Square Waves, Sinusoids and Gaussian White Noise: A Matching Pursuit Conundrum?

Don Percival

Applied Physics Laboratory
Department of Statistics
University of Washington
Seattle, Washington, USA

http://faculty.washington.edu/dbp

Sanity Checkers: Peter Craigmile and Barry Quinn
Introduction

• ‘matching pursuit’ approximates a vector of time series values

\[\mathbf{X} = [X_0, X_1, \ldots, X_{N-1}]^T \]

using a linear combination of vectors picked from a (typically quite large) set of vectors \(\mathcal{D} \)

• each vector in \(\mathcal{D} \) has some interpretation, allowing us to extract features of potential interest from \(\mathbf{X} \)

• introduced into engineering literature by Mallat & Zhang (1993)

• talk will focus on an unexpected finding (the ‘conundrum’!) that appeared when applying matching pursuit to a climatology time series
Overline of Remainder of Talk

- discuss basic ideas behind matching pursuit (MP)
- discuss application of MP to climatology time series that led to conundrum
- discuss tentative – but unsatisfying – explanation of conundrum
- lots of open questions, including what (if anything!) to do next
Matching Pursuit: I

- given a time series $$\mathbf{X}$$ of dimension $$N$$ and a vector $$\mathbf{d}$$ of similar dimension satisfying

$$
\|\mathbf{d}\|^{2} = \langle \mathbf{d}, \mathbf{d} \rangle = \sum_{t=0}^{N-1} d_{t}^{2} = 1,
$$

consider approximating $$\mathbf{X}$$ using $$\mathbf{d}$$ in a linear model:

$$
\mathbf{X} = \beta \mathbf{d} + \mathbf{e},
$$

where $$\beta$$ is unknown, and $$\mathbf{e}$$ is the error in the approximation.

- can minimize $$\|\mathbf{e}\|^{2}$$ by setting $$\beta$$ equal to $$\langle \mathbf{X}, \mathbf{d} \rangle = \sum_{t=0}^{N-1} X_{t}d_{t}$$

- approximation is $$\mathbf{A} = \langle \mathbf{X}, \mathbf{d} \rangle \mathbf{d}$$ & residuals are $$\mathbf{R} = \mathbf{X} - \mathbf{A}$$
Matching Pursuit: II

- in addition to additive decomposition \(\mathbf{X} = \mathbf{A} + \mathbf{R} \), also have decomposition of sum of squares:

\[
\| \mathbf{X} \|^2 = \| \mathbf{A} \|^2 + \| \mathbf{R} \|^2 = |\langle \mathbf{X}, \mathbf{d} \rangle|^2 + \| \mathbf{R} \|^2
\]

- now consider a set of vectors \(\mathcal{D} \), each \(\mathbf{d}_k \in \mathcal{D} \) leading to

\[
\mathbf{X} = \mathbf{A}_k + \mathbf{R}_k \quad \text{and} \quad \| \mathbf{X} \|^2 = |\langle \mathbf{X}, \mathbf{d}_k \rangle|^2 + \| \mathbf{R}_k \|^2
\]

- declare best approximation to be the one for which \(\| \mathbf{R}_k \|^2 \) is smallest, i.e., for which \(|\langle \mathbf{X}, \mathbf{d}_k \rangle| \) is largest – call this approximation \(\mathbf{A}^{(1)} = \langle \mathbf{X}, \mathbf{d}^{(1)} \rangle \mathbf{d}^{(1)} \), and let \(\mathbf{R}^{(1)} \) be the corresponding vector of residuals so that

\[
\mathbf{X} = \mathbf{A}^{(1)} + \mathbf{R}^{(1)} \quad \text{and} \quad \| \mathbf{X} \|^2 = |\langle \mathbf{X}, \mathbf{d}^{(1)} \rangle|^2 + \| \mathbf{R}^{(1)} \|^2
\]
Matching Pursuit: III

- first stage of MP leads to
 \[\mathbf{X} = \mathbf{A}^{(1)} + \mathbf{R}^{(1)} \quad \text{and} \quad \| \mathbf{X} \|^2 = | \langle \mathbf{X}, \mathbf{d}^{(1)} \rangle |^2 + \| \mathbf{R}^{(1)} \|^2 \]

- second stage treats \(\mathbf{R}^{(1)} \) as \(\mathbf{X} \) was treated, leading to
 \[\mathbf{R}^{(1)} = \mathbf{A}^{(2)} + \mathbf{R}^{(2)} \quad \text{and} \quad \| \mathbf{R}^{(1)} \|^2 = | \langle \mathbf{R}^{(1)}, \mathbf{d}^{(2)} \rangle |^2 + \| \mathbf{R}^{(2)} \|^2 \]

- stages \(j = 3, 4 \ldots \) give us
 \[\mathbf{R}^{(j-1)} = \mathbf{A}^{(j)} + \mathbf{R}^{(j)} \quad \text{and} \quad \| \mathbf{R}^{(j-1)} \|^2 = | \langle \mathbf{R}^{(j-1)}, \mathbf{d}^{(j)} \rangle |^2 + \| \mathbf{R}^{(j)} \|^2 \]

- defining \(\mathbf{R}^{(0)} = \mathbf{X} \), after \(J \) such steps, have
 \[\mathbf{X} = \sum_{j=1}^{J} \mathbf{A}^{(j)} + \mathbf{R}^{(J)} \quad \text{and} \quad \| \mathbf{X} \|^2 = \sum_{j=1}^{J} | \langle \mathbf{R}^{(j-1)}, \mathbf{d}^{(j)} \rangle |^2 + \| \mathbf{R}^{(J)} \|^2 \]
Matching Pursuit: IV

• MP is ‘greedy’ in that, at each stage j, approximating vector is the one maximizing $|\langle R^{(j-1)}, d_k \rangle|$ amongst all $d_k \in \mathcal{D}$

• under certain conditions on contents of \mathcal{D}, $\|R^{(j)}\|^2$ must decrease and reach zero as j increases

• choice of vectors to place in \mathcal{D} is obviously critical to quality of resulting approximation and is application dependent
North Pacific Index (NPI): I

- area-weighted sea level pressure over 30° N to 65° N & 160° E to 140° W & over November to March for each year from 1900 to 1999 (Trenberth & Paolino, 1980; Trenberth & Hurrell, 1994)
North Pacific Index (NPI): II

- Minobe (1999) postulated existence of penta- and bi-decadal oscillations in NPI that

 “...cannot be attributed to a single sinusoidal-wavelike variability...”;

 i.e., transitions between values above and below the long term mean of NPI occur much faster than sinusoidal variations can easily account for

- can (informally) evaluate Minobe’s hypothesis by subjecting NPI to MP (X thus contains all $N = 100$ values of NPI, but after centering by subtracting off the sample mean)

- D consists of both sinusoidal and square wave oscillations, with frequencies dictated by Fourier frequencies $j/100$, $j = 1, 2, \ldots, 50$ (periods are $100/j$ years), along with all possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in D

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

• period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in D

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in D

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in D

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in D

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in D

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in D

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts
Examples of Vectors in D

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in D

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in D

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts
Examples of Vectors in \mathcal{D}

- period of 100/3 years (other phase shifts not shown)
Examples of Vectors in \mathcal{D}

- period of 25 years (other phase shifts not shown)
Examples of Vectors in \mathcal{D}

- period of 20 years (other phase shifts not shown)
Examples of Vectors in \mathcal{D}

- period of 4 years (other phase shifts not shown)
Matching Pursuit of NPI: I

- $j = 1$: square wave, 50 years; 17.4% of variance explained
Matching Pursuit of NPI: II

- \(j = 2 \): square wave, 20 years; 24.1\% of variance explained
Matching Pursuit of NPI: III

- $j = 3$: square wave, 14 years; 30.6% of variance explained
Matching Pursuit of NPI: IV

- $j = 4$: sinusoid, 4.3 years; 36.4% of variance explained
Matching Pursuit of NPI: V

• MP lends credence to Minobe’s hypothesis (penta- and bi-decadal oscillations with faster above/below transitions than sinusoids can explain)

• Q: what (if anything) can we say about statistical significance of patterns picked out by MP?
The Conundrum: I

• to address question of significance, need to consider what MP does under various null hypotheses
• simplest such hypothesis is that X is Gaussian white noise (i.e., independent and identically distributed normal random variables) – note that X should have no discernable structure
• will take X to have zero mean and covariance/correlation matrix I_N (Nth order identity matrix)
• let K denote number of vectors d_k in set D, and let $D = [d_1, d_2, \ldots, d_K]$ so that kth element of $Y \equiv D^T X$ is $\langle X, d_k \rangle$
• Y is multivariate Gaussian with zero mean and with $\Sigma \equiv D^T D$ as its covariance/correlation matrix
• note that (j, k)th element of Σ is $d_j^T d_k$
The Conundrum: II

- first step of MP picks element of Y with largest magnitude, so distribution of this pick depends just on multivariate Gaussian correlation matrix Σ
- if $\mathcal{D} = \{d_1, d_2\}$, then
 \[
 \Sigma = \begin{bmatrix} 1 & d_1^T d_2 \\ d_2^T d_1 & 1 \end{bmatrix},
 \]
 and, by symmetry, MP will pick d_1 & d_2 each 50% of the time, not matter what they are (e.g., a sinusoid & a square wave)
- if \mathcal{D} has more then two elements, analysis becomes messy, but can resort to Monte Carlo experiments
- using same \mathcal{D} as in NPI analysis (50% of vectors are sinusoids, and 50% are square waves), MP picks sinusoids 15% of the time and square waves 85% of the time!?!
Slouching Towards an Explanation: I

- why does Gaussian white noise match up better with square waves than sinusoids?
- consider case $N = 8$ with \mathcal{D} containing four sinusoids (d_1, d_2, d_3 and d_4) and four square waves (d_5, d_6, d_7 and d_8), all with a period of 8
Two of Eight Vectors in \mathcal{D}
Two of Eight Vectors in \mathcal{D}
Two of Eight Vectors in \mathcal{D}
Two of Eight Vectors in \(\mathcal{D} \)
Slouching Towards an Explanation: II

- Monte Carlo experiments indicate that MP picks a sinusoid 29% of the time and a square wave 71% of the time.
- Correlation matrix Σ in this case looks like the following:

<table>
<thead>
<tr>
<th></th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
<th>d_7</th>
<th>d_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_2</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_3</td>
<td>0.0</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_4</td>
<td>−0.7</td>
<td>0.0</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_5</td>
<td>0.9</td>
<td>0.9</td>
<td>0.4</td>
<td>−0.4</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_6</td>
<td>0.4</td>
<td>0.9</td>
<td>0.9</td>
<td>0.4</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_7</td>
<td>−0.4</td>
<td>0.4</td>
<td>0.9</td>
<td>0.9</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>d_8</td>
<td>−0.9</td>
<td>−0.4</td>
<td>0.4</td>
<td>0.9</td>
<td>−0.5</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Sinusoids have more extreme cross-correlations than do square waves – is this part of the explanation?
Slouching Towards an Explanation: III

• consider another \mathcal{D}, this time with two sinusoids (d_1 and d_2) and two square waves (d_3 and d_4), all again with a period of 8
Two of Four Vectors in \mathcal{D}
Two of Four Vectors in \mathcal{D}
Slouching Towards an Explanation: IV

- Monte Carlo experiments indicate that MP picks a sinusoid 48.5% of the time and a square wave 51.5% of the time.

- Correlation matrix Σ in this case looks like the following:

<table>
<thead>
<tr>
<th></th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
</tr>
</thead>
</table>
 d_1 | 1.00 | | | |
 d_2 | 0.00 | 1.00 | | |
 d_3 | 0.35 | 0.85 | 1.00 | |
 d_4 | -0.35| 0.85 | 0.50 | 1.00 |

- Sinusoids now have zero cross-correlation, whereas square waves have a positive cross-correlation, yet square waves are still preferred (but just slightly so).

- Cannot explain conundrum in terms of just cross-correlations.
Hmmm . . .
References

 \[\text{http://faculty.washington.edu/dbp/research.html}\]
