Square Waves, Sinusoids and Gaussian White Noise: A Matching Pursuit Conundrum?

Don Percival

Applied Physics Laboratory Department of Statistics University of Washington Seattle, Washington, USA

http://faculty.washington.edu/dbp

Sanity Checkers: Peter Craigmile and Barry Quinn

Introduction

• 'matching pursuit' approximates a vector of time series values

$$\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$$

using a linear combination of vectors picked from a (typically quite large) set of vectors \mathcal{D}

- each vector in \mathcal{D} has some interpretation, allowing us to extract features of potential interest from \mathbf{X}
- introduced into engineering literature by Mallat & Zhang (1993)
- talk will focus on an unexpected finding (the 'conundrum'!) that appeared when applying matching pursuit to a climatology time series

Overline of Remainder of Talk

- discuss basic ideas behind matching pursuit (MP)
- discuss application of MP to climatology time series that led to conundrum
- \bullet discuss tentative but unsatisfying explanation of conundrum
- lots of open questions, including what (if anything!) to do next

Matching Pursuit: I

• given a time series \mathbf{X} of dimension N and a vector \mathbf{d} of similar dimension satisfying

$$\|\mathbf{d}\|^2 = \langle \mathbf{d}, \mathbf{d} \rangle = \sum_{t=0}^{N-1} d_t^2 = 1,$$

consider approximating \mathbf{X} using \mathbf{d} in a linear model:

$$\mathbf{X} = \beta \mathbf{d} + \mathbf{e},$$

where β is unknown, and **e** is the error in the approximation

- can minimize $\|\mathbf{e}\|^2$ by setting β equal to $\langle \mathbf{X}, \mathbf{d} \rangle = \sum_{t=0}^{N-1} X_t d_t$
- approximation is $\mathbf{A} = \langle \mathbf{X}, \mathbf{d} \rangle \mathbf{d}$ & residuals are $\mathbf{R} = \mathbf{X} \mathbf{A}$

Matching Pursuit: II

• in addition to additive decomposition $\mathbf{X} = \mathbf{A} + \mathbf{R}$, also have decomposition of sum of squares:

$$\|\mathbf{X}\|^2 = \|\mathbf{A}\|^2 + \|\mathbf{R}\|^2 = |\langle \mathbf{X}, \mathbf{d} \rangle|^2 + \|\mathbf{R}\|^2$$

• now consider a set of vectors \mathcal{D} , each $\mathbf{d}_k \in \mathcal{D}$ leading to

$$\mathbf{X} = \mathbf{A}_k + \mathbf{R}_k$$
 and $\|\mathbf{X}\|^2 = |\langle \mathbf{X}, \mathbf{d}_k \rangle|^2 + \|\mathbf{R}_k\|^2$

• declare best approximation to be the one for which $||\mathbf{R}_k||^2$ is smallest, i.e., for which $|\langle \mathbf{X}, \mathbf{d}_k \rangle|$ is largest – call this approximation $\mathbf{A}^{(1)} = \langle \mathbf{X}, \mathbf{d}^{(1)} \rangle \mathbf{d}^{(1)}$, and let $\mathbf{R}^{(1)}$ be the corresponding vector of residuals so that

$$\mathbf{X} = \mathbf{A}^{(1)} + \mathbf{R}^{(1)}$$
 and $\|\mathbf{X}\|^2 = |\langle \mathbf{X}, \mathbf{d}^{(1)} \rangle|^2 + \|\mathbf{R}^{(1)}\|^2$

Matching Pursuit: III

• first stage of MP leads to

$$\mathbf{X} = \mathbf{A}^{(1)} + \mathbf{R}^{(1)}$$
 and $\|\mathbf{X}\|^2 = |\langle \mathbf{X}, \mathbf{d}^{(1)} \rangle|^2 + \|\mathbf{R}^{(1)}\|^2$

• second stage treats $\mathbf{R}^{(1)}$ as \mathbf{X} was treated, leading to $\mathbf{R}^{(1)} = \mathbf{A}^{(2)} + \mathbf{R}^{(2)}$ and $\|\mathbf{R}^{(1)}\|^2 = |\langle \mathbf{R}^{(1)}, \mathbf{d}^{(2)} \rangle|^2 + \|\mathbf{R}^{(2)}\|^2$

• stages
$$j = 3, 4...$$
 give us
 $\mathbf{R}^{(j-1)} = \mathbf{A}^{(j)} + \mathbf{R}^{(j)}$ and $\|\mathbf{R}^{(j-1)}\|^2 = |\langle \mathbf{R}^{(j-1)}, \mathbf{d}^{(j)} \rangle|^2 + \|\mathbf{R}^{(j)}\|^2$
• defining $\mathbf{R}^{(0)} = \mathbf{X}$, after J such steps, have
 $\mathbf{X} = \sum_{j=1}^{J} \mathbf{A}^{(j)} + \mathbf{R}^{(J)}$ and $\|\mathbf{X}\|^2 = \sum_{j=1}^{J} |\langle \mathbf{R}^{(j-1)}, \mathbf{d}^{(j)} \rangle|^2 + \|\mathbf{R}^{(J)}\|^2$

Matching Pursuit: IV

- MP is 'greedy' in that, at each stage j, approximating vector is the one maximizing $|\langle \mathbf{R}^{(j-1)}, \mathbf{d}_k \rangle|$ amongst all $\mathbf{d}_k \in \mathcal{D}$
- under certain conditions on contents of \mathcal{D} , $\|\mathbf{R}^{(j)}\|^2$ must decrease and reach zero as j increases
- choice of vectors to place in \mathcal{D} is obviously critical to quality of resulting approximation and is application dependent

North Pacific Index (NPI): I

area-weighted sea level pressure over 30° N to 65° N & 160° E to 140° W & over November to March for each year from 1900 to 1999 (Trenberth & Paolino, 1980; Trenberth & Hurrell, 1994)

North Pacific Index (NPI): II

• Minobe (1999) postulated existence of penta- and bi-decadal oscillations in NPI that

"... cannot be attributed to a single sinusoidal-wavelike variability ...";

- i.e., transitions between values above and below the long term mean of NPI occur much faster than sinusoidal variations can easily account for
- can (informally) evaluate Minobe's hypothesis by subjecting NPI to MP (\mathbf{X} thus contains all N = 100 values of NPI, but after centering by subtracting off the sample mean)
- D consists of both sinusoidal and square wave oscillations, with frequencies dictated by Fourier frequencies j/100, j = 1, 2, ..., 50 (periods are 100/j years), along with all possible phase shifts

• period of 100/3 years (other phase shifts not shown)

• period of 25 years (other phase shifts not shown)

• period of 20 years (other phase shifts not shown)

• period of 4 years (other phase shifts not shown)

Matching Pursuit of NPI: I

• j = 1: square wave, 50 years; 17.4% of variance explained

Matching Pursuit of NPI: II

• j = 2: square wave, 20 years; 24.1% of variance explained

Matching Pursuit of NPI: III

• j = 3: square wave, 14 years; 30.6% of variance explained

Matching Pursuit of NPI: IV

• j = 4: sinusoid, 4.3 years; 36.4% of variance explained

Matching Pursuit of NPI: V

- MP lends credence to Minobe's hypothesis (penta- and bidecadal oscillations with faster above/below transitions than sinusoids can explain)
- Q: what (if anything) can we say about statistical significance of patterns picked out by MP?

The Conundrum: I

- to address question of significance, need to consider what MP does under various null hypotheses
- simpliest such hypothesis is that \mathbf{X} is Gaussian white noise (i.e., independent and identically distributed normal random variables) note that \mathbf{X} should have no discernable structure
- will take **X** to have zero mean and covariance/correlation matrix I_N (Nth order identity matrix)
- let K denote number of vectors \mathbf{d}_k in set \mathcal{D} , and let $D = [\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_K]$ so that kth element of $\mathbf{Y} \equiv D^T \mathbf{X}$ is $\langle \mathbf{X}, \mathbf{d}_k \rangle$
- Y is multivariate Gaussian with zero mean and with $\Sigma \equiv D^T D$ as its covariance/correlation matrix
- note that (j, k)th element of Σ is $\mathbf{d}_j^T \mathbf{d}_k$

The Conundrum: II

- first step of MP picks element of **Y** with largest magnitude, so distribution of this pick depends just on multivariate Gaussian correlation matrix Σ
- if $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$, then

$$\Sigma = \begin{bmatrix} 1 & \mathbf{d}_1^T \mathbf{d}_2 \\ \mathbf{d}_2^T \mathbf{d}_1 & 1 \end{bmatrix},$$

and, by symmetry, MP will pick $\mathbf{d}_1 \& \mathbf{d}_2$ each 50% of the time, not matter what they are (e.g., a sinusoid & a square wave)

- \bullet if ${\mathcal D}$ has more then two elements, analysis becomes messy, but can resort to Monte Carlo experiments
- using same \mathcal{D} as in NPI analysis (50% of vectors are sinsuoids, and 50% are square waves), MP picks sinusoids 15% of the time and square waves 85% of the time!?!

Slouching Towards an Explanation: I

- why does Gaussian white noise match up better with square waves than sinusoids?
- consider case N = 8 with D containing four sinusoids (d₁, d₂, d₃ and d₄) and four square waves (d₅, d₆, d₇ and d₈), all with a period of 8

Slouching Towards an Explanation: II

- Monte Carlo experiments indicate that MP picks a sinusoid 29% of the time and a square wave 71% of the time
- correlation matrix Σ in this case looks like the following:

_		\mathbf{d}_1	\mathbf{d}_2	\mathbf{d}_3	\mathbf{d}_4	\mathbf{d}_5	\mathbf{d}_6	\mathbf{d}_7	\mathbf{d}_8
-	\mathbf{d}_1	1.0							
	\mathbf{d}_2	0.7	1.0						
	\mathbf{d}_3	0.0	0.7	1.0					
_	\mathbf{d}_4	-0.7	0.0	0.7	1.0				
-	\mathbf{d}_5	0.9	0.9	0.4	-0.4	1.0			
	\mathbf{d}_6	0.4	0.9	0.9	0.4	0.5	1.0		
	\mathbf{d}_7	-0.4	0.4	0.9	0.9	0.0	0.5	1.0	
	\mathbf{d}_8	-0.9	-0.4	0.4	0.9	-0.5	0.0	0.5	1.0

• sinusoids have more extreme cross-correlations than do square waves – is this part of the explanation?

Slouching Towards an Explanation: III

• consider another \mathcal{D} , this time with two sinusoids (\mathbf{d}_1 and \mathbf{d}_2) and two square waves (\mathbf{d}_3 and \mathbf{d}_4), all again with a period of 8

Two of Four Vectors in \mathcal{D}

Two of Four Vectors in \mathcal{D}

Slouching Towards an Explanation: IV

- Monte Carlo experiments indicate that MP picks a sinusoid 48.5% of the time and a square wave 51.5% of the time
- correlation matrix Σ in this case looks like the following:

	\mathbf{d}_1	\mathbf{d}_2	\mathbf{d}_3	\mathbf{d}_4
\mathbf{d}_1	1.00			
\mathbf{d}_2	0.00	1.00		
\mathbf{d}_3	0.35	0.85	1.00	
\mathbf{d}_4	-0.35	0.85	0.50	1.00

- sinusoids now have zero cross-correlation, whereas square waves have a positive cross-correlation, yet square waves are still preferred (but just slightly so)
- cannot explain conundrum in terms of just cross-correlations

Hmmm ...

References

- S. G. Mallat and Z. Zhang (1993), 'Matching Pursuits with Time-Frequency Dictionaries,' *IEEE Transactions on Signal Processing*, **41**, pp. 3397–3415
- S. Minobe (1999) 'Resonance in Bidecadal and Pentadecadal Climate Oscillations over the North Pacific: Role in Climate Regime Shifts,' *Geophysical Research Letters*, 26, pp. 855–858
- D. B. Percival, J. E. Overland and H. O. Mofjeld (2002), 'Using Matching Pursuit to Assess Atmospheric Circulation Changes over the North Pacific,' unpublished manuscript available at

http://faculty.washington.edu/dbp/research.html

- K. E. Trenberth and J. W. Hurrell (1994), 'Decadal Atmosphere–Ocean Variations in the Pacife,' *Climate Dynamics*, **9**, pp. 303–19
- K. E. Trenberth and D. D. Paolino (1980), 'The Northern Hemisphere Sea Level Pressure Data Set: Trends, Errors, and Discontinuities.' *Monthly Weather Review*, 108, pp. 855– 72