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Overview

• analysis of time series related to climate often rely on ‘red noise’
as a simple model for correlation in the series

• after giving background on

− red noise,

− partial autocorrelation sequences (PACSs) and

− portmanteau tests for white noise,

will describe an omnibus test – and a variation thereof – de-
signed to point out when a model other than red noise is needed

• will discuss adapation of tests to handle time series with missing
values (a common occurrence in climatology)

• will demonstrate use of tests on two climatology time series
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Example of a Climatology Time Series (NPI): I

• consider North Pacific Index (NPI): area-weighted sea level
pressure over 30◦ N to 65◦ N & 160◦ E to 140◦ W and over
November to March for each year from 1900 to 2009
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Example of a Climatology Time Series (NPI): II

• unit lag scatter plot & locally weighted regression fit (ρ̂1
.
= 0.21)
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Modelling Correlation in Time Series as Red Noise

• cannot regard NPI and most other climatology time series Xt
as realizations of independent random variables (RVs)

• widely-used simple model for correlated time series is ‘red noise’

• red noise is the same as a first-order autoregressive (AR(1))
stationary Gaussian process with a positive correlation at unit
lag (see, e.g., von Storch and Zwiers, 1999)

• assuming E{Xt} = 0 for convenience, such a process satisfies

Xt = φXt−1 + ≤t,

where |φ| < 1, and ≤t’s are IID Gaussian with mean 0 and
variance σ2

≤ (i.e., Gaussian white noise)
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Properties of AR(1) Processes

• can argue that

σ2
X ≡ var {Xt} =

σ2
≤

1− φ2 and cov {Xt+k,Xt} = φ|k|σ2
X,

so ρk ≡ corr {Xt+k,Xt} = φ|k| – the autocorrelation sequence
(ACS) – dies down exponentially as k → ∞ (‘short-range’
dependence)

• when φ = 0, AR(1) process reduced to white noise

• AR(1) process is related to a first-order stochastic differential
equation with ‘correlation time’ dictated by φ

• AR(1) model is simple enough to offer analytic tractablity for
calculations (e.g., getting an expression for var {X}, where X
is the mean of X0, X1, . . . , XN−1)
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.99
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.98
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.97
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.96
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.95
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.94
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.93
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.92
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.91
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.9
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.8
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.7
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.6
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.5
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.4
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.3
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.2
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• for comparison, here is NPI with φ estimated by ρ̂1
.
= 0.21
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0.1
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = 0
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.1
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.2
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.3
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.4
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.5
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.6
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.7
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.8
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.9

 

 

0 20 40 60 80 100

3

2

1

0

1

2

3

t  

 

0 5 10 15

1

0

1

Xt ρk

k

−

−

− −

7



Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.91
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.92
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.93
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.94
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.95
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.96
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.97
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.98
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Examples of Realizations of AR(1) Processes

• easy to generate realizations of Gaussian AR(1) processes (see
Kay, 1981, for details)

• with σ2
X = 1, here is a realization when φ = −0.99
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Quote from Review of Recent Paper (2010)

“. . . the paper . . . can serve as a cautious reminder to those
(probably more than 90% of climate researchers) who blindly
use the AR(1) model . . . for climate data”

• Q: has red noise been ‘oversold’ within climate community?

• points out need for statistical tests that flag time series for
which red noise might be too simplistic of a model

• will now review a concept that, for Gaussian processes, provides
a clear distinction between AR(1) processes and all other types
of correlated stationary processes – to do so, we first need to
consider ‘predicting’ Xt using other RVs in the process
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Forward/Backward Prediction of Xt: I

• given a realization of a portion Xt−1, Xt−2, . . . , Xt−k of a zero
mean Gaussian stationary process, suppose we want to predict
Xt based upon some function, say g(Xt−1, Xt−2, . . . , Xt−k),
of these k RVs

• the ‘best’ predictor of Xt takes the form

g(Xt−1, Xt−2, . . . , Xt−k) =
kX

j=1

φk,jXt−j ≡
−→
Xt(k),

where here ‘best’ means that

E{[Xt − g(Xt−1, Xt−2, . . . , Xt−k)]2}
is minimized over all possible functions of Xt−1, Xt−2, . . . , Xt−k
(note: the φk,j depend just on the ACS for the process)
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Forward/Backward Prediction of Xt: II

• given a realization of a portion Xt+1, Xt+2, . . . , Xt+k of RVs
coming after Xt, the best ‘predictor’ of Xt is given by

←−
Xt(k) ≡

kX

j=1

φk,jXt+j,

i.e., coefficients φk,j in
←−
Xt(k) are the same as those in

−→
Xt(k)

• given
−→
Xt(k) and

←−
Xt(k), form the corresponding forward and

backward prediction errors:

−→≤t(k) ≡ Xt −
−→
Xt(k) and ←−≤t(k) ≡ Xt −

←−
Xt(k);

note: define
−→
Xt(0) =

←−
Xt(0) = 0 so that −→≤t(0) =←−≤t(0) = Xt

10



Partial Autocorrelation Sequence (PACS): I

• focusing now on Xt−k,Xt−k+1, . . . , Xt−1, Xt, we can inter-
pret φk,k in the following interesting manner:

φk,k =
cov {−→≤t(k − 1),←−≤t−k(k − 1)}

(var {−→≤t(k − 1)} var {←−≤t−k(k − 1)})1/2
;

because
−→≤t(k − 1) = Xt −

−→
Xt(k − 1)

←−≤t−k(k − 1) = Xt−k −
←−
Xt−k(k − 1),

and because both
−→
Xt(k − 1) and

←−
Xt(k − 1) depend on just

Xt−k+1, . . . , Xt−1,

can regard φk,k as correlation between Xt−k and Xt after ‘ad-
justment’ by the intervening k − 1 RVs Xt−k+1, . . . , Xt−1
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Partial Autocorrelation Sequence (PACS): II

• φk,k, k = 1, 2, . . ., is known as the partial ACS (PACS)

• Ramsey (1974): under a Gaussian assumption, a stationary
process is an AR(1) process if and only if its PACS is identically
zero for all k ≥ 2

• can thus use estimators of φ̂2,2, φ̂3,3, . . . to test null hypothesis

H0: time series is a realization of an AR(1) process

versus nonspecific alternative

H1: time series is a realization of another stationary process
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Partial Autocorrelation Sequence (PACS): III

• given time series that is a realization of X0, X1, . . . , XN−1, can
estimate φk,k by fitting kth order AR process, i.e.,

Xt =
kX

j=1

φk,jXt−j + ≤t,

using a variety of methods (Yule–Walker, Burg, forward least
squares (LS), forward/backward LS, maximum likelihood, . . . )

• AR(k) coefficients {φk,j : j = 1, . . . , k} and PACS {φj,j : j =
1, . . . , k} are equivalent to one another

• large-sample theory says PACS estimators φ̂2,2, φ̂3,3, . . ., φ̂K,K
are approximately IID normal with mean zero and variance
1/N for an AR(1) process and fixed K (Kay & Makhoul, 1983)
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Portmanteau Tests for White Noise: I

• can formulate tests for red noise analogous to portmanteau tests
for white noise (Box and Pierce, 1970; Ljung and Box, 1978)

• large-sample statistical theory says that, for a time series com-
ing from a white noise process and for fixed K, standard ACS
estimators ρ̂1, ρ̂2, . . . , ρ̂K are approximately IID normal with
mean zero and variance 1/N

• Box–Pierce and Ljung–Box–Pierce portmanteau test statistics
for white noise versus nonspecific alternative are given by

QK = N
KX

k=1

ρ̂2
k and eQK = N(N + 2)

KX

k=1

ρ̂2
k

N − k
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Portmanteau Tests for White Noise: II

• for either QK or eQK , reject null hypothesis of white noise at
significance level α when statistic exceeeds (1 − α) × 100%
percentage point for chi-square distribution with K degrees of
freedom

• literature recommends setting K = max {2, min {20, N/10}}
• Baragona and Battaglia (2000) and Kwan (2003) consider anal-

ogous tests for white noise based on PACS estimators rather
than ACS estimators (for a white noise process and for fixed
K, PACS estimators φ̂1,1, φ̂2,2, . . . , φ̂K,K are asymptotically
IID normal with mean zero and variance 1/N , i.e., the same
result as for ρ̂1, ρ̂2, . . . , ρ̂K)
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Omnibus Portmanteau-based Tests for Red Noise

• since large sample properties of

− ρ̂k for k ≥ 1 under white noise hypothesis and

− φ̂k,k for k ≥ 2 under red noise hypothesis

are identical, can test hypothesis of red noise versus nonspecific
alternative using the following analogs of QK or eQK :

TK = N
KX

k=2

φ̂2
k,k and eTK = N(N + 2)

KX

k=2

φ̂2
k,k

N − k

• for either test statistic, reject null hypothesis of red noise at
significance level α when statistic exceeeds (1 − α) × 100%
percentage point for chi-square distribution with K−1 degrees
of freedom
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Use of Tests on NPI Time Series

• for NPI series with K = 10, get T10
.
= 10.69 and eT10

.
= 11.47,

yielding α̂ = 0.30 and 0.24, so cannot reject red noise hypoth-
esis at any reasonable significance level
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Assessing χ2 Approximation

• generated 100, 000 Gaussian AR(1) time series of length N =
110 using φ estimated from NPI data and computed T10 and
eT10 for each series

• used these as input to density function in R to estimate prob-
ability density functions (PDFs) for comparison with χ2

9 PDF

• repeated above, but with φ = 0.9, to see if results depend on φ

18



PDFs for T10, eT10 and χ2
9 with φ

.
= 0.21
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PDFs for T10, eT10 and χ2
9 with φ = 0.9
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Extension to Handle ‘Gappy’ Time Series: I

• climatology time series often have missing values, as is true for
a ‘time’ series of Arctic sea-ice thickness measurements (172
out of 803 observations missing – 21% of data)
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Extension to Handle ‘Gappy’ Time Series: II

• assuming null hypothesis of red noise to be true, can estimate
model parameters for gappy time series using maximum likeli-
hood (Jones, 1980), yielding φ̂

.
= 0.36 (±0.04)

• let XO and XM be vectors of RVs containing observed and
missing parts of time series

• using E{XM |XO} and var {XM |XO} = ΣM |O formed un-
der null hypothesis and conditioned on AR(1) parameter esti-
mates, can generate realizations of missing data

− formally requires Cholesky factorization of ΣM |O
− due to special properties of AR(1) model, can reduce to fac-

torization of a set of much smaller matrices

• can compute TK and eTK for many such realizations
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Extension to Handle ‘Gappy’ Time Series: III

• get T10
.
= 21.97 and eT10

.
= 22.18 for this particular stochastic

interpolation of Arctic sea-ice series, yielding α̂
.
= 0.009 and

0.008
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Extension to Handle ‘Gappy’ Time Series: III

• get T10
.
= 23.99 and eT10

.
= 24.20 for this particular stochastic

interpolation of Arctic sea-ice series, yielding α̂
.
= 0.004 and

0.004
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Extension to Handle ‘Gappy’ Time Series: III

• get T10
.
= 25.68 and eT10

.
= 25.91 for this particular stochastic

interpolation of Arctic sea-ice series, yielding α̂
.
= 0.002 and

0.002
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Extension to Handle ‘Gappy’ Time Series: III

• get T10
.
= 20.94 and eT10

.
= 21.16 for this particular stochastic

interpolation of Arctic sea-ice series, yielding α̂
.
= 0.013 and

0.012
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Extension to Handle ‘Gappy’ Time Series: III

• get T10
.
= 18.44 and eT10

.
= 18.63 for this particular stochastic

interpolation of Arctic sea-ice series, yielding α̂
.
= 0.030 and

0.029
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Extension to Handle ‘Gappy’ Time Series: IV

• histogram of 10,000 α̂’s for T10 (one for eT10 virtually the same)
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Extension to Handle ‘Gappy’ Time Series: V

• variation: account for uncertainty in ML parameter estimates
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Future Directions

• critique: tests based on gap-filling biased toward not rejecting
null hypothesis

• another approach for handling gappy time series (under study):

− base tests on PACS estimates from fitting AR(k) models via
maximum likelihood (Jones, 1980)

− method slow (numerical optimization over k parameters)

− approach based on constraining ML estimators via Levinson–
Durbin recursions leads to sequence of one-dimensional op-
timization problems and hence potential speed-up

− small sample properties of simplified approach under study

• lots of other avenues to look into!
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Thanks to . . .

• conference organizers for opportunity to talk

• numerous folks at CSIRO who made my visit possible
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