
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Future Directions

e inversion algorithm requires choice of sources as part of input
e seismic information might suggest, say, eight sources

e currently user can do a joint fit and then manually select sources
e want to investigate use of statistical tests to select sources

e two approaches: step-up and step-down

e step-up approach starts with one source and uses statistical
tests to add other sources one at a time

e step-down approach starts with, say, eight sources and uses
statistical tests to remove sources one at a time

e idea is that these approaches might provide guidance on source
selection for users
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Demo of R Implementation

e R is an interpretive statistical language freely available from

http://www.r-project.org/
under the General Public License (GPL)

e R is popular in the statistical community for

— testing out new ideas in statistics,
— performing statistical analysis and

— creating graphics

e inversion algorithm has been bread-boarded in R
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