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Abstract

We consider the problem of event detection based upon a (typically multivariate)
data stream characterizing some system. Most of the time the system is quiescent –
nothing of interest is happening – but occasionally events of interest occur. The goal
of event detection is to raise an alarm as soon as possible after the onset of an event.
A simple way of addressing the event detection problem is to look for changes in
the data stream and equate “change” with “onset of event”. However, there might
be many kinds of changes in the stream that are uninteresting. We assume that we
are given a segment of the stream where interesting events have been marked. We
propose a method for using these training data to construct a “targeted” detector
that is specifically sensitive to changes signaling the onset of interesting events.
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1 Introduction

We consider the problem of event detection based upon a (typically multivari-
ate) data stream characterizing some system. Examples include sensor read-
ings for a patient in an intensive care unit, video images of a scene, and sales
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records of pharmacies. Most of the time the system is quiescent – nothing of
interest is happening – but occasionally events of interest occur: a patient goes
into shock, an intruder appears, or pharmacies in some geographic area expe-
rience increased demand for some medications. The goal of event detection is
to raise an alarm as soon as possible after the onset of an event.

A simple way of addressing the event detection problem is to look for changes
in the data stream and equate “change” with “onset of event”. The assumption
is that, once an alarm rings, a human will enter the loop and decide whether
an event of interest did in fact occur. If not, then the system issued a false
alarm. If an event is in progress, then the human will monitor the system till
the event ends. Under this assumption the second alarm caused by the change
from “event” to “quiescent period” would not count as a false alarm.

Changes in the data stream can be detected by comparing the distribution of
the most recent observations (the current set) with the distribution of previous
observations (the reference set). Let T denote the current time. A simple
approach is to choose window sizes C and R, and use a two-sample test S
to compare the observations in the current set CT = {xT−C+1, . . . , xT} with
the observations in the reference set RT = {xT−C−R+1, . . . , xT−C}. When the
test statistic S(RT , CT ) exceeds a chosen threshold τ , we ring the alarm. The
threshold controls the tradeoff between false alarms and missed detections.
Abstracting away details, a change detector can be defined as a combination
of a detection algorithm mapping the multivariate input stream xT into a
univariate detection stream dT , and an alarm threshold τ . The only restriction
is that dT can depend only on input observed up to time T .

A weakness of the approach to event detection outlined above is the equating
of “onset of event” with “change”: there might be many kinds of changes in
the stream that do not signal the onset of an event of interest. If we detect
changes by running two-sample tests, the weakness can be expressed in terms
of the power characteristics of the test S. We want S to have high power
for discriminating between data observed during quiescent periods and data
observed at the onset of an interesting event, and low power against all other
alternatives. The difficulty is that it can be hard to “manually” design such a
test, especially in a multivariate setting.

In a previous paper [6] we argued that realistically assessing the performance
of a change detector and choosing the threshold τ for a desired false alarm
rate requires labeled data. By this we mean a segment x1, . . . , xn of the data
stream with labels y1, . . . , yn, where yi = 1 if xi is observed during an event
and yi = 0 if xi is observed during a quiescent period. The assumption that
we have labeled training data begs a question: shouldn’t we use these data for
designing rather than merely evaluating a detector? In this paper we propose
a way of injecting labeled data into the design phase of an event detector. We
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refer to this process as training or “targeting” the detector.

The remainder of this paper is organized as follows: In Section 2 we describe
the basic idea behind targeted event detection and contrast it with untar-
geted event detection. Targeting converts the problem of detecting a change
in the data stream signaling the onset of an event to the problem of detecting
a positive level shift in a univariate stream; we address this problem in Sec-
tion 3. In Section 4 we briefly sketch an adaptation of ROC curves to event
detection proposed in [6]. In Section 5 we illustrate the effect of targeting in a
simple situation where the data stream is univariate and the observations are
independent. A more realistic multivariate example is presented in Section 6.
Section 7 concludes the paper with a summary and discussion.

2 Targeting an Event Detector

We assume we are given a segment x1, . . . , xn of a (possibly multivariate) data
stream together with class labels y1, . . . , yn, where y = 1 if xi was observed
during an event of interest, and yi = 0 otherwise. We use these training data
to target the event detector.

The key step in our targeting method is to train a classifier on the labeled
data. The classifier produces a classification score si for each xi, with large
values indicating yi = 1; i.e., xi was observed during an event.

By construction, onset of an event is signaled by a positive shift in the score
stream. We are now left with the simpler problem of detecting a positive level
shift in a univariate stream; two univariate change detectors mapping scores
into a detection stream dT are described in Section 3. We raise an alarm
whenever the detection stream produced by the univariate detection algorithm
exceeds a chosen threshold τ . The choice of τ controls the tradeoff between
false alarms and missed events. Note that labeled data are needed only for the
training phase and not during the operation of the change detector.

It is useful to contrast targeted and untargeted event detection. Figure 1 shows
a flowchart contrasting the two approaches. In targeted event detection, the
detection algorithm transforming the data stream into a univariate detection
stream is based on a scoring procedure derived from previously observed la-
beled training data. In untargeted event detection it is up to the designer of
the detector to choose a two-sample test sensitive against changes signaling
the onset of an event. The standard choices like the multivariate T -test and
the F -test have power only against location and scale changes, respectively,
whereas the change in the data stream signaling the onset of events might be
of a more complex nature. There are omnibus two sample tests, like Szekely’s
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test [1,7–10], that are consistent against all alternatives; however, their power
characteristics might not be well matched to the problem at hand.

3 Detecting a Level Shift in the Score Stream

Targeting transforms the problem of detecting a change in a (typically multi-
variate) data stream signalling the onset of an event into the simpler problem
of detecting a positive level shift in the univariate score stream generated by
the classifier. An obvious approach is to compare the average scores in the
current and reference windows, leading to the detection stream

d dif
T =

1

C

X

xi∈CT

si −
1

R

X

xi∈RT

si . (1)

An alternative approach is motivated by likelihood ratio tests. Suppose, for
the moment, that observations in the data stream were independent and that
we knew the class conditional densities p0(x) = p(x|y = 0) and p1(x). The
likelihood ratio statistic for testing the null hypothesis that all of the observa-
tions in CT and RT come from p0 against the alternative hypothesis that all
of the observations in RT come from p0 and all of those in CT come from p1 is
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We reject the null hypothesis for large values of λ. The log likelihood ratio
can be written as a function of p(y = 1|x):
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Regarding si as an estimate for to be p(y = 1|xi), this argument motivates
the detection stream

d lik
T =

X

xi∈CT

log
µ

si

1− si

∂
, (2)

which is independent of the reference set. (We can drop the term involving
p(y = 0)/p(y = 1) since it does not depend on the data stream.)
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4 Evaluation of Event Detectors

An event detector can make two kinds of errors: it can issue false alarms, or
it can signal events with undue delay or not at all. Raising an alarm soon
after the start of an event is crucial for event detection: if the alarm occurs
too long after the start, the horse will have left the barn, and the alarm is
useless. Also, changes within events or transitions from events to quiescent
periods are not of interest. Following Kim et al. [6], we define an event to be
successfully detected if the detection stream exceeds the alarm threshold τ at
least once within a tolerance window of size W after the onset of the event.
We define the hit rate h(τ) as the proportion of successfully detected events.
The false alarm rate f(τ) is simply the proportion of times in the quiescent
periods during which the detection stream exceeds the alarm threshold. There
is no penalty for raising multiple alarms during an event. Our definitions for
h(τ) and f(τ) are admittedly simple, and others might be better in scenarios
not involving event detection.

We can summarize the performance of a change detection algorithm by plot-
ting the hit rate h(τ) versus the false alarm rate f(τ) as we increase the alarm
threshold τ . Both h(τ) and f(τ) are monotonically non-increasing functions of
τ . The graph of the curve τ −→ (f(τ), h(τ)) is a monotonically non-decreasing
function of f(τ). We call this curve the ROC curve for the algorithm since it
is similar to the standard ROC curve used to evaluate binary classifiers [5].

It is useful to compare the performance of a detection algorithm with the
performance of the proverbial monkey who ignores the data and signals an
alarm with probability α ∈ [0, 1] independently at each time T . Clearly the
false alarm rate for the monkey is α. The rate at which the monkey will
successfully flag an event is given by the probability that an alarm is raised
at least once within the tolerance window of size W , which is governed by
a binomial distribution with parameters W and α. The ROC curve of the
monkey is thus α −→ (α, 1− (1− α)W ).

5 Illustration: Targeted Event Detection in a Univariate Stream

To illustrate the benefits of targeted event detection we consider a simple
simulated example where the data stream consists of independent univariate
observations. The density p0 of observations during quiescent periods is taken
to be standard Gaussian. The density p1 of observations during events is taken
to be a mixture of two symmetric components designed to also have zero mean
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and unit variance:

p1(x) =
1

2σ

∑
p0
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x− µ

σ

∂
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x + µ

σ

∂∏
,

with µ = 0.9 and σ2 = 0.19 (see Figure 2). Standard two-sample tests for
changes in location or scale will have poor power here since p0 and p1 have
the same mean and variance.

Given sufficient training data labeled as coming from events (p1) and quiescent
periods (p0), we can estimate both p0 and p1 to any desired degree of accuracy.
Assuming for simplicity that both densities are known perfectly, we can take
the score stream to be

si = p(y = 1|xi) =
p(y = 1, xi)

p(xi)
=

π1p1(xi)

(1− π1)p0(xi) + π1p1(xi)
,

where π1 = p(y = 1).

The detection stream defined in Equation (2) then becomes
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Because changing π1 results in a level shift of d lik
T , the graph of the ROC curve

for the detector does not depend on π1. Setting π1 = 1/2 for convenience yields

d lik
T =

X

xi∈CT

log

√
p1(xi)

p0(xi)

!

,

which can be interpreted as a log likelihood ratio test statistic. Figure 3 shows
examples of the streams xi, si and d lik

T with C = 20.

In the following we assume for simplicity that the length of events is large rel-
ative to the size W of the tolerance window, and the spacing between events is
large relative to the combined size C+R of the current and reference windows.
For given W and alarm threshold τ we can estimate the false alarm rate f(τ)
and the hit rate h(τ) associated with d lik

T using Monte Carlo experiments. We
estimate f(τ) by computing d lik

T for a stream of data drawn exclusively from
p0 and by determining the proportion of time that d lik

T exceeds τ . To deter-
mine the hit rate, suppose that an event starts at time T and has a duration
at least as long as the tolerance window; i.e., xi for i = T, T +1, . . . , T +W −1
are drawn from p1. Suppose also that xi for i = T − C, . . . , T − 1 are drawn
from p0. Since we declare an event to be successfully detected if d lik

T exceeds
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τ at least once within the tolerance window, we can estimate the hit rate by
repetition of the following four steps:

(1) sample xT−C , . . . , xT−1 from p0;
(2) sample xT , xT+1, . . . , xT+W−1 from p1;
(3) form the detection stream d lik

T , d lik
T+1, . . . d

lik
T+W−1; and

(4) see if any of these W values exceed the threshold τ .

The solid black curve in Figure 4 is the ROC curve for the detection stream
d lik

T with W = C = 20.

To illustrate the benefit of targeting we also consider a detection stream based
on a two-sample Smirnov test [4]. This nonparametric test is designed to
test for distributional differences between two independent random samples,
which in our case would consist of the observations in the current set CT and
reference set RT . Since d lik

T depends only on CT , it is convenient to remove
the dependence of the Smirnov test on RT by presuming that R is sufficiently
large so that p0 is known to arbitrary precision. This allows us to replace the
two-sample Smirnov test with a one-sample Kolmogorov goodness-of-fit test
against the null hypothesis p0 [4]. The solid gray curve in Figure 4 is the ROC
curve of the untargeted detector based on the Kolmogorov test. The dashed
curve is the ROC curve for the monkey ignoring the data and signaling an
alarm with probability α ∈ [0, 1] independently at the each time t.

We see that the targeted detector performs much better than the monkey and
the untargeted detector. The untargeted detector performs only marginally
better than the monkey for very small false alarm rates and is actually worse
for moderate false alarm rates! This might seem surprising — after all the
Kolmogorov test does have some power to distinguish p0 from p1. The reason
is that the stream d lik

T is correlated, while the monkey’s coin tosses are not.
Here is a heuristic argument: Suppose an event starts at time t and d lik

t <<
τ . Because of positive auto-correlation d lik

t+1, . . . , d
lik
t+W will likely be also less

than τ , and the detector will miss the event. Now suppose on the other hand
that d lik

t >> τ . Then d lik
t+1, . . . , d

lik
t+W will likely be also greater than τ , but

we will not get credit for raising the alarm multiple times. To verify that
correlation causes the poor performance of the Kolmogorov test, we can change
the procedure for estimating the hit rate: We generate new samples in steps (1)
and (2) each time we compute a value of the detection stream. The resulting
ROC curve (dotted) indeed is uniformly better than the monkey.
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6 Illustration: Targeted Event Detection in an Image Stream

Suppose we observe an image stream in which objects appear and move about.
Certain kinds of objects are interesting. The presence of these objects consti-
tutes an interesting event. Following our basic approach to targeted event
detection, we want to construct a classifier assigning a score to each image.
This score should tend to be large if an image shows an object of interest and
small if it does not.

Image streams have several characteristics that we need to take into account.

(1) They tend to be high-dimensional. If the image resolution is 1024×1024,
we are in effect observing more that 106 variables. Even for small 100×100
images, the dimension of the data stream is 10000.

(2) Due to the high dimensionality, each individual variable (pixel) conveys
relatively little information.

(3) We often do not care where an object of interest appears in the image,
and objects can move from one image to the next. During the operational
use of the event detector, objects of interest might appear in locations
where they were never seen in the training images. Therefore the design
of the event detector has to incorporate some kind of spatial invariance.

To accommodate these characteristics, we assume that, during the training
process, we visually identify images showing an object of interest and mark
these objects by, e.g., placing a bounding box. The inspection process produces
a collection of boxes showing objects of interest; we will call these “event
boxes”. Assume for simplicity that all event boxes are of the same size, say,
m×m. Next we extract a sample of m×m “quiescent” boxes from images taken
during quiescent periods. Using the training sample of boxes we construct a
classifier for boxes assigning a large score to event boxes and a small score to
quiescent boxes.

To decide whether an image is taken during a quiescent period or during an
even we apply the box classifier to all the boxes in the image. If the image is
n×n this results in (n−m+1)2 box scores. From these box scores we need to
derive a score for the entire image; an obvious choice is the maximum of the
box scores [6]. The problem of object detection in images has been extensively
studied in computer vision and image processing; the approach sketched above
goes under the name “template matching” [2].

Targeted event detection based on template matching can be very effective.
We now illustrate the approach using two simple scenarios. In the first scenario
there is one kind of interesting object and no uninteresting objects. In second
there is one kind of interesting and one kind of uninteresting object.
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6.1 First scenario: Interesting objects only

Consider a stream of 100×100 grey level images contaminated by independent
standard Gaussian noise. An object of interest manifests itself by a pyramid
of bright pixels with average intensity µ = 3. Figure 5 shows a sample image
with an interesting object. Objects can move from image to image once they
have appeared. We gather a training sample of Ne = 10 event boxes of size
10 × 10 and Nq = 10000 quiescent boxes. In practice, event boxes would be
collected “manually” as described above. For our illustration we automate this
process and make it reproducible by template matching a pyramid against Ne

event images and selecting from each image the box that matches best. We
then use the training sample of event boxes and quiescent boxes to train a
Fisher discriminant rule. Assuming that events are far apart relative to the
combined size R+W of the reference and tolerance windows, we can determine
the ROC curve through simulation, as in our univariate example in Section 5.
The result for R = 10 and W = C = 1 is the solid black line in Figure 6 (see
Section 7 for a discussion of this choice for W and C). The targeted detector
performs perfectly (up to the precision imposed by the finite sample size of
the simulation). As a comparison, consider an untargeted detector that looks
for change one pixel at a time by comparing the pixel values in the current
and reference windows, and then rings an alarm if the maximum value of the
test statistic over pixels exceeds the alarm threshold. The solid grey curve in
Figure 6 shows the ROC curve of the untargeted detector if we use absolute
difference in means as the test statistic.

This first scenario suggests that, even in a simple situation where there are no
uninteresting objects, targeted event detection can be advantageous because
it uses information on what we are looking for. The major advantage of tar-
geted event detection, however, is the ability to distinguish interesting from
uninteresting events, as the second scenario illustrates.

6.2 Second scenario: Interesting and uninteresting objects

To simplify analysis and understanding, we assume that at any given time we
can either see noise, or a single interesting object, or a single uninteresting
object. We call the presence of an interesting object an interesting event, and
the presence of an uninteresting object an uninteresting event. We want to
raise an alarm at the onset of interesting events. We also assume that the
durations of events and the lengths of time between events are both greater
than or equal to R + C.

The probability of a false alarm at some time T depends on the time interval
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[(T −R− C + 1), . . . T ]. We can be in one of the following four situations.

A1: all images in the interval show noise;
A2: an uninteresting object is present at the beginning but not at the end

(an uninteresting event ends during the interval);
A3: an uninteresting object is present at the end but not at the beginning

(an uninteresting event starts during the interval);
A4: an uninteresting object is present during the entire interval.

The simplifying assumptions above rule out any other patterns.

The probability of raising an alarm at time T (for a given alarm threshold) is

P (F ) =
4X

i=1

P (F |Ai) P (Ai) .

The conditional probabilities P (F |A1) and P (F |A4) are easy to obtain using
simulation. Estimating the other conditional probabilities requires a little more
thought. Consider P (F |A2). If an uninteresting object is visible at time 1 but
not at time R+T this means an uninteresting event is ending at time 1, or at
time 2, . . . , or at time (R + C − 1). Let Ei stand for “an uninteresting event
ends a time i”. A simple calculation shows that

P (F |A2) =
X

P (F |Ei) P (Ei |A2) .

For symmetry reasons, P (Ei |A2) = 1/(R + C − 1). The conditional proba-
bilities P (F |Ei) can be estimated by Monte Carlo in the obvious way. The
term P (F |A3) is treated analogously.

The probabilities P (A1), . . . , P (A4) depend on the lengths of the noise periods
and of the uninteresting events. There are only two independent parameters
because for symmetry reasons P (A2) = P (A3). To get some intuition about
the meaning of the P (Ai) consider a simple situation where noise intervals are
of fixed length N and uninteresting events are of length U , with N,U > R+C.
Then

P (A1) =
N − (R + C) + 1

N + U

P (A4) =
U − (R + C) + 1

N + U

P (A2) =P (A3) =
R + C − 1

N + U
.

The benefits of targeting become most apparent if uninteresting events occur
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frequently. In the examples below we choose the extreme case N = U =
R + C + 1, leading to P (A1) = P (A4) ≈ 0.04 and P (A2) = P (A3) ≈ 0.46.

Suppose that an uninteresting object manifests itself by an inverted pyramid
with average intensity µ = 3. The solid black curve in Figure 7 is the ROC
curve for the targeted detector which is close to perfect. The solid grey curve is
the ROC curve for the untargeted detector. The targeted detector appears to
be largely immune to the occurrence of uninteresting events, while comparison
of the grey curves in Figures 6 and 7 shows that uninteresting events worsen
the performance of the untargeted detector. Figure 8 shows the ROC curves
of the targeted detector (solid line) and the untargeted detector (solid grey
curve) for µ = 5. Increasing the signal-to-noise ratio does not alleviate the
performance problem of the untargeted detector except for large false alarm
rates.

7 Summary and Discussion

We have considered the problem of event detection based upon a (typically
multivariate) data stream characterizing some system. One of the key chal-
lenges in automated event detection is to design an algorithm that is sensitive
to changes in the data stream signalling the onset of interesting events but
insensitive to other kinds of variability. We have proposed a method for au-
tomating the design process. We assume that we are given a segment of the
data stream where interesting events have been labeled. We use a (typically
nonparametric) classifier trained on the labeled data to generate a classifica-
tion rule. The classification rule maps the data stream into a univariate score
stream, where high scores indicate the occurrence of an interesting event.
We have thereby transformed the challenging problem of detecting interesting
changes in the data stream to the much simpler problem of detecting positive
level shifts in the univariate score stream. We have illustrated our idea on a
simple univariate example with a simulated data stream and a more realistic
multivariate example. Both examples demonstrate that targeting can indeed
improve performance.

This paper suggests some avenues for future research. For example, the choices
for the sizes R, C and W of the reference, current and tolerance windows we
made in Sections 5 and 6 were dictated mainly by the desire to illustrate
our main points as easily as possible. The choice W = C = 1 in Section 6
is obviously unrealistic in practical situations, but was convenient to assume
since it avoided the need to decide how interesting or uninteresting objects
move from one image to the next during an event. In general, the choice
W = C seems natural, but, while it is possible to analytically demonstrate
that the ROC for W = C dominates the one for W < C in a simple scenario
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(namely, a stream of standard Gaussian white noise subject to a shift in its
mean when an event occurs), the choice W > C is harder to rule out (limited
computer experiments suggest it might be a reasonable choice). How to best
choose R, C and W in situations where targeted event detection is the main
focus is not obvious.

Another interesting avenue for research would be to consider the possibility of
operator feedback. Suppose, for example, that an event detector is tuned to
certain interesting events, but, with the passage of time, new interesting events
can arise that are unlikely to raise an alarm. Suppose also that an operator
only responds to alarms raised by the event detector and hence would be
unlikely to see a false alarm raised by new interesting events. By raising false
alarms at random times, we can increase the probability that the operator
will see new interesting events. Assuming that there is a cost associated with
responding to alarms and a cost associated with ignoring the new interesting
events, research would be needed to determine the best strategy for getting
operator feedback that would result in new training data for use in updating
the existing event detector.

Finally, more research is needed on how best to handle multivariate streams
with high dimension, but with less structure than image streams. The spa-
tial structure in images simplifies the identification of events. The lack of a
corresponding structure in other multivariate streams can make it difficult
for operators to provide feedback that could be used for retargeting an event
detector. Even the basic question of how to create a reasonable score stream
becomes much more difficult when we cannot rely on preconceived notions
about the relationships between the variables in the stream.
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Figure Captions

Figure 1. Flow chart showing the general structure of a change detector (left)
and two versions of detection algorithms — targeted and untargeted (right).

Figure 2. Standard Gaussian density p0 (dashed curve) and Gaussian mixture
PDF p1 (solid), also with zero mean and unit variance.

Figure 3. Data stream xi drawn from a standard Gaussian density p0 for
indices i = 1, . . . , 500 and from the Gaussian mixture p1 of Fig. 2 for i =
501, . . . , 1000 (top); corresponding score stream si (middle); and corresponding
detection stream d lik

T with C = 20 (bottom). The black curve in the middle
plot is a smooth of si obtained by locally weighted regression [3]. The dashed
line in the bottom plot indicates the natural break between favoring p0 or p1

in a log likelihood ratio test.

Figure 4. ROC curves for a targeted detector based on d lik
T (solid dark curve),

for an untargeted detector based on the Kolmogorov test statistic (solid gray
curve), and for the monkey (dashed curve). The dotted curve is the ROC
curve of an unrealizable procedure that uses a Kolmogorov test statistic with
a new set of independent data for each recalculation of the statistic within the
tolerance window. The sizes of the current set C and of the tolerance window
are taken to be 20.

Figure 5. Grey level image of size 100× 100 showing uncorrelated standard
Gaussian noise, to which has been added an interesting object (the pyramid
in the middle, corrupted by noise).

Figure 6. ROC curves for targeted (solid line) and untargeted (gray curve)
detectors under the scenario that images contain either just Gaussian noise
or an interesting object in the presence of noise (Fig. 5 is an example of the
latter case). The dashed curve is for the monkey detector.

Figure 7. As in Fig. 6, but now under the scenario that some of the images
have an uninteresting object (an inverted pyramid).

Figure 8. As in Fig. 7, but now with a higher signal-to-noise ratio.

14



Univariate or
Multivariate
Data Stream

Detection Algorithm

Univariate
Detection
Stream

Thresholding

Alarm

Nontargeted

2-sample Szekely

2-sample t-test

2-sample Smirnov

Targeted

Classifier Trained
on Labeled Data

Score
Stream

Univariate
Change Detector

Fig. 1. Flow chart showing the general structure of a change detector (left) and two
versions of detection algorithms — targeted and untargeted (right).
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Fig. 2. Standard Gaussian density p0 (dashed curve) and Gaussian mixture PDF p1

(solid), also with zero mean and unit variance.
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Fig. 3. Data stream xi drawn from a standard Gaussian density p0 for indices
i = 1, . . . , 500 and from the Gaussian mixture p1 of Fig. 2 for i = 501, . . . , 1000
(top); corresponding score stream si (middle); and corresponding detection stream
d lik

T with C = 20 (bottom). The black curve in the middle plot is a smooth of
si obtained by locally weighted regression [3]. The dashed line in the bottom plot
indicates the natural break between favoring p0 or p1 in a log likelihood ratio test.
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Fig. 4. ROC curves for a targeted detector based on d lik
T (solid dark curve), for an

untargeted detector based on the Kolmogorov test statistic (solid gray curve), and
for the monkey (dashed curve). The dotted curve is the ROC curve of an unrealizable
procedure that uses a Kolmogorov test statistic with a new set of independent data
for each recalculation of the statistic within the tolerance window. The sizes of the
current set C and of the tolerance window are taken to be 20.



Fig. 5. Grey level image of size 100× 100 showing uncorrelated standard Gaussian
noise, to which has been added an interesting object (the pyramid in the middle,
corrupted by noise).



0.0001 0.001 0.01 0.1 1
false alarm rate   

0

0.2

0.4

0.6

0.8

1

hi
t r

at
e

Fig. 6. ROC curves for targeted (solid line) and untargeted (gray curve) detectors
under the scenario that images contain either just Gaussian noise or an interesting
object in the presence of noise (Fig. 5 is an example of the latter case). The dashed
curve is for the monkey detector.
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Fig. 7. As in Fig. 6, but now under the scenario that some of the images have an
uninteresting object (an inverted pyramid).
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Fig. 8. As in Fig. 7, but now with a higher signal-to-noise ratio.


