Square Waves, Sinusoids and Gaussian White Noise:

A Matching Pursuit Conundrum?

Don Percival

Applied Physics Laboratory
Department of Statistics
University of Washington
Seattle, Washington, USA
http://faculty.washington.edu/dbp

Sanity Checkers: Peter Craigmile and Barry Quinn

Introduction

- 'matching pursuit' approximates a vector of time series values

$$
\mathbf{X}=\left[X_{0}, X_{1}, \ldots, X_{N-1}\right]^{T}
$$

using a linear combination of vectors picked from a (typically quite large) set of vectors \mathcal{D}

- each vector in \mathcal{D} has some interpretation, allowing us to extract features of potential interest from \mathbf{X}
- introduced into engineering literature by Mallat \& Zhang (1993)
- talk will focus on an unexpected finding (the 'conundrum'!) that appeared when applying matching pursuit to a climatology time series

Matching Pursuit: I

- given a time series \mathbf{X} of dimension N and a vector \mathbf{d} of similar dimension satisfying

$$
\|\mathbf{d}\|^{2}=\langle\mathbf{d}, \mathbf{d}\rangle=\sum_{t=0}^{N-1} d_{t}^{2}=1
$$

consider approximating \mathbf{X} using \mathbf{d} in a linear model:

$$
\mathbf{X}=\beta \mathbf{d}+\mathbf{e}
$$

where β is unknown, and \mathbf{e} is the error in the approximation

- can minimize $\|\mathbf{e}\|^{2}$ by setting β equal to $\langle\mathbf{X}, \mathbf{d}\rangle=\sum_{t=0}^{N-1} X_{t} d_{t}$
- approximation is $\mathbf{A}=\langle\mathbf{X}, \mathbf{d}\rangle \mathbf{d} \&$ residuals are $\mathbf{R}=\mathbf{X}-\mathbf{A}$

Matching Pursuit: II

- in addition to additive decomposition $\mathbf{X}=\mathbf{A}+\mathbf{R}$, also have decomposition of sum of squares:

$$
\|\mathbf{X}\|^{2}=\|\mathbf{A}\|^{2}+\|\mathbf{R}\|^{2}=|\langle\mathbf{X}, \mathbf{d}\rangle|^{2}+\|\mathbf{R}\|^{2}
$$

- now consider a set of vectors \mathcal{D}, each $\mathbf{d}_{k} \in \mathcal{D}$ leading to

$$
\mathbf{X}=\mathbf{A}_{k}+\mathbf{R}_{k} \text { and }\|\mathbf{X}\|^{2}=\left|\left\langle\mathbf{X}, \mathbf{d}_{k}\right\rangle\right|^{2}+\left\|\mathbf{R}_{k}\right\|^{2}
$$

- declare best approximation to be the one for which $\left\|\mathbf{R}_{k}\right\|^{2}$ is smallest, i.e., for which $\left|\left\langle\mathbf{X}, \mathbf{d}_{k}\right\rangle\right|$ is largest - call this approximation $\mathbf{A}^{(1)}=\left\langle\mathbf{X}, \mathbf{d}^{(1)}\right\rangle \mathbf{d}^{(1)}$, and let $\mathbf{R}^{(1)}$ be the corresponding vector of residuals so that

$$
\mathbf{X}=\mathbf{A}^{(1)}+\mathbf{R}^{(1)} \text { and }\|\mathbf{X}\|^{2}=\left|\left\langle\mathbf{X}, \mathbf{d}^{(1)}\right\rangle\right|^{2}+\left\|\mathbf{R}^{(1)}\right\|^{2}
$$

Matching Pursuit: IV

- MP is 'greedy' in that, at each stage j, approximating vector is the one maximizing $\left|\left\langle\mathbf{R}^{(j-1)}, \mathbf{d}_{k}\right\rangle\right|$ amongst all $\mathbf{d}_{k} \in \mathcal{D}$
- under certain conditions on contents of $\mathcal{D},\left\|\mathbf{R}^{(j)}\right\|^{2}$ must decrease and reach zero as j increases
- choice of vectors to place in \mathcal{D} is obviously critical to quality of resulting approximation and is application dependent

Matching Pursuit: III

- first stage of MP leads to

$$
\mathbf{X}=\mathbf{A}^{(1)}+\mathbf{R}^{(1)} \text { and }\|\mathbf{X}\|^{2}=\left|\left\langle\mathbf{X}, \mathbf{d}^{(1)}\right\rangle\right|^{2}+\left\|\mathbf{R}^{(1)}\right\|^{2}
$$

- second stage treats $\mathbf{R}^{(1)}$ as \mathbf{X} was treated, leading to

$$
\mathbf{R}^{(1)}=\mathbf{A}^{(2)}+\mathbf{R}^{(2)} \text { and }\left\|\mathbf{R}^{(1)}\right\|^{2}=\left|\left\langle\mathbf{R}^{(1)}, \mathbf{d}^{(2)}\right\rangle\right|^{2}+\left\|\mathbf{R}^{(2)}\right\|^{2}
$$

- stages $j=3,4 \ldots$ give us
$\mathbf{R}^{(j-1)}=\mathbf{A}^{(j)}+\mathbf{R}^{(j)}$ and $\left\|\mathbf{R}^{(j-1)}\right\|^{2}=\left|\left\langle\mathbf{R}^{(j-1)}, \mathbf{d}^{(j)}\right\rangle\right|^{2}+\left\|\mathbf{R}^{(j)}\right\|^{2}$
- defining $\mathbf{R}^{(0)}=\mathbf{X}$, after J such steps, have
$\mathbf{X}=\sum_{j=1}^{J} \mathbf{A}^{(j)}+\mathbf{R}^{(J)}$ and $\|\mathbf{X}\|^{2}=\sum_{j=1}^{J}\left|\left\langle\mathbf{R}^{(j-1)}, \mathbf{d}^{(j)}\right\rangle\right|^{2}+\left\|\mathbf{R}^{(J)}\right\|^{2}$

North Pacific Index (NPI): I

- area-weighted sea level pressure over $30^{\circ} \mathrm{N}$ to $65^{\circ} \mathrm{N} \& 160^{\circ} \mathrm{E}$ to $140^{\circ} \mathrm{W} \&$ over November to March for each year from 1900 to 1999 (Trenberth \& Paolino, 1980; Trenberth \& Hurrell, 1994)

North Pacific Index (NPI): II

- Minobe (1999) postulated existence of penta- and bi-decadal oscillations in NPI that
"...cannot be attributed to a single sinusoidal-wavelike variability ...";
i.e., transitions between values above and below the long term mean of NPI occur much faster than sinusoidal variations can easily account for
- can (informally) evaluate Minobe's hypothesis by subjecting NPI to MP (\mathbf{X} thus contains all $N=100$ values of NPI, but after centering by subtracting off the sample mean)
- \mathcal{D} consists of both sinusoidal and square wave oscillations, with frequencies dictated by Fourier frequencies $j / 100, j=1,2, \ldots$, 50 (periods are 100/j years), along with all possible phase shifts

Examples of Vectors in \mathcal{D}

- period of 50 years, and one of 25 possible phase shifts

Examples of Vectors in \mathcal{D}

- period of 100 years, and one of 50 possible phase shifts

Examples of Vectors in \mathcal{D}

- period of $100 / 3$ years (other phase shifts not shown)

Examples of Vectors in \mathcal{D}

- period of 25 years (other phase shifts not shown)

12

Examples of Vectors in \mathcal{D}

- period of 4 years (other phase shifts not shown)

Examples of Vectors in \mathcal{D}

- period of 20 years (other phase shifts not shown)

13

Matching Pursuit of NPI: I

- $j=1$: square wave, 50 years; 17.4% of variance explained

Matching Pursuit of NPI: II

- $j=2$: square wave, 20 years; 24.1% of variance explained

16

Matching Pursuit of NPI: IV

- $j=4$: sinusoid, 4.3 years; 36.4% of variance explained

Matching Pursuit of NPI: III

- $j=3$: square wave, 14 years; 30.6% of variance explained

17

Matching Pursuit of NPI: V

- MP lends credence to Minobe's hypothesis (penta- and bidecadal oscillations with faster above/below transitions than sinusoids can explain)
- Q: what (if anything) can we say about statistical significance of patterns picked out by MP?

The Conundrum: I

- to address question of significance, need to consider what MP does under various null hypotheses
- simpliest such hypothesis is that \mathbf{X} is Gaussian white noise (i.e., independent and identically distributed normal random variables) - note that \mathbf{X} should have no discernable structure
- will take \mathbf{X} to have zero mean and covariance/correlation matrix $I_{N}(N$ th order identity matrix)
- let K denote number of vectors \mathbf{d}_{k} in set \mathcal{D}, and let $D=$ $\left[\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{K}\right]$ so that k th element of $\mathbf{Y} \equiv D^{T} \mathbf{X}$ is $\left\langle\mathbf{X}, \mathbf{d}_{k}\right\rangle$
- \mathbf{Y} is multivariate Gaussian with zero mean and with $\Sigma \equiv D^{T} D$ as its covariance/correlation matrix
- note that (j, k) th element of Σ is $\mathbf{d}_{j}^{T} \mathbf{d}_{k}$

The Conundrum: II

- first step of MP picks element of \mathbf{Y} with largest magnitude, so distribution of this pick depends just on multivariate Gaussian correlation matrix Σ
- if $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}\right\}$, then

$$
\Sigma=\left[\begin{array}{cc}
1 & \mathbf{d}_{1}^{T} \mathbf{d}_{2} \\
\mathbf{d}_{2}^{T} \mathbf{d}_{1} & 1
\end{array}\right]
$$

and, by symmetry, MP will pick $\mathbf{d}_{1} \& \mathbf{d}_{2}$ each 50% of the time, not matter what they are (e.g., a sinusoid \& a square wave)

- if \mathcal{D} has more then two elements, analysis becomes messy, but can resort to Monte Carlo experiments
- using same \mathcal{D} as in NPI analysis (50% of vectors are sinsuoids, and 50% are square waves), MP picks sinusoids 15% of the time and square waves 85% of the time!?!

21

Two of Eight Vectors in \mathcal{D}

Slouching Towards an Explanation: II

- Monte Carlo experiments indicate that MP picks a sinusoid 29% of the time and a square wave 71% of the time
- correlation matrix Σ in this case looks like the following:

	\mathbf{d}_{1}	\mathbf{d}_{2}	\mathbf{d}_{3}	\mathbf{d}_{4}	\mathbf{d}_{5}	\mathbf{d}_{6}	\mathbf{d}_{7}	\mathbf{d}_{8}
\mathbf{d}_{1}	1.0							
\mathbf{d}_{2}	0.7	1.0						
\mathbf{d}_{3}	0.0	0.7	1.0					
\mathbf{d}_{4}	-0.7	0.0	0.7	1.0				
\mathbf{d}_{5}	0.9	0.9	0.4	-0.4	1.0			
\mathbf{d}_{6}	0.4	0.9	0.9	0.4	0.5	1.0		
\mathbf{d}_{7}	-0.4	0.4	0.9	0.9	0.0	0.5	1.0	
\mathbf{d}_{8}	-0.9	-0.4	0.4	0.9	-0.5	0.0	0.5	1.0

- sinusoids have more extreme cross-correlations than do square waves - is this part of the explanation?

Slouching Towards an Explanation: III

- consider another \mathcal{D}, this time with two sinusoids $\left(\mathbf{d}_{1}\right.$ and $\left.\mathbf{d}_{2}\right)$ and two square waves $\left(\mathbf{d}_{3}\right.$ and $\left.\mathbf{d}_{4}\right)$, all again with a period of 8

Two of Four Vectors in \mathcal{D}

Slouching Towards an Explanation: IV

- Monte Carlo experiments indicate that MP picks a sinusoid 48.5% of the time and a square wave 51.5% of the time - correlation matrix Σ in this case looks like the following:

	\mathbf{d}_{1}	\mathbf{d}_{2}	\mathbf{d}_{3}	\mathbf{d}_{4}
\mathbf{d}_{1}	1.00			
\mathbf{d}_{2}	0.00	1.00		
\mathbf{d}_{3}	0.35	0.85	1.00	
\mathbf{d}_{4}	-0.35	0.85	0.50	1.00

- sinusoids now have zero cross-correlation, whereas square waves have a positive cross-correlation, yet square waves are still preferred (but just slightly so)
- cannot explain conundrum in terms of just cross-correlations

Hmmm ...

References

- S. G. Mallat and Z. Zhang (1993), 'Matching Pursuits with Time-Frequency Dictionaries,' IEEE Transactions on Signal Processing, 41, pp. 3397-3415
- S. Minobe (1999) 'Resonance in Bidecadal and Pentadecadal Climate Oscillations over the North Pacific: Role in Climate Regime Shifts,' Geophysical Research Letters, 26, pp. 855-858
- D. B. Percival, J. E. Overland and H. O. Mofjeld (2002), 'Using Matching Pursuit to Assess Atmospheric Circulation Changes over the North Pacific,' unpublished manuscript available at
http://faculty.washington.edu/dbp/research.html
- K. E. Trenberth and J. W. Hurrell (1994), 'Decadal Atmosphere- Ocean Variations in the Pacifc,' Climate Dynamics, 9, pp. 303-19
- K. E. Trenberth and D. D. Paolino (1980), 'The Northern Hemisphere Sea Level Pressure Data Set: Trends, Errors, and Discontinuities.' Monthly Weather Review, 108, pp. 855 72

