Square Waves, Sinusoids and Gaussian White Noise:

A Matching Pursuit Conundrum?

Don Percival

Applied Physics Laboratory Department of Statistics University of Washington Seattle, Washington, USA

http://faculty.washington.edu/dbp

Sanity Checkers: Peter Craigmile and Barry Quinn

Overline of Remainder of Talk

- discuss basic ideas behind matching pursuit (MP)
- discuss application of MP to climatology time series that led to conundrum
- \bullet discuss tentative but unsatisfying explanation of conundrum
- lots of open questions, including what (if anything!) to do next

2

Introduction

• 'matching pursuit' approximates a vector of time series values

 $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$

using a linear combination of vectors picked from a (typically quite large) set of vectors $\mathcal D$

- \bullet each vector in ${\cal D}$ has some interpretation, allowing us to extract features of potential interest from ${\bf X}$
- introduced into engineering literature by Mallat & Zhang (1993)
- talk will focus on an unexpected finding (the 'conundrum'!) that appeared when applying matching pursuit to a climatology time series

Matching Pursuit: I

 \bullet given a time series ${\bf X}$ of dimension N and a vector ${\bf d}$ of similar dimension satisfying

$$\|\mathbf{d}\|^2 = \langle \mathbf{d}, \mathbf{d} \rangle = \sum_{t=0}^{N-1} d_t^2 = 1,$$

consider approximating \mathbf{X} using \mathbf{d} in a linear model:

$$\mathbf{X} = \beta \mathbf{d} + \mathbf{e},$$

where β is unknown, and ${\bf e}$ is the error in the approximation

- can minimize $\|\mathbf{e}\|^2$ by setting β equal to $\langle \mathbf{X}, \mathbf{d} \rangle = \sum_{t=0}^{N-1} X_t d_t$
- approximation is $\mathbf{A} = \langle \mathbf{X}, \mathbf{d} \rangle \mathbf{d}$ & residuals are $\mathbf{R} = \mathbf{X} \mathbf{A}$

Matching Pursuit: II

in addition to additive decomposition X = A + R, also have decomposition of sum of squares:

$$\|\mathbf{X}\|^{2} = \|\mathbf{A}\|^{2} + \|\mathbf{R}\|^{2} = |\langle \mathbf{X}, \mathbf{d} \rangle|^{2} + \|\mathbf{R}\|^{2}$$

• now consider a set of vectors \mathcal{D} , each $\mathbf{d}_k \in \mathcal{D}$ leading to

$$\mathbf{X} = \mathbf{A}_k + \mathbf{R}_k$$
 and $\|\mathbf{X}\|^2 = |\langle \mathbf{X}, \mathbf{d}_k \rangle|^2 + \|\mathbf{R}_k\|^2$

• declare best approximation to be the one for which $\|\mathbf{R}_k\|^2$ is smallest, i.e., for which $|\langle \mathbf{X}, \mathbf{d}_k \rangle|$ is largest – call this approximation $\mathbf{A}^{(1)} = \langle \mathbf{X}, \mathbf{d}^{(1)} \rangle \mathbf{d}^{(1)}$, and let $\mathbf{R}^{(1)}$ be the corresponding vector of residuals so that

$$\mathbf{X} = \mathbf{A}^{(1)} + \mathbf{R}^{(1)}$$
 and $\|\mathbf{X}\|^2 = |\langle \mathbf{X}, \mathbf{d}^{(1)} \rangle|^2 + \|\mathbf{R}^{(1)}\|^2$

Matching Pursuit: IV

- MP is 'greedy' in that, at each stage j, approximating vector is the one maximizing $|\langle \mathbf{R}^{(j-1)}, \mathbf{d}_k \rangle|$ amongst all $\mathbf{d}_k \in \mathcal{D}$
- under certain conditions on contents of \mathcal{D} , $\|\mathbf{R}^{(j)}\|^2$ must decrease and reach zero as j increases
- \bullet choice of vectors to place in ${\cal D}$ is obviously critical to quality of resulting approximation and is application dependent

6

Matching Pursuit: III

• first stage of MP leads to

$$\mathbf{X} = \mathbf{A}^{(1)} + \mathbf{R}^{(1)}$$
 and $\|\mathbf{X}\|^2 = |\langle \mathbf{X}, \mathbf{d}^{(1)} \rangle|^2 + \|\mathbf{R}^{(1)}\|^2$

- second stage treats $\mathbf{R}^{(1)}$ as \mathbf{X} was treated, leading to $\mathbf{R}^{(1)} = \mathbf{A}^{(2)} + \mathbf{R}^{(2)}$ and $\|\mathbf{R}^{(1)}\|^2 = |\langle \mathbf{R}^{(1)}, \mathbf{d}^{(2)} \rangle|^2 + \|\mathbf{R}^{(2)}\|^2$
- stages j = 3, 4... give us $\mathbf{R}^{(j-1)} = \mathbf{A}^{(j)} + \mathbf{R}^{(j)}$ and $\|\mathbf{R}^{(j-1)}\|^2 = |\langle \mathbf{R}^{(j-1)}, \mathbf{d}^{(j)} \rangle|^2 + \|\mathbf{R}^{(j)}\|^2$
- defining $\mathbf{R}^{(0)} = \mathbf{X}$, after J such steps, have

$$\mathbf{X} = \sum_{j=1}^{J} \mathbf{A}^{(j)} + \mathbf{R}^{(J)} \text{ and } \|\mathbf{X}\|^{2} = \sum_{j=1}^{J} |\langle \mathbf{R}^{(j-1)}, \mathbf{d}^{(j)} \rangle|^{2} + \|\mathbf{R}^{(J)}\|^{2}$$

North Pacific Index (NPI): I

• area-weighted sea level pressure over 30° N to 65° N & 160° E to 140° W & over November to March for each year from 1900 to 1999 (Trenberth & Paolino, 1980; Trenberth & Hurrell, 1994)

North Pacific Index (NPI): II

- Minobe (1999) postulated existence of penta- and bi-decadal oscillations in NPI that
 - "... cannot be attributed to a single sinusoidal-wavelike variability ...";

i.e., transitions between values above and below the long term mean of NPI occur much faster than sinusoidal variations can easily account for

- can (informally) evaluate Minobe's hypothesis by subjecting NPI to MP (**X** thus contains all N = 100 values of NPI, but after centering by subtracting off the sample mean)
- \mathcal{D} consists of both sinusoidal and square wave oscillations, with frequencies dictated by Fourier frequencies $j/100, j = 1, 2, \ldots$, 50 (periods are 100/j years), along with all possible phase shifts

Examples of Vectors in \mathcal{D}

• period of 50 years, and one of 25 possible phase shifts

Examples of Vectors in \mathcal{D}

• period of 100 years, and one of 50 possible phase shifts

Examples of Vectors in \mathcal{D}

Examples of Vectors in \mathcal{D}

Examples of Vectors in \mathcal{D}

Matching Pursuit of NPI: II

Matching Pursuit of NPI: III

The Conundrum: I

- to address question of significance, need to consider what MP does under various null hypotheses
- simpliest such hypothesis is that \mathbf{X} is Gaussian white noise (i.e., independent and identically distributed normal random variables) note that \mathbf{X} should have no discernable structure
- will take **X** to have zero mean and covariance/correlation matrix I_N (*N*th order identity matrix)
- let K denote number of vectors \mathbf{d}_k in set \mathcal{D} , and let $D = [\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_K]$ so that kth element of $\mathbf{Y} \equiv D^T \mathbf{X}$ is $\langle \mathbf{X}, \mathbf{d}_k \rangle$
- **Y** is multivariate Gaussian with zero mean and with $\Sigma \equiv D^T D$ as its covariance/correlation matrix
- note that (j, k)th element of Σ is $\mathbf{d}_{j}^{T} \mathbf{d}_{k}$

20

Slouching Towards an Explanation: I

- why does Gaussian white noise match up better with square waves than sinusoids?
- consider case N = 8 with \mathcal{D} containing four sinusoids (\mathbf{d}_1 , \mathbf{d}_2 , \mathbf{d}_3 and \mathbf{d}_4) and four square waves (\mathbf{d}_5 , \mathbf{d}_6 , \mathbf{d}_7 and \mathbf{d}_8), all with a period of 8

The Conundrum: II

- first step of MP picks element of **Y** with largest magnitude, so distribution of this pick depends just on multivariate Gaussian correlation matrix Σ
- if $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$, then

$$\Sigma = \begin{bmatrix} 1 & \mathbf{d}_1^T \mathbf{d}_2 \\ \mathbf{d}_2^T \mathbf{d}_1 & 1 \end{bmatrix}$$

and, by symmetry, MP will pick $\mathbf{d}_1 \& \mathbf{d}_2$ each 50% of the time, not matter what they are (e.g., a sinusoid & a square wave)

- \bullet if ${\mathcal D}$ has more then two elements, analysis becomes messy, but can resort to Monte Carlo experiments
- using same \mathcal{D} as in NPI analysis (50% of vectors are sinsuoids, and 50% are square waves), MP picks sinusoids 15% of the time and square waves 85% of the time!?!

21

Slouching Towards an Explanation: II **Slouching Towards an Explanation: III** • Monte Carlo experiments indicate that MP picks a sinusoid • consider another \mathcal{D} , this time with two sinusoids (\mathbf{d}_1 and \mathbf{d}_2) 29% of the time and a square wave 71% of the time and two square waves (\mathbf{d}_3 and \mathbf{d}_4), all again with a period of 8 • correlation matrix Σ in this case looks like the following: $\mathbf{d}_3 \mid \mathbf{d}_4 \mid \mathbf{d}_5 \mid \mathbf{d}_6 \mid \mathbf{d}_7 \mid \mathbf{d}_8$ \mathbf{d}_1 \mathbf{d}_2 \mathbf{d}_1 1.0 \mathbf{d}_2 0.7 1.0 \mathbf{d}_3 0.0 0.71.0 \mathbf{d}_4 -0.70.0 0.7 1.0 \mathbf{d}_5 0.9 0.9 0.4 -0.41.0 \mathbf{d}_6 0.4 0.90.90.40.51.0 \mathbf{d}_7 -0.40.4 0.90.9 0.0 0.51.0 \mathbf{d}_8 -0.90.9 0.0 0.5-0.40.4-0.51.0 • sinusoids have more extreme cross-correlations than do square waves – is this part of the explanation? 24 25Two of Four Vectors in \mathcal{D} Slouching Towards an Explanation: IV • Monte Carlo experiments indicate that MP picks a sinusoid 48.5% of the time and a square wave 51.5% of the time • correlation matrix Σ in this case looks like the following: \mathbf{d}_3 \mathbf{d}_1 \mathbf{d}_2 \mathbf{d}_4 \mathbf{d}_1 1.00 \mathbf{d}_2 0.00 1.00 \mathbf{d}_3 0.85 0.35 1.00 -0.350.850.501.00 \mathbf{d}_4 ż ò ż 5 6 ò i. 1 3 2 3 t • sinusoids now have zero cross-correlation, whereas square waves have a positive cross-correlation, yet square waves are still preferred (but just slightly so) • cannot explain conundrum in terms of just cross-correlations

26

27

Hmmm	References
	 S. G. Mallat and Z. Zhang (1993), 'Matching Pursuits with Time-Frequency Dictionaries,' IEEE Transactions on Signal Processing, 41, pp. 3397–3415
	 S. Minobe (1999) 'Resonance in Bidecadal and Pentadecadal Climate Oscillations over the North Pacific: Role in Climate Regime Shifts,' <i>Geophysical Research Letters</i>, 26, pp. 855–858
	• D. B. Percival, J. E. Overland and H. O. Mofjeld (2002), 'Using Matching Pursuit to Assess Atmospheric Circulation Changes over the North Pacific,' unpublished manuscript available at
	http://faculty.washington.edu/dbp/research.html
	• K. E. Trenberth and J. W. Hurrell (1994), 'Decadal Atmosphere–Ocean Variations in the Pacific,' <i>Climate Dynamics</i> , 9 , pp. 303–19
	 K. E. Trenberth and D. D. Paolino (1980), 'The Northern Hemisphere Sea Level Pressure Data Set: Trends, Errors, and Discontinuities.' Monthly Weather Review, 108, pp. 855– 72
28	29