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Background: I

• destructive potential of earthquake-generated tsunamis well-
known, with tragic recent examples being in the Indian Ocean
(26 December 2004 – 230, 000 estimated deaths) and off the
coast of Japan (11 March 2011 – 15, 893 confirmed deaths)

• due to rate at which tsunamis cross the ocean, possible to lessen
effects on some coastal communities through advance warnings

• for US, warning centers in Alaska and Hawaii are responsible
for issuing timely bulletins about impending tsunamis

• seismometers give first indication of a potential tsunami event

− starting time of earthquake event

− location of epicenter

− initial estimate of magnitude
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Background: II

• seismic information alone is not enough to accurately forecast
potential impact of tsunami

• led to development of Deep-ocean Assessment and Reporting
of Tsunamis (DART R©) buoys

3







Background: III

• prior to December 2004, six DART R© buoys were deployed, all
in Pacific Ocean

• as result of Indian Ocean event, US Congress mandated 33 more
be deployed in Pacific Ocean and elsewhere (to date, eight other
countries have also deployed DART R© buoys)

• mindful of Percival’s First Law

‘Real-time computer demonstrations are doomed to fail!’

let’s look at network of buoys and recent data by going to

http://www.ndbc.noaa.gov/dart.shtml

and movie of Nov. 2006 Kuril Islands event downloadable from

http://nctr.pmel.noaa.gov/kuril20061115.html
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Format of Data

• buoy records bottom pressure measurement every 15 sec (each
is an average over 15 sec) – saved internally and retrieved when
buoy serviced (typically 400 to 1000 days between servicings)

• 15-min stream: when nothing is going on, buoy transmits one
15-sec average every 15 min (most recent portion of stream
displayed on NOAA Web site)

• 15-sec stream: when triggered by an event (typically seismic
noise), buoy transmits 33

4 minute segment of 15-sec averages

• 1-min stream: during tsunami event, buoy transmits averages
of four consecutive 15-sec averages (i.e., 1-min averages)

• due to transmission protocols, what is actually available dur-
ing tsunami event can be complicated mixture of these streams
(subject to change with deployment of 4th generation DART R©’s)
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Buoy 21414 Data for Nov. 2006 Kuril Islands Event
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Buoy 21414 Data for Nov. 2006 Kuril Islands Event
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Short-term Inundation Forecast for Tsunamis (SIFT)

• SIFT: computer application that uses DART R© data and pre-
computed geophysically-based predictors to assess magnitude
of tsunami as event evolves – currently in use at Alaska &
Hawaii warning centers, but being refined continually at NOAA
Center for Tsunami Research

• statistical issues in processing data within SIFT include:

1. predictor selection: currently done by hand by trained oper-
ators, but automation highly desired

2. estimation of tsunami signal: fit predictors, keeping in mind
confounding tidal component

3. assessment of uncertainty in coastal inundation forecasts

• will focus on 1 and 2 in today’s talk
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Predictors for Tsunami Signals: I

• predictors for tsunami signals depend on both

− location of seismic disturbance and

− location of DART R© buoy

• each predictor is associated with so-called ‘unit source’, which
is a 100 km by 50 km section of ocean near a coastline

• predictors reside in precomputed database – one for each pair-
ing of a particular unit source and particular buoy

• predictors describe what would be observed – in absence of
tidal effects – at buoy if a moment magnitude MW = 7.5
inverse-thrust fault earthquake were to originate from associ-
ated unit source (Okada, 1985)
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Predictors for Nov. 2006 Kuril Islands Event
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Predictors for Buoy 21414 (0 to 8 hours)
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Predictors for Buoy 46413 (0 to 8 hours)
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Predictors for Buoy 46408 (0 to 8 hours)
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Predictors for Buoy 46402 (0 to 8 hours)

y

z

a

14

b

13 12 11

16



Predictors for Tsunami Signals: II

• for a given buoy, predictors from different unit sources resemble
one another (will lead to collinearity concerns)

• let gj,k be column vector containing predicted time series for
jth buoy for MW = 7.5 event occurring in kth unit source

• can account for event with MW differing from 7.5 by multiply-
ing gj,k by so-called source coefficient αk ≥ 0

• prediction becomes αkgj,k
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Predictors for Tsunami Signals: III

• tsunami event often spread out over K > 1 unit sources

• physical considerations suggest that linearity is a reasonable as-
sumption, but negative source coefficients don’t make physical
sense

• predictor for jth buoy thus becomes

K∑
k=1

αkgj,k = Gjα,

where

−K ≥ 1 is the number of unit sources under consideration

− Gj is a matrix whose columns are the gj,k vectors

− α is a column vector with source coefficients αk ≥ 0
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Models for DART R© Buoy Data

• let dj be column vector with time series collected by jth buoy
but after effect of tides has been removed (more on this later!)

• model for detided data is

dj = Gjα + ej,

where ej is a stochastic vector of errors (more on these later)

• if we have relevant data from J buoys in all, can create multi-
buoy model by stacking components of individual models:

d = Gα+e, where d =

d1
...
dJ

, G =

G1
...
GJ

 and e =

e1
...
eJ


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Error Component in Model: I

• autocorrelation is typical in time series – cannot realistically
assume that errors terms in ej are uncorrelated

• will assume ej is multivariate Gaussian with known positive-

definite covariance matrix σ2Σej – thus

ej ∼ N (0, σ2Σej),

where σ2 > 0 is a scaling factor

• Cholesky decomposition allows construction of matrix Σ
−1/2
ej

such that
Σ
−1/2
ej Σ

−1/2
ej = Σ−1

ej ,

where Σ−1
ej is the inverse of Σej
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Error Component in Model: II

• leads to transformed model

Σ
−1/2
ej dj = Σ

−1/2
ej Gjα + Σ

−1/2
ej ej

with independent & identically distributed (IID) errors Σ
−1/2
ej ej

• ordinary least squares (LS) estimator of α in transformed model
is generalized LS estimator for original model dj = Gjα + ej

• two additional simplifying assumptions

− matrix Σej dictated by first-order autoregressive process with
unit lag autocorrelation φ (can estimate via linear regression,

and Σ
−1/2
ej is nonzero only in diagonal & 1st subdiagonal)

− errors in one buoy are independent of those in any other buoy

• leads to e ∼ N (0, σ2Σe) in multi-buoy model d = Gα + e,

where Σe is block diagonal (decorrelation matrix Σ
−1/2
e is also)
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Selection of Predictors and α Estimation: I

• given

− transformed data d̃ = Σ
−1/2
e d

− transformed predictors G̃ = Σ
−1/2
e G

− model d̃ = G̃α + ẽ with IID Gaussian errors

task is to estimate source coefficients α

• lots of potential predictors – one for each unit source in relevant
subduction zone(s)

•K = 22×4 = 88 unit sources in Kamchatka–Kuril–Japan sub-
duction zone where earthquake generating Kuril Islands event
occurred
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Predictors for Nov. 2006 Kuril Islands Event
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Selection of Predictors and α Estimation: II

• want solution α̂ to d̃ = G̃α + ẽ to be

− sparse: many entries of α̂ should be equal to zero (unlikely
for earthquake to be spread out over an entire subduction
zone)

− structured : earthquakes are typically spatially localized, so
nonzero entries of α̂ should correspond to unit sources close
to one another

− nonnegative: α̂k < 0 does not make physical sense
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Selection of Predictors and α Estimation: III

• ordinary LS (OLS) estimator with nonnegativity constraints,
i.e., estimator minimizing

‖ẽ‖22
def
=

J∑
j=1

Nj∑
n=1

e2
j,n = ‖d̃− G̃α‖22 subject to α ≥ 0,

imposes some degree of sparsity due to nonnegativity constraint,
but can easily end up overfitting data if K is large

− no reason for constrained OLS estimator to be structured
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Selection of Predictors and α Estimation: IV

• to achieve sparsity, consider lasso proposed by Tibshirani (1996)

• constrained version of lasso yields estimator minimizing

‖d̃− G̃α‖22 + λ‖α‖1 subject to α ≥ 0,

where

‖α‖1
def
=

K∑
k=1

|αk| =
K∑
k=1

αk

and λ‖α‖1 is the so-called `1 penalty

• if λ = 0, lasso solution for α reduces to constrained OLS

• if λ =∞, lasso solution is α̂ = 0

• as λ decreases from ∞, solution α̂ becomes less sparse
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Selection of Predictors and α Estimation: V

• note: can use R package penalized to find lasso solution

• lasso solution α̂ is a biased estimator of α, with bias being
towards zero . . . yikes!!!

• α estimates are used with geophysical models to forecast wave
heights in open ocean near coastal community of interest

• in turn, open-ocean forecasts are used as initial conditions for
run-up models that yield forecasts of coastal inundation

• downward bias in α̂ =⇒ downward bias in wave height fore-
casts =⇒ downward bias in coastal inundation forecasts

− cannot sell this idea to those in charge of issuing warnings!

• will thus use lasso to identify which unit sources to use, and
then estimate α via constrained OLS
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Selection of Predictors and α Estimation: VI

• while lasso gives sparse solutions, no guarantee these solutions
will be structured (same problem as with constrained OLS)

• proposal: restrict candidate unit sources to a localized region

• in example to follow, will consider 4× 3 blocks of unit sources

• two-step procedure: for a given 4× 3 localized region

(1) use lasso with unit sources restricted to localized region

(2) choose λ tuning parameter (as described below) to automat-
ically select unit sources within localized region

• repeat two-step procedure for all possible 4× 3 regions

• strategy yields a localized solution: unit sources in the final
model are contained within a single 4× 3 region.
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Selection of Predictors and α Estimation: VII

• use Akaike information criterion (AIC) both to choose λ within
each localized region and to choose between regions

• intuition: could measure model’s performance by residual sums

of squares RSS
def
= ‖d̃− G̃α̂‖22, but this strategy calls for using

data both to fit model and to measure its performance

• dual use of data leads to over-fitting (‘curve matching’): chooses
too low a λ, which translates into too many unit sources

• AIC fixes problem by adding a complexity penalty, a function
of N (# of data points) and K ′ (# of selected unit sources):

AIC
def
= log(RSS) + Complexity Penalty(N,K ′)

• strategy is to choose λ yielding lowest AIC

• demo: sweeping lasso for Kuril Islands event with buoy 21414
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Selection of Predictors and α Estimation: VIII

• sweeping lasso with AIC selects column of 4 unit sources when
using just buoy 21414

• sweeping lasso with AIC selects 7 unit sources when using 4
buoys (21414 plus 46413, 46408 and 46402)
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Collinearity and Ridge Regression: I

• concern with sweeping lasso is collinearity, i.e., high degree of
cross-correlation between predictors
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Predictors for Buoy 21414 (0 to 8 hours)

y

z

a

14

b

13 12 11

54



Transformed Predictors for Buoy 21414 (φ = 0.7)
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Collinearity and Ridge Regression: II

• maximum cross-correlation between displayed transformed pre-
dictors for 21414 is 0.75

• ridge regression (Hoerl and Kennard, 1970) designed to handle
collinearity

• usual (unconstrained) OLS estimator minimizes

‖d̃− G̃α‖22 and is given by α̂ = (G̃T G̃)−1G̃T d̃

• ridge regression estimator given by

α̂ = (G̃T G̃ + λ2I)−1G̃T d̃,

where λ2 is a parameter to be set
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Elastic Net: I

• ridge regression is solution to following problem: minimize

‖d̃− G̃α‖22 + λ2‖α‖22,
where λ2 ≥ 0, and λ2‖α‖2 is the `2 penalty

• elastic net (Zou and Hastie, 2005) is solution to following prob-
lem: minimize

‖d̃− G̃α‖22 + λ1‖α‖1 + λ2‖α‖22
• elastic net is lasso with `2 penalty added to tackle collinearity

• note: need to modify standard elastic net to include nonnega-
tivity constraint α ≥ 0
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Elastic Net: II

• without the `2 penalty

− high variance in α̂, increasing chance of inaccurate magni-
tude prediction

− signs in α̂ can flip, resulting in exclusion in constrained es-
timation

• with the `2 penalty

− variance of estimators α̂ stabilized

− groups of correlated predictors can enter together
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Elastic Net: III

• elastic net has two tuning parameters: λ1 and λ2

• can adjust AIC to select both parameters and to settle on best
localized region in sweeping

• experience to date suggests that solutions are robust to different
choices of λ2 except for values too close to zero or too large

• can set λ2 = 1 and then use AIC to handle sweeping elastic net
in a manner similar to sweeping lasso

• for Kuril Islands example, sweeping elastic net yields same
choice of predictors as sweeping lasso

− in fact, sweeping ridge regression yields identical results!
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Predictors for Nov. 2006 Kuril Islands Event
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Accounting for Tides and Background Noise: I

• predictors based on geophysical models do not take into account
tidal effects, which dominate data collected by DART R© buoys
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Buoy 21414 Data for Nov. 2006 Kuril Islands Event
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Buoy 21414 Data for Nov. 2006 Kuril Islands Event
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Accounting for Tides and Background Noise: II

• accounting for tides and background noise not a trivial task

• operational model for jth buoy’s data: ȳj = xj + Gjα + εj,
which will be simplified by dropping subscripts: ȳ = x+Gα+ε

− ȳ is vector with 1-min stream; i.e., averages of four con-
secutive 15-sec bottom pressure (BP) measurements from
DART R© buoy available during a tsunami event

− x is vector representing tidal fluctuations

− G is a matrix whose K columns contain predictors that col-
lectively model tsunami signal

− α ≥ 0 is a vector of source coefficients

− ε is vector representing background noise
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Accounting for Tides and Background Noise: III

• have studied five approaches to detiding (many other approaches!)

1. harmonic analysis based on 29 days of data prior to event

2. harmonic analysis based on lots of prior data (300–1000 days)

3. empirical orthogonal function (EOF) approach

4. Kalman smoothing (KS) approach

5. harmonic analysis with joint estimation of source coefficients

• first two methods are based on physical models

• first four methods predict tidal fluctuations using, say, x̂

• predictions are subtracted from ȳ to form detided data:

d = ȳ − x̂ = Gα + e,

where e = ε + x− x̂ is error term (includes background noise
and inaccuracies in predicting tidal fluctuations)
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Accounting for Tides and Background Noise: IV

• can use d from any of the first four methods with sweeping
elastic net (Kuril Islands example based on KS approach)

• fifth method handles tidal fluctuations and estimation of source
coefficients α jointly least (‘joint method’)

• in contrast to previous four methods, joint method does not
make use of any data prior to tsunami event – just uses available
1-min stream

− simplifies matters operationally – part or all of 15-min stream
has been missing in past events

• will now briefly describe five methods
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Method 1 (29 Day Harmonic Analysis)

• harmonic analysis is standard way to predict tides at coastal
stations and assumes tides are sums of sinusoidal constituents

• for detiding DART R© data, assume buoy has reported BP mea-
surements every 15 minutes for 29 days prior to tsunami event

• model measurements yn from 15-min stream as

yn = µ +

6∑
m=1

[Bm cos(ωmn∆) + Cm sin(ωmn∆)] + en,

where parameters µ, Bm & Cm are estimated via least squares
(ωm’s for N2, M2, S2, Q1, O1 & K1 and ∆ are known)

• use fitted model to form detided 1-min stream:

dn = ȳn−µ̂−
1

4

3∑
k=0

6∑
m=1

[
B̂m cos(ωm[n + k] ∆) + Ĉm sin(ωm[n + k] ∆)

]
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Buoy 21414 Data for Nov. 2006 Kuril Islands Event
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Method 2 (Long Harmonic Analysis)

• similar to method 1, but with following key differences

− model now uses 68 constituents rather than just 6

− except for mean level µ, data used to fit model are from
15-sec streams retrieved from buoy during regular servicing
(totality of streams typically spans from 300 to 1000 days)

− 29 days from 15-min stream now used just to set µ

• fitting model requires specialized software (G. Mungov, NOAA
National Centers for Environmental Information, provided fits
for study discussed later on)

• cannot use method unless buoy has been serviced once in its
present location
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Linear Time-Invariant (LTI) Filtering

• two best known approaches for detiding are harmonic analysis
and LTI high-pass filtering (e.g., Butterworth filtering)

• to isolate tsunami signal without distortion, filter should retain
components with periods as long as 2 hours

• potential disadvantages

− edge effects can significantly distort at least 1-hr sections
at beginning and end of filtered series, rendering approach
problematic in real-time environment

− most LTI filters not designed to work with gappy data

• methods 3 and 4 are linear (but not LTI) filters designed to
overcome these disadvantages
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Method 3 (Empirical Orthogonal Functions)

• premise (Tolkova, 2010): sub-space spanned by leading em-
pirical orthogonal functions (EOFs) of tidally dominated data
segments same across all DART R© buoys

• EOFs obtained from 250 segments (each spanning one lunar-
day) from DART R© buoy 46412 in 2007

• available buoy data from 1-min and 15-min streams projected
against EOFs f1, f2, . . . , f7 associated with seven largest eigen-
values (along with constant vector f0) to obtain coefficients c0,
c1, . . . , c7

• inverse projection using c0, c1, . . . , c7 yields predicted tides,
which are subtracted from buoy data to yield detided data
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Method 4 (Kalman Smoothing)

• Kalman smoothing (KS) widely used to ‘optimally’ smooth a
time series, but optimality depends upon adequate model for
underlying dynamics

• KS approach here is two-stage procedure

1. use 29 day harmonic analysis (method 1) to obtain first-stage
detided series, say, dn

2. use dn as input to KS based upon local level model (also
known as ‘random walk plus noise’ model’) – output from
smoother intended to track any tidal component/background
noise left over from first-stage detiding

• local level model depends upon just two parameters and esti-
mate of initial state of underlying dynamical system
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Method 5 (Joint Method): I

• joint method estimates coefficients for tidal model along with
α using just 1-min stream transmitted during tsunami event

• joint method is based on operational model

ȳ = x + Gα + ε

but with addition of specific model for tidal fluctuations:

x = µ1 +

M∑
m=1

(Bmcm + Cmsm) ,

where 1 is a vector of ones; M is either 1 or 2; cm is a vector
with elements cos (ωmn∆), where ω1 is tidal frequency M2,
ω2 = 2ω1, n is a time index and ∆ = 1 min; and sm is analo-
gous to cm, but with sines replacing cosines
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Method 5 (Joint Method): II

• unknown parameters are source coefficients α and tidal coeffi-
cients µ, Bm’s and Cm’s

• to estimate coefficients, use constrained elastic net: minimize

‖ȳ − µ1−
M∑
m=1

(Bmcm + Cmsm)−Gα‖22 + λ1‖α‖1 + λ2‖α‖22

subject to α ≥ 0

• if so desired, can take detided series for joint method to be

d = ȳ − µ̂1−
M∑
m=1

(
B̂mcm + Ĉmsm

)
,

where µ̂ is estimate of µ etc.
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Assessing Performance of Five Methods: I

• recall overall goal: use data from DART R© buoys to estimate
source coefficients α – these are used in forming coastal inun-
dation forecasts

• Q: how do estimated source coefficients compare for five detid-
ing methods?

• to address question, carried out study using archived 15-sec
streams from eleven representative DART R© buoys (streams
ranged in length from 321 to 998 days)
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Locations of Eleven DART R© Buoys (Triangles)
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Assessing Performance of Five Methods: II

• recall operational model: ȳ = x + Gα + ε

• used archived 15-sec streams to construct ‘scenarios’ that mimic
tidal fluctuations and background noise (i.e., x + ε) present in
15-min & 1-min streams recorded during actual tsunami event

• procedure for constructing one scenario for a particular buoy

− select random starting time t0
− form 29-day segment of 15-min stream by subsampling 15-sec

stream prior to t0 (to mimic operational conditions, create
3-h gap just prior to t0 in constructed 15-min stream)

− form 1-day segment of 1-min stream by averaging 4 adjacent
values of 15-sec stream after t0

• constructed 15-min & 1-min streams form one of 1000 scenarios
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Scenario 943 for Buoy 52402 (t0 = 9:21:00 UT, 6/27/07)
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Assessing Performance of Five Methods: III

• to create an artificial tsunami signal, simplify operational model
to have just one unit source: ȳ = x + αg + ε

• motivated by actual tsunami events, set α = 6 as representative
source coefficient

• for each buoy, set g using three to seven unit sources with
different orientations with respect to buoy

− for example, buoy 52402 is paired with three unit sources
(from north to south, ki050b, ki055b and ki060b)

• 42 unit sources in all, five of which were used by two buoys, for
a total of 47 pairings of buoys and unit sources (each pairing
leads to a different artificial tsunami signal)

• artificial tsunami signal for given buoy/unit source pairing added
to each of 1000 scenarios for given buoy
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Locations of 11 DART R© Buoys and 42 Unit Sources
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Assessing Performance of Five Methods: IV

• next plot shows artificial tsunami signal for buoy ki060b paired
with unit source ki060b

• five red dots mark arrival times of

− first quarter wave

− half wave

− three-quarters wave

− first full wave

− one hour beyond first full wave
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Buoy 52402/Unit Source ki060b Pairing
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Construction of Simulated Tsunami Event
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Assessing Performance of Five Methods: V

• next set of plots show α̂’s estimated using OLS for five methods
using

− data up to 3/4 of first full wave

− all 1000 scenarios for buoy 52402

− artificial tsunami based on unit source ki060b

• triangles mark scenario 943
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α̂’s Using 29 Day Harmonic Analysis
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α̂’s Using Long Harmonic Analysis
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α̂’s Using Empirical Orthogonal Functions
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α̂’s Using Kalman Smoothing
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α̂’s Using Joint Method
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Root-Mean-Square Errors for 1000 α̂ Estimates
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Assessing Performance of Five Methods: VI

• why does joint method work well?

− really only need a simple model for tidal fluctuations when
dealing with short stretches of time

− least squares theory suggests that simultaneous estimation
of model parameters is preferable to stage-wise estimation if
predictors are correlated

• why might joint method fail?

− method needs an appropriate model for tsunami signal, but
sweeping elastic net offers a promising solution to this po-
tential drawback

− long stretches of time problematic since simple model for
tidal fluctuations can deteriorate (M = 1 versus M = 2
needs more study)

93



Concluding Comments: I

• sweeping elastic net soon to be implemented within SIFT to
help operators at tsunami warning centers select appropriate
model for tsunami signal during ongoing event (manual method
currently in use too time consuming)

• many statistical issues remain, including following three

1. selection of blocksize for sweeping elastic net

− used 4× 3 in example here, but choice somewhat arbitrary

− tsunami warning officers comfortable with setting size based
on magnitude of earthquake (at least to begin with)
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Concluding Comments: II

2. windowing of buoy data to use for model fitting

− joint method impacted because simple tidal model deterio-
rates as window width increases

− geophysical models typically get first full wave of tsunami
signal OK, but do not do well after that

3. assessing uncertainty in coastal inundation forecasts

− how does uncertainty in estimating α translate into uncer-
tainty in forecasts?
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