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Abstract

Second order structure functions are widely used to characterize turbulence in the
inertial range because they are simple to estimate, particularly in comparison to
spectral density functions and wavelet variances. Structure function estimators,
however, are highly autocorrelated and, as a result, no suitable theory has been
established to provide confidence intervals for turbulence parameters when deter-
mined via regression fits in log/log space. Monte Carlo simulations were performed
to compare the performance of structure function estimators of turbulence param-
eters with corresponding multitaper spectral and wavelet variance estimators. The
simulations indicate that these latter estimators have smaller variances than estima-
tors based upon the structure function. In contrast to structure function estimators,
the statistical properties of the multitaper spectral and wavelet variance estimators
allow for the construction of confidence intervals for turbulence parameters. The
Monte Carlo simulations also confirm the validity of the statistical theory behind
the multitaper spectral and wavelet variance estimators. The strengths and weak-
nesses of the various estimators are further illustrated by analyzing an atmospheric
temperature time series.

Preprint submitted to Elsevier Science 29 May 2007



1 Introduction

In his classic work Kolmogorov [11] theorized that, at turbulent scales too
small to be directly affected by the energetic motions and too large to be af-
fected by viscosity, the longitudinal and transverse velocity structure functions
should only depend on the kinetic energy dissipation rate. This theory results
in a statistical description of turbulence in which the structure function and
related second order descriptors such as the spectral density function (SDF)
and wavelet variance are linear on log/log plots. In particular, the SDF is
proportional to |f |α, where the constant of proportionality is related to the
kinetic energy dissipation rate, and the power law exponent is α = −5/3.
Corrsin [5] and Obukhov [14] showed independently that the fluctuations of a
passive scalar in a turbulent flow should exhibit this same power law behavior
with a constant of proportionality that is related to the scalar dissipation rate
in addition to the kinetic energy dissipation rate.

Experiments in turbulence often rely on estimates of the power law expo-
nent α to identify the inertial subrange, in order to check for consistency
with Kolmogorov–Obukhov–Corrsin (KOC) turbulence, and to test hypothe-
ses concerning corrections to turbulence theory. Estimates of the constant
of proportionality are important in estimating kinetic energy and scalar dis-
sipation rates from environmental and laboratory flows. Estimation of the
exponent and the constant of proportionality is commonly based upon the
log of either a structure function estimator, an SDF estimator or a wavelet
variance estimator. It is thus important to understand the statistical merits of
the estimators used to characterize measured turbulence. As we demonstrate
via examples in Section 2, a typical estimate of the structure function appears
to be markedly more stable than certain corresponding SDF estimates. We
demonstrate in this paper (Section 3) that the apparently superior stability
of structure function estimates does not necessarily translate into estimates of
the exponent and constant of proportionality that are superior to those from
suitably chosen SDF and wavelet variance estimates. Moreover, while there is
an appealing statistical theory for both SDF and wavelet variance estimators
that makes it possible to ascertain the amount of uncertainty in the resulting
estimates of the exponent and constant of proportionality, the same does not
hold for structure function estimators, for which the sampling theory is quite
complicated [7]. See Muzy et al. [13] for more on fundamental drawbacks of
the structure function in comparison to wavelet transforms.

The remainder of this paper is organized as follows. After a motivating illus-
tration of the relative merits of structure function and SDF estimators, we
define – and consider the basic properties of – estimators for the exponent
and the constant of proportionality based upon a multitaper SDF estimator,
a structure function estimator and wavelet variance estimators. In Section 3
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we use computer experiments to verify the statistical theory for the multi-
taper and wavelet-based estimators and to compare these estimators to the
structure function-based estimators. In Section 4 the estimators are applied
to an atmospheric temperature signal. Section 5 summarizes our results and
recommendations.

2 Background

As a motivating example, Figure 1 compares two approaches for estimating
the exponent α of a process with an SDF that is proportional to a power
law |f |α over two decades of frequencies. The left-hand column shows two
realizations of a stationary process {Xt}, with an SDF given by 5f−5/3 for
0.0025 ≤ f ≤ 0.25. The middle column shows two multitaper SDF estimates
(Section 2.1), along with least squares lines fitted in log/log space over the fre-

quency range exhibiting the |f |−5/3 behavior (the lines are displaced upwards
on the plot to make them easier to see). The right hand column shows corre-
sponding plots for structure function estimates (Section 2.2), again with lines
two decades in length that represent the theoretical slope and extent of the
power law behavior in the simulated series. The multitaper spectral estimates
Ŝ

(mt)
X appear very noisy compared to the structure function estimates D̂X .

In addition, the proportion of explained variation, R2, is substantially higher
for the structure function estimates. One might conclude that the structure
function is the superior estimate here; however, the multitaper estimates of
the power law exponent α

.
= −1.667 and constant of proportionality B1 = 5

(derived from the slopes and intercepts of the fitted lines) are closer to the
true values. In fact, the smoothness of the structure function is the result
of a high degree of correlation between structure function estimates that are
separated by small to moderate distances. This smoothness masks the vari-
ability in the estimated power law exponent and constant of proportionality
and leads to the large R2 statistic for the linear regression. The multitaper
estimates, in contrast, rapidly decorrelate with increasing frequency separa-
tion; the variability in the estimates is clearly observed. As we demonstrate
in what follows, the covariance structure of the multitaper estimate is much
simpler, and can be approximated well independently of the data to quantify
the variability of the estimated exponent and constant of proportionality and
to establish confidence intervals for these parameters.

2.1 Multitaper Spectral Estimation

Multitaper spectral estimation is a technique introduced by Thomson [19]
that yields a largely unsmoothed or ‘raw’ estimator with both low bias and
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Fig. 1. Comparison of multitaper spectral and structure function estimates

tractable covariance and distributional properties. Multitapering builds upon
the notion of a single data taper, which has been used routinely since the 1950s
to reduce the bias in spectral estimators. In what follows, we first review how a
single data taper is used to form a spectral estimator, after which we define the
multitaper spectral estimator Ŝ

(mt)
X . We then proceed as in McCoy et al. [12]

to formulate an estimator of the exponent of power law processes that is based
upon Ŝ

(mt)
X and that is attractive when compared to competing methods.

Suppose we have a time series that can be regarded as a realization of one
portion X0, . . . , XN−1 of a stationary process with SDF SX (for simplicity, we
assume that 〈Xt〉 = 0, i.e., that the expected value of the process is zero;
if this is not a reasonable assumption, the common practice is to replace Xt

by Xt −X in what follows, where X is the sample mean of the time series).
A direct spectral estimator of SX is obtained by computing the magnitude
squared of the Fourier transform of the product of the series {Xt} and a
suitable data taper {ht}:

Ŝ
(d)
X (f) =

∣∣∣∣∣
N−1∑
t=0

htXte
−i2πft

∣∣∣∣∣
2

, |f | ≤ 1

2
.

The purpose of using the data taper is to obtain an estimator that is ap-
proximately unbiased; i.e., 〈Ŝ(d)

X (f)〉 ≈ SX(f). Tapering typically ‘shrinks’ the
values of Xt near the beginning and end of the time series toward zero, which
effectively causes a loss of information that manifests itself as an increase in
the variance of subsequently smoothed estimators.
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Multitapering is designed to recover some of the information lost by a single
data taper while simultaneously maintaining low bias and decreasing variabil-
ity to some degree. A multitaper estimator is created by averaging K direct
spectral estimators:

Ŝ
(mt)
X (f) =

1

K

K−1∑
k=0

Ŝ
(d)
X,k(f),

where Ŝ
(d)
X,k is the direct spectral estimator obtained using the kth data taper

{hk,t}. The data tapers are chosen so that each generates a direct spectral
estimator with good bias properties, and each is approximately uncorrelated
with the other K − 1 spectral estimators. The average of these direct spectral
estimators will have good bias properties and a smaller variance than any in-
dividual estimator Ŝ

(d)
X,k. The individual estimators will be nearly uncorrelated

if the data tapers are orthogonal [16]:

N−1∑
t=0

hj,thk,t = 0 for j 6= k.

Riedel and Sidorenko [18] suggest using sine tapers:

hk,t =

(
2

N + 1

)1/2

sin

(
(k + 1)π(t+ 1)

N + 1

)
.

In the inertial range, the SDF of velocity for KOC turbulence has a power law
behavior:

SX(f) = Cε2/3 |f |−5/3 ,

where C is a universal constant and ε is the kinetic energy dissipation rate.
On a logarithmic scale, the SDF is linear in frequency with an intercept that
is related to the kinetic energy dissipation rate:

log (SX(f)) = log (Cε2/3)− 5

3
log (|f |).

More generally, for an SDF of the form

SX(f) = B1 |f |α , (1)

we can write

log (SX(f)) = log (B1) + α log (|f |).
According to Walden et al. [21], the log multitaper estimator can be written
as the sum of two components. The first is nonstochastic and is the true log
spectrum plus a known constant, ψ(K) − log (K), where ψ is the digamma
function. The second is stochastic noise ηj whose distribution is dictated by
that of a log (χ2

2K) random variable. Hence ηj has a known variance σ2
η =

ψ′(K), where ψ′ is the trigamma function (if K is about 5 or greater, the
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distribution of ηj is approximately Gaussian). Following McCoy et al. [12], we
can estimate α and B1 by using the linear regression

Yj = c+ αxj + ηj, j = 1, . . . ,M, (2)

where Yj ≡ log {Ŝ(mt)(fj)}, c ≡ log (B1) + ψ(K) − log (K), xj ≡ log (fj) and
M is the number of frequency ordinates used in the regression over a range of
positive Fourier frequencies fj. In matrix form we have

Y = XΘ + N,

where Y is the column vector of Yj variables, X is a matrix with ones in
the first column and the xj variables in the second column, Θ = [c, α]T , and
N is the column vector of the ηj variables. The corresponding least squares
estimator is

Θ̂ = [XTX]−1XTY,

with covariance matrix〈
[Θ̂−Θ][Θ̂−Θ]T

〉
= [XTX]−1XTΣX[XTX]−1. (3)

Here Σ is the symmetric Toeplitz covariance matrix for N. Following Walden
et al. [21], the (j, j + τ)th element of the covariance matrix for N can be
modeled by

sη,τ ≡ cov{ηj, ηj+τ} ≈

σ
2
η

(
1− |τ |

K+1

)
, if |τ | ≤ (K + 1);

0, otherwise.

2.2 Structure Function Estimation

Kolmogorov’s original hypothesis [11] was formulated in terms of the second
order structure function:

DX(τ) = 〈(Xt+τ −Xt)
2〉.

For a process with an SDF given by Equation 1 with −3 ≤ α < −1, the
structure function takes the form [22]

DX(τ) = B2|τ |−(α+1), where B2 =
B1

(2π)αΓ(−α) sin(−π(α+ 1)/2)
.

After taking the logarithm of both sides, we obtain for positive τ

log (DX(τ)) = log (B2)− (α+ 1) log (τ). (4)
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This relationship can be used to estimate α and B2 by performing a regression
involving the usual structure function estimator, namely,

D̂X(τ) =
1

N − τ

N−1−τ∑
t=0

(Xt+τ −Xt)
2,

where N − τ is the number of pairs of sample points separated by the positive
distance τ . The regression model in this case is

Yτ = log (B2)− (α+ 1)xτ + ητ , (5)

where Yτ ≡ log (D̂X(τ)), xτ ≡ log (τ), and the expected value of the error
term ητ is assumed to be zero. In contrast to 3, the covariance matrix is
difficult to determine because the error terms are highly correlated, with the
correlation structure being model dependent. Genton [8] approximates this
covariance matrix using an explicit formula in the situation where the data
are independent. It is not clear that this approach is suitable for turbulence
or other highly correlated processes.

2.3 Wavelet Variance Estimation

The utility of wavelet transforms for the characterization of power law pro-
cesses has been well documented; see, e.g., [1] and [2]. Vidakovic [20] provides
good background information on wavelet transforms.

Given a process {Xt} that is either stationary or whose increments of a certain
order form a stationary process, we can use a jth level wavelet filter {h̃j,l, j =
0, 1, . . . , Lj − 1} to define a wavelet coefficient process

W j,t ≡
Lj−1∑
l=0

h̃j,lXt−l for j = 1, 2, 3, . . . .

This process is associated with changes in co-located averages in {Xt} on
a standardized scale of τj = 2j−1. Under mild conditions (see Percival and
Walden [17] for details), the process {W j,t} is stationary with mean zero. The
wavelet variance is defined to be the variance of W j,t:

ν2
X(τj) = 〈W 2

j,t〉.

This variance offers a decomposition of the variability in {Xt} over temporal
or spatial scales. If {Xt} is stationary with variance σ2

X , then

∞∑
j=1

ν2
X(τj) = σ2

X ;
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on the other hand, if {Xt} is nonstationary but has stationary increments of
a certain order, then

∞∑
j=1

ν2
X(τj) = ∞.

Given X0, X1, . . . , XN−1, the jth level maximal overlap discrete wavelet trans-
form (MODWT) wavelet coefficients are found by circular convolution with
{h̃j,l}:

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N , t = 0, 1, . . . , N − 1.

The wavelet variance is estimated by computing the sample variance of the
MODWT wavelet coefficients:

ν̃2
X(τj) ≡

1

N

N−1∑
t=0

W̃ 2
j,t.

The estimate ν̃2
X(τj) is referred to as the biased estimate of the wavelet variance

because, whereas W̃j,t = W j,t and hence 〈W̃ 2
j,t〉 = ν2

X(τj) when Lj − 1 ≤ t ≤
N − 1, the same does not necessarily hold when 0 ≤ t < Lj − 1. Excluding
these latter coefficients gives an unbiased estimator of the wavelet variance:

ν̂2
X(τj) ≡

1

Mj

N−1∑
t=Lj−1

W̃ 2
j,t =

1

Mj

N−1∑
t=Lj−1

W
2
j,t,

where Mj ≡ N − Lj + 1.

Percival and Walden [17] show that the wavelet variance can be related to the
SDF because the jth level MODWT wavelet filter acts like a band-pass filter
with pass-band

1

2j+1
< |f | ≤ 1

2j
,

implying that

ν2
X(τj) ≈ 2

∫ 1/2j

1/2j+1
SX(f) df, (6)

where the factor of two comes into play because we use SDFs that are assumed
to be two-sided. Substitution of Equation 1 gives:

ν2
X(τj) ≈ 2B1

∫ 1/2j

1/2j+1
fα df = B3τ

−(α+1)
j ,

where

B3 ≡
2B1(2

−(α+1) − 4−(α+1))

α+ 1
.

After taking the logarithm of both sides, we obtain

log (ν2
X(τj)) ≈ log (B3)− (α+ 1) log (τj), (7)
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which is quite similar to Equation 4 involving the structure function.

Percival and Walden [17] formulate an estimator for α and B3 by regressing
the logarithm of the wavelet variance estimates against the logarithm of the
wavelet scale:

Y (τj) = ζ + β log (τj) + ej, (8)

where

Y (τj) ≡ log (ν2
X(τj))− ψ

(
ηj

2

)
+ log

(
ηj

2

)
,

ζ ≡ log (B3) = log

(
2B1(2

−(α+1) − 4−(α+1))

α+ 1

)
,

β ≡ −(α+ 1), ej has zero mean and variance ψ′(ηj

2
), and ηj is the ‘equivalent

degrees of freedom’ for a scaled chi-squared distribution [17]. We estimate ηj

using the following relationship from Percival and Walden [17]:

ηj = max{Mj/2
j, 1}.

We can obtain estimates of β and ζ using ordinary least squares; more appro-
priately, since the variance of the error term grows with increasing j, we can use
weighted least squares with weights wj = 1/ψ′(ηj

2
). The ordinary least squares

estimator takes the same form as the multitaper estimator with Yj = Y (τj)
and xj = log (τj). The corresponding weighted least squares estimator is

Θ̂ = [XTΣ−1X]−1XTΣ−1Y, (9)

with covariance matrix〈
[Θ̂−Θ][Θ̂−Θ]T

〉
= [XTΣ−1X]−1, (10)

where Θ = [ζ, β]T and Σ is a diagonal matrix with elements ψ′(ηj

2
). Jensen [10]

shows that the approximation for the slope in Equation 7 becomes exact as
j → ∞ and is quite reasonable even when j ≥ 2 or 3. The fitness of the
approximation for the intercept will be evaluated, by numerical integration
of the product of the true SDF and the wavelet squared gain function, in
Section 3.

2.4 Scaling range averaging for the estimation of B1

In turbulent signals, the constant of proportionality in the power law model is
often used as a surrogate for the energy of the signal contained in the inertial
range. It is through this interpretation that a relationship between the constant
of proportionality and the dissipation rate is formed. In the previous sections
we have outlined methods for estimating B1 either directly or indirectly via B2
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or B3 using, respectively, the structure function or wavelet variance; however, if
the slope of the line for this intercept is not known, the intercept, by itself, does
not indicate the signal energy contained within any given band of frequencies
or any range of scales.

Here we consider an alternative estimator for B1 that can be more readily
interpreted in terms of dissipation rate. Note that the expected values of the
log/log models 2, 5, and 8 for the multitaper, structure function, and wavelet
variance cases all take the form b + γx over an appropriate scaling region
x1 ≤ x ≤ x2. The average value of the log/log model over this region is given
by

A ≡ 1

x2 − x1

∫ x2

x1

b+ γdx = b+
γ

2
(x1 + x2).

In the multitaper case, b = log(B1) + ψ(K) − log(K), and γ = α, so we can
estimate B1 (assuming α = −5/3) using

ˆ̂
B

(mt)
1 = exp{Â(mt) +

5

6
(x1 + x2)− ψ(K) + log(K)},

where Â(mt) is formed by taking the average values of Yj = log{Ŝ(mt)(fj)} over
the region of frequencies for which the power law model is assumed to hold.
Based upon similar averages Â(sf) and Â(wv) for the structure function and
wavelet variance cases, we obtain

ˆ̂
B

(sf)
1 = (2π)−5/3Γ(5/3) sin(π/3) exp{Â(sf) − 1

3
(x1 + x2)}

and
ˆ̂
B

(wv)
1 = − 1

3(22/3 − 42/3)
exp

{
Â(wv) − 1

3
(x1 + x2)

}
.

The estimators of B1 obtained through this procedure will reflect the energy
content of the chosen scaling range, regardless of the slope, but will only reflect
the intercept of the regression line if the estimated value for α is −5/3. This
is preferable to the alternative, namely, that the estimate of B1 reflects the
intercept of the regression line, regardless of the slope, and only reflects the
energy content of the scaling range when the α estimate is −5/3.

3 Results

To compare the relative merits of the estimators described in the previous
section, we consider a Gaussian stationary process with an SDF defined over
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−0.5 ≤ f ≤ 0.5 such that

S(f) =


5× 0.0025−5/3, for 0 ≤ |f | ≤ 0.0025;

5|f |−5/3, for 0.0025 < |f | ≤ 0.25; and

5× 0.25−5/3, for 0.25 < |f | ≤ 0.5.

(11)

This SDF has power law behavior B1 |f |α over a two decade range of positive
frequencies, with B1 = 5 and α = −5/3, and is flat on either side.

3.1 Theoretical Comparison

In this section, the theoretical performance of each of the estimators is consid-
ered; first the bias, followed by the variance. This effort provides a benchmark
for computer simulations and a basis for understanding observed biases in the
wavelet variance and structure function estimators.

It is difficult to define a process in terms of its autocovariance sequence (ACVS)
since one must ensure that the ACVS is positive semidefinite. For this reason,
in Equation 11 we have specified the process in terms of its SDF. In doing so,
we have introduced some bias into the estimates of α and B1 based upon the
structure function and wavelet variance since the mapping of the power law
behavior from the SDF is inexact for band-limited processes. The considered
process was chosen to have exact power law behavior over a two decade range
in its SDF. The wavelet variance and structure function do not display exact
power law behavior for this band-limited process; they are nearly linear over
a range of scales that is slightly less than two decades in length. The wavelet
variance that corresponds to the chosen SDF was obtained through numerical
integration of

ν2
X(τj) =

∫ 1/2

−1/2
|H̃j(f)|2SX(f) df, (12)

where H̃j is the transfer function for the filter {h̃j,l}. The structure function
was obtained from

DX(τ) = 2(sX,0 − sX,τ ), (13)

after computing the ACVS sX,τ from the inverse discrete Fourier transform
of the SDF. Regressions were performed (over identical ranges of scale as in
the empirical comparisons) on this wavelet variance and structure function to
determine the corresponding values for the estimators of the parameters α and
B1. The values differ slightly from the ones prescribed in Equation 11. This
difference is related to the imperfect mapping of the power law behavior of the
simulated process rather than the performance of the individual estimators.
Tables 1 and 2 summarize the theoretical performance of the estimators of the
parameters α and B1. The LA(16) wavelet was selected because it provides
a good approximation to a band-pass filter. Since we know the true SDF for
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the process, we are able to estimate the introduced bias, along with the bias
that results from the band-pass filtering approximation in the wavelet variance
formulation. It seems most appropriate to compare only the magnitude of the
variance, of each of the estimators, to avoid this introduced bias.

The theoretical variances for the estimators of the parameter Θ = [c, α]T in
the linear regression model of Equation 2 for the multitaper case are given
by the diagonal elements of the covariance matrix shown in Equation 3. Since
c = log(B1) + ψ(K) − log(K), the least squares estimator ĉ of c can be used
to define an estimator for B1, namely,

B̂
(mt)
1 ≡ exp{ĉ− ψ(K) + log(K)}.

Noting that
var{B̂(mt)

1 } = K2 exp{−2ψ(K)}var{exp(ĉ)}
and assuming that ĉ is normally distributed, then exp(ĉ) obeys a log normal
distribution with parameters µ = log(B1)+ψ(K)−log(K) and σ2 given by the
upper left-hand element of the covariance matrix in Equation 3. A standard
result says that the variance of exp(ĉ) is given by exp(2µ+ σ2){exp(σ2)− 1},
and hence we have

var{B̂(mt)
1 } = B2

1 exp(σ2)(exp(σ2)− 1).

The variance of the least squares estimator α̂ of α is given by the lower right-
hand element of the covariance matrix in Equation 3. In the wavelet variance
case, the theoretical variances for the estimator of the parameters Θ = [ζ, β]T

can be obtained from an expression analogous to Equation 3 for the ordinary
least squares estimator and from Equation 10 for the weighted least squares
estimator. The variance of the wavelet variance estimator of B1 is

var{B̂(wv)
1 } =

(
α+ 1

2B1(2−(α+1) − 4−(α+1))

)2

e2µ+var{ζ̂(wv)}(evar{ζ̂
(wv)} − 1),

where µ is the actual mean log

(
2B1(2−(α+1)−4−(α+1))

α+1

)
and α = −5

3
is the actual

value of α. The theoretical variances for the wavelet variance estimators of α
and β are the same.

3.2 Empirical Comparison

Realizations of the process described by Equation 11 were generated using the
Gaussian spectral synthesis method (GSSM) [15]. GSSM is an approximate
frequency domain method that can be used to simulate a zero mean Gaussian
stationary process with a specified SDF. A segment of length N is sampled
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Table 1
Theoretical performance of α estimators.

α bias bias2 variance MSE

Ŝ
(mt)
X −1.666667 0.000000 0.000000 0.000829 0.000829

D̂X [1,100] −1.701854 -0.035187 0.001238 no theory no theory

D̂X [1, 64] −1.674131 -0.007464 0.000076 no theory no theory

D̂X [2,100] −1.707376 -0.040709 0.001657 no theory no theory

D̂X [2, 64] −1.677027 -0.010360 0.000107 no theory no theory

ν̂2
X OLS −1.669780 -0.003113 0.000010 0.002131 0.002140

ν̂2
X WLS −1.664584 0.002083 0.000004 0.000800 0.000804

Table 2
Theoretical performance of B1 estimators.

B1 bias bias2 variance MSE

Ŝ
(mt)
X 5.000000 0.000000 0.000000 0.130876 0.130876

D̂X [1,100] 5.105634 0.105634 0.011159 no theory no theory

D̂X [1, 64] 4.753328 -0.246672 0.060847 no theory no theory

D̂X [2,100] 5.215992 0.215992 0.046652 no theory no theory

D̂X [2, 64] 4.801153 -0.198847 0.039540 no theory no theory

ν̂2
X OLS 5.076332 0.076332 0.005827 0.154553 0.160380

ν̂2
X WLS 5.122484 0.122484 0.015002 0.046261 0.061263

from a harmonic process of length M that is generated using a DFT approach.
Percival [15] shows that, by making M large, the ACVS of the simulated
series can be made arbitrarily close to the desired ACVS out to lag N − 1.
We experimented with different values of M to determine their effect on the
structure function. Since the structure function may be expressed in terms of
the ACVS (Equation 13), the structure function of the simulated process will
also converge to the desired structure function as M becomes large. Estimates
of α and B1 were obtained using the structure function for 10,000 realizations
of the simulated process with M = 4N , M = 8N , M = 16N , and M = 32N .
No significant change in the estimates of α or B1 was observed with increasing
M , suggesting that M = 4N is large enough to produce accurate results.

Estimates of B1 and α were obtained with each of the estimators for 10,000
realizations of the simulated process. The multitaper method used K = 5
sine tapers, and the regression was performed on frequencies in the power-law
portion of the SDF. The structure function was calculated over four different
ranges of unitless separations: 1 to 100, 2 to 100, 1 to 64, and 2 to 64. Using
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Table 3
Summary of α estimates.

α̂ bias bias2 variance MSE

Ŝ
(mt)
X −1.666779 -0.000112 0.000000 0.000717 0.000717

D̂X [1,100] −1.703846 -0.037179 0.001382 0.001160 0.002542

D̂X [1, 64] −1.675542 -0.008875 0.000079 0.000814 0.000893

D̂X [2,100] −1.709559 -0.042892 0.001840 0.001404 0.003244

D̂X [2, 64] −1.678617 -0.011950 0.000143 0.001033 0.001176

ν̂2
X OLS −1.664909 0.001758 0.000003 0.001848 0.001851

ν̂2
X WLS −1.662119 0.004548 0.000021 0.000746 0.000767

Table 4
Summary of B1 estimates.

B̂1 bias bias2 variance MSE

Ŝ
(mt)
X 5.011043 0.011043 0.000122 0.113948 0.114070

D̂X [1,100] 5.140074 0.140074 0.019621 0.147397 0.167018

D̂X [1, 64] 4.771829 -0.228171 0.052062 0.065295 0.117358

D̂X [2,100] 5.261158 0.261158 0.068203 0.219234 0.287438

D̂X [2, 64] 4.826778 -0.173222 0.030006 0.105196 0.135202

ν̂2
X OLS 5.122879 0.122879 0.015099 0.138459 0.153558

ν̂2
X WLS 5.137826 0.137826 0.018996 0.043069 0.062065

Daubechies LA(16) wavelets, ordinary and weighted least squares estimates
were obtained on wavelet transform levels j = 2 through j = 7 using the
unbiased estimate of the wavelet variance. The squared bias, variance, and
mean squared error (MSE) of each of the estimators are summarized in Table 3
for α, Table 4 for B1, and Table 5 for estimates of B1 obtained through scaling
range averaging. Figures 2 through 4 show corresponding box and whisker
diagrams. For α (Table 3 and Figure 2), the multitaper and weighted least
squares wavelet estimates have about 10% less variance than the best structure
function estimate, which is based on [1, 64]. For B1 estimated via B̂1 (Table 4
and Figure 3), the structure function [1, 64] and [2, 64] estimates have smaller
variances than the multitaper estimate, but the weighted least squares wavelet
estimate has the smallest variance. For B1 estimated based upon scaling range
averaging (Table 5 and Figure 4), all of the structure functions estimates are
better than the multitaper and wavelet variance estimates in terms of variance.

A comparison of Tables 3 and 4 with Tables 1 and 2 indicates very good
agreement between theoretical and corresponding empirical values for all es-
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Table 5
Summary of estimates of B1 obtained using scaling range averaging.

ˆ̂
B1 bias bias2 variance MSE

Ŝ
(mt)
X 5.010497 0.010479 0.000110 0.064256 0.064366

D̂X [1,100] 4.575704 -0.424296 0.180028 0.024661 0.204689

D̂X [1, 64] 4.612862 -0.387138 0.149876 0.019428 0.169304

D̂X [2,100] 4.601591 -0.398401 0.158729 0.032927 0.191656

D̂X [2, 64] 4.649701 -0.350299 0.122709 0.026435 0.149144

ν̂2
X 5.091149 0.091149 0.008308 0.045419 0.053727

Fig. 2. Box and whisker diagram comparison of α estimates.

timators. In particular, the empirical estimates of α and B1 agree well with
the theoretical values for each estimator. The theoretical predictions of the
variance of the multitaper and wavelet variance estimators of α and B1 are
between 7% and 16% larger than observed, indicating that the sampling theory
provides accurate, but somewhat conservative, predictions of the variability of
the estimate.

4 Analysis of Measured Turbulence Data

Here we use an aerothermal time series to demonstrate the practical use of
the multitaper spectral, wavelet and structure function estimators of α and
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Fig. 3. Box and whisker diagram comparison of B1 estimates.

Fig. 4. Box and whisker diagram comparison of estimates of B1 obtained through
scaling range averaging.

B1. The aerothermal series (Figure 5) was recorded using a cold wire probe
mounted on an aircraft that flew at a constant or linearly increasing altitude
during clear air conditions. The series was uniformly sampled at an aver-
age spacing of 1.83 cm along a flight segment that was 137.3 km in length.
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It exhibits inhomogeneities that might indicate regions with different turbu-
lent characteristics. Two prominent bursts (regions of high-frequency, high-
amplitude activity) are evident: one between 20 and 30 km and the second
between 70 and 80 km. The character of the series beyond the second bursting
region is quite different from its character between the two bursting regions
in that it appears to lack the small-scale variability present earlier on. This is
consistent with a conceptual image of an aircraft flying horizontally through a
tilted turbulent layer or climbing slowly through a horizontal turbulent layer
that is mechanically turbulent throughout with large temperature gradients,
caused by mixing, at the layer top and bottom [6]. Mechanical turbulence
in the presence of these large temperature gradients could cause the large
fluctuations in temperature that are observed in the bursting regions.

Fig. 5. The aerothermal series.

Constantine et al. [4] previously showed that, to a good approximation, the
aerothermal series can be modeled as a time-varying fractionally differenced
(FD) process and used an FD process model and discrete wavelet transforms
to produce instantaneous estimates of the power law exponent. Their results
indicate that the power law exponent within and between the bursting re-
gions is approximately consistent with KOC type behavior for physical scales
between 0.59 m and 18.77 m with a significant departure from this behav-
ior in the regions prior to the first, and subsequent to the second, bursting
regions. They also noted a quasi-periodic contamination of the signal at phys-
ical scales 0.1465 and 0.2930 m which may be due to an acoustic jet screech
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interaction [9].

Because the aerothermal series exhibits characteristics that vary spatially,
shorter blocks of data were analyzed in an attempt to ensure that each seg-
ment was approximately statistically homogeneous. The smallest wavelet scale
apparently unaffected by the quasi-periodic contamination is j = 6, which
corresponds to a physical scale of 0.59 m [4]. The weighted least squares
wavelet variance estimates of α and B1 were computed using wavelet scales
j = 6 through j = 8 and the LA(16) wavelet. This corresponds to a fre-
quency band 0.1067 < f ≤ 0.8533 m−1. The length, N , of these segments
was chosen to prevent bias in the multitaper estimates by ensuring that the
smallest Fourier ordinate in the regression is farther from the zero-frequency
component than the half-width of the multitaper spectral bandwidth, W ′ ≡
(K + 1)/{2(N + 1)∆x} [12], where the number of data tapers was chosen to
be K = 5. Segments of length N = 214 were chosen, each representing a dis-
tance of approximately 0.3 km along the flight path. The structure function
estimates were computed using a range of separation distances between 0.59
and 2.34 m. The estimates of α and B1 obtained through these procedures are
displayed in Figures 6 and 7. The estimates of B1 were all obtained using the
scaling range averaging procedure.

Fig. 6. Multitaper spectral (open circles), wavelet variance (dots), and structure
function (open squares) estimates of α for length N = 214 blocks of the aerother-
mal series. The two horizontal solid lines represent the KOC value (−5/3) ± 95%
confidence intervals from the multitaper spectral estimator.

In agreement with Constantine et al. [4], the multitaper spectral and wavelet
variance estimates of the power law exponent α (Figure 6) are near the KOC

18



Fig. 7. Scaling range averaged multitaper spectral (open circles), wavelet variance
(dots), and structure function (open squares) estimates of B1 for length N = 214

blocks of the aerothermal series. The y-axis is dimensionless because the series is
uncalibrated.

−5/3 value between approximately 20 and 80 km and take on values that are
significantly smaller in magnitude for much of the remainder of the series. The
structure function estimates of α are also near the KOC value between 20 and
80 km, but, in comparison to the other estimates, take on values that are larger
in magnitude elsewhere. This disagreement is expected since the structure
function estimator of α is only valid for −3 ≤ α < −1. Note that many of the
estimates from the region between 20 and 80 km fall outside the confidence
intervals shown in Figure 6. We would expect roughly 95% of these estimates to
be within these limits if a −5/3 power law were obeyed throughout; a possible
interpretation is that KOC type behavior is only observed intermittently.

The estimates of the constant of proportionality are significantly higher in
the region between 20 and 80 km than they are elsewhere (Figure 7). The
structure function estimates of B1 are significantly different in the regions
where α deviates from −5/3 because, again, the structure function estimator
is only valid for −3 ≤ α < −1. Note that the B1 estimates were obtained
using the scaling range averaging procedure and, as a result, are proportional
to the energy content within the chosen scaling range and not directly related
to the y-intercept of the regression line.
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A comparison of the estimates of α (Figure 6) and B1 (Figure 7) would seem
to indicate a link between KOC behavior and the strength of the temperature
fluctuations since the estimates for B1 are largest in the regions where α is near
−5/3; however, it is possible that the temperature fluctuations in portions of
the time series are too small to be resolved by the cold wire probe, resulting in
minimal values for B1 and meaningless estimates of α. This possibility could
not be tested because calibration and sensitivity data for the temperature
probe were not available.

Longer segments of the aerothermal data were analyzed to explore the behavior
of fluctuations with larger physical scales. These segments were of length N =
220, each representing a distance of approximately 19.2 km along the flight
path. Figures 8 and 9 show the resulting estimates for α and B1. The regression
for the wavelet variance estimators were performed over wavelet scales j = 6
through j = 12, corresponding to physical scales between 0.59 and 37.5 m.
The regression for the multitaper spectral estimators spanned a frequency
band 0.006667 < f ≤ 0.8533 m−1. The structure function estimates were
based on separation distances between 0.59 and 37.5 m. The estimates of α
and B1 from these longer segments are both qualitatively and quantitatively
similar to those using length N = 214 (Figures 6 and 7). In both cases, the
α estimates are near the KOC value of −5/3 in the region between 20 and
80 km and deviate from this value elsewhere; the largest estimates for B1 are
also observed in this region. This suggests that the same power law behavior
that was witnessed at smaller scales (Figures 6 and 7) extends to the larger
scales as well.

To this point we have merely assumed that the aerothermal series obeys a
power law within each segment that we have analyzed. This assumption may
be tested by looking at the residuals: Y ′(mt)(f) = Yj − Ŷj for the multita-

per estimate of the SDF, Y ′(sf)(τ) = Yτ − Ŷτ for the structure function, and
Y ′(wv)(τj) = Y (τj)− Ŷ (τj) for the wavelet variance, where ŶX denotes the es-
timate of YX obtained by performing the regression on the appropriate char-
acterization. Figure 10 displays the residuals for the multitaper estimate of
the SDF for the first and second segments of length N = 220 and the 95%
confidence intervals appropriate for a logχ2

2K random variable with K = 5
data tapers. While the vast majority of the points fall within the approxi-
mate 95% confidence intervals, the residuals for the first segment display a
trend that indicates that the linear approximation is not adequate to describe
the SDF over the scaling range. The residuals for the second segment do not
display this trend, indicating that the linear approximation provides a much
more suitable description of the SDF here. The linear approximation seems
appropriate for the segments with α estimates in the −5/3 region and less
adequate for the remainder of the series. Figure 11 shows the residuals and
95% confidence intervals for the regression on the wavelet variance estimate.
The residuals for the second segment all fall within the confidence intervals
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Fig. 8. Multitaper spectral (open circles), wavelet variance (dots), and structure
function (open squares) estimates of α for length N = 220 blocks of the aerother-
mal series. The two horizontal solid lines represent the KOC value (−5/3) ± 95%
confidence intervals from the multitaper spectral estimator.

and lack any obvious trend which would indicate a deficiency in the linear
model; the linear approximation is clearly inadequate for the first segment.
The linear approximation provides an adequate description of the SDF and
wavelet variance for the second, third and fourth segments of the aerothermal
series, i.e., the segments within and between the bursting regions that yield
the α values nearest to −5/3 and the largest values for B1.

While the residuals for the multitaper and wavelet estimates allow us to as-
sess the adequacy of the power law assumption, the same cannot be said for
the structure function. Figure 12 shows the structure function residuals for
the same two segments considered in Figures 10 and 11. No confidence inter-
vals are available for these plots because no useful internal error estimates are
available for the structure function. The oscillatory behavior apparent in the
residuals results from the quasi-periodic noise that is confined to small scales
in the wavelet variance and SDF, but unfortunately contaminates the entire
range of separation distances in the structure function. This is a shortcoming of
the structure function in analyzing any type of signal with harmonic or quasi-
periodic components. The structure function residuals from the aerothermal
data are highly correlated and display obvious trends, in addition to the os-
cillations, indicating that the linear approximation is a poor descriptor of the
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Fig. 9. Scaling range averaged multitaper spectral (open circles), wavelet variance
(dots), and structure function (open squares) estimates of B1 for length N = 220

blocks of the aerothermal series. The dotted line represents the estimates of B1 ob-
tained using the multitaper spectral estimator with the Fourier frequency ordinates
limited to 1

512 < fj ≤ 1
64 . The y-axis is dimensionless because the aerothermal series

is uncalibrated.

Fig. 10. Regression residuals for the multitaper spectral estimator applied to the
aerothermal series. The left hand panel refers to the first segment of length N = 220,
the right hand panel refers to the second segment. The solid lines indicate approxi-
mate 95% confidence intervals.

structure function. The SDF and wavelet variance are superior characteriza-
tions for this turbulent time series because they isolate the quasi-periodic noise
at high frequencies and small scales and, more importantly, because they are
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Fig. 11. Regression residuals for the wavelet variance estimator applied to the
aerothermal series. The left hand panel refers to the first segment of length N = 220,
the right hand panel refers to the second segment. The solid curves indicate approx-
imate 95% confidence intervals.

approximately linear over the scaling range, while the structure function is not.
There is reason to believe that other turbulence data sets exhibit this same
characteristic, since other investigators have noted a more extensive scaling
region in the spectral approach than the structure function [3].

Fig. 12. Regression residuals for the structure function estimator applied to the
aerothermal series. The left hand panel refers to the first segment of length N = 220,
the right hand panel refers to the second segment.

4.1 Conclusions

The uncalibrated aerothermal series displays spatially extensive – but not
ubiquitous – power law behavior that is approximately consistent with KOC
turbulence. This type of turbulence occurs primarily in regions with high levels
of activity, and less so in inactive regions; however, we cannot rule out the
possibility that this pattern is an artifact of noise due to instrumentation.

This analysis demonstrates the inferiority of the structure function in char-
acterizing the power law behavior of this time series. There is no suitable
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theory available to provide internal error estimates for the structure function,
which severely limits our ability to use the residuals to assess the adequacy
of the power law assumption. The residuals from the structure function es-
timate are obviously contaminated by a quasi-periodic component, which, in
contrast, was isolated outside of the scaling region by the multitaper spectral
and wavelet variance estimates. The structure function residuals are highly
correlated and indicate that the structure function is not linear at the same
scales that are well characterized by a linear approximation to the SDF and
wavelet variance. The SDF and wavelet variance provide simple characteriza-
tions for this data set with known statistical properties; the same cannot be
said for the structure function.

5 Discussion

It has been noted in the turbulence literature (see Antonia and Smalley [3], and
references therein) that spectra of turbulent signals sometimes display more
extensive scaling regions than do structure function estimates of the same
signals. In Section 3 a stationary Gaussian process was defined in terms of its
SDF with two decades of power law behavior. The corresponding structure
function for this process does not display this power law behavior exactly, but
instead shows a much narrower range of scales where the slope is nearly linear.
Regressions performed over this nearly linear region yielded estimates of the
power law exponent and constant of proportionality that are approximately
in agreement with the prescribed values. One can also imagine processes that
display more extensive power law behavior in their structure functions than in
their SDFs, but these processes are difficult to define because one must ensure
that their autocovariance sequences are positive semidefinite. In either case,
the process will be more simply described by the characterization displaying
the most extensive scaling region; in practice, there is evidence to suggest that
this would be the spectral representation.

Multitaper and wavelet methods did better than the structure function ap-
proach in estimating α in terms of variance (see Table 3) while the wavelet
method displayed a smaller variance in estimating B1 from the regression inter-
cept than the structure function (see Table 4). More importantly, the variance
and MSE can be computed theoretically for the multitaper and wavelet meth-
ods, but not for the structure function method, which is a serious limitation
in practical applications. The multitaper estimator, the weighted least squares
estimates using the LA(16) wavelet, and structure function [1, 64] estimator
have the smallest variances for the estimation of α. The multitaper, structure
function [1, 64], structure function [2, 64], and weighted least squares wavelet
estimates have the smallest variances for the estimation of B1 from the re-
gression intercept. The variance of the multitaper estimator is 12% smaller
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than the structure function [1, 64] estimator for α and 75% larger for B1. The
wavelet variance estimator gives an improvement over the structure function
[1, 64] of 8% for α and 34% for B1. Theoretical confidence intervals can be
based upon the multitaper spectral estimates and wavelet variance estimates;
however, no theory is available to provide confidence intervals based upon the
structure function estimates because of their highly correlated nature. The
scaling range averaging approach is recommended, in contrast to the regres-
sion intercept based estimates, because it provides an estimate of B1 that may
be interpreted in terms of the signal energy contained in the scaling range,
regardless of the slope. The simulations indicate that the best estimates of
B1 are also obtained through scaling range averaging. Scaling range averaging
produces estimates with variances that are very similar to the weighted least
squares estimator for the wavelet variance; a reduction in variance is observed
when scaling range averaging is applied to the multitaper or structure function
estimators.

The multitaper spectral, wavelet variance, and structure function estimators
were applied to analyze turbulence data collected by an aircraft mounted
platform. Extensive scaling ranges were observed where the SDFs and wavelet
variances were well characterized by a linear approximation; the correspond-
ing structure function regions were not well characterized by a simple linear
relationship. In addition, the temperature related signals exhibited a leakage
phenomenon related to a quasi-periodic component that contaminated the
structure function across the entire range of scales; this same component was
isolated at small scales in the wavelet variance and at high frequencies in the
SDF. The structure function was clearly inferior to the other two approaches
in providing a thorough analysis of the aerothermal series.

In this study we considered only data with Gaussian distributions; however,
many physical processes, including turbulence, exhibit non-Gaussian behavior.
A complete assessment of the effects of non-Gaussianity on these estimators
is beyond the scope of this study; however, we conjecture that the wavelet
approach should generally work well because, even if the data themselves are
non-Gaussian, their wavelet coefficients (particularly those at large scales) will
be approximately Gaussian due to a central limit effect from the averaging
inherent in the MODWT (this argument breaks down in cases of marked non-
Gaussianity).

We recommend either the multitaper approach or the wavelet variance ap-
proach as the estimator of choice because of their ability to provide accurate
estimates with appropriate confidence intervals. The wavelet variance has the
best performance as long as the filter length is long enough to act as an ade-
quate approximation to a band-pass filter. It is important to use the weighted
least squares approach with the wavelet variance estimator to achieve this
performance. The multitaper approach provides quality estimates with very
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little bias. The multitaper approach is relatively simple to implement and
computationally efficient when a fast Fourier transform algorithm is used.
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