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Overview

• question of interest: how can we assess the sampling variability
in statistics computed from a time series X0, X1, . . . , XN−1?

• start with some background on bootstrapping

• review parametric and block bootstrapping (two approaching
for handling correlated time series)

• review previously proposed wavelet-based approach to boot-
strapping (Percival, Sardy and Davison, 2001)

• describe a new wavelet-based approach that uses ‘trees’ for re-
sampling and is potentially useful for non-Gaussian time series

• demonstrate methodology on time series related to BMW stock

• conclude with some remarks
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Motivating Question

• let X = [X0, . . ., XN−1]
T be a portion of a stationary process

with autocorrelation sequence (ACS)

ρτ =
sτ

s0
, where sτ = cov {Xt,Xt+τ} and s0 = var {Xt}

• given a time series, we can estimate its ACS at τ = 1 using

ρ̂1 =

PN−2
t=0 (Xt −X)(Xt+1 −X)

PN−1
t=0 (Xt −X)2

, where X =
1

N

N−1X

t=0

Xt

• Q: given the amount of data N we have, how close can we
expect ρ̂1 to be to the true unknown ρ1?

• i.e., how can we assess the sampling variability in ρ̂1?
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Classic Approach – Large Sample Theory

• letN (µ,σ2) denote a Gaussian (normal) random variable (RV)
with mean µ and variance σ2

• under suitable conditions (see, e.g., Fuller, 1996), ρ̂1 has a dis-
tribution close to that of N (ρ1,σ

2
N) as N →∞, where

σ2
N =

1

N

∞X

τ=−∞

n
ρ2
τ (1 + 2ρ2

1) + ρτ+1ρτ−1 − 4ρ1ρτρτ−1

o

• in practice, this result is unappealing because it requires

− knowledge of theoretical ACS (including the unknown ρ1!)
− ACS to damp down fast, ruling out some processes of interest

• while large sample theory has been worked out for ρ̂1 under
certain conditions, similar theory for other statistics can be
hard to come by
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Alternative Approach – Bootstrapping: I

• if Xt’s were IID, we could apply ‘bootstrapping’ to assess the
variability in ρ̂1, as follows

• consider a time series of length N = 8 that is a realization of a
Gaussian white noise process (ρ1 = 0):

ρ̂1
.
= 0.18
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Alternative Approach – Bootstrapping: I

• if Xt’s were IID, we could apply ‘bootstrapping’ to assess the
variability in ρ̂1, as follows

• consider a time series of length N = 8 that is a realization of a
Gaussian white noise process (ρ1 = 0):

ρ̂1
.
= 0.18

• generate new series by randomly sampling with replacement:

ρ̂
(1)
1

.
= −0.24
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Alternative Approach – Bootstrapping: II

• repeat a large number of times M to get ρ̂
(1)
1 , ρ̂

(2)
1 , . . . , ρ̂

(M)
1

• plots shows estimated probability density function (PDF) for

ρ̂
(1)
1 , ρ̂

(2)
1 , . . . , ρ̂

(100)
1 , along with (a) PDF forN (0, 1

8) and (b) ap-
proximation to the true PDF for ρ̂1

(a)

−1 0 1
0.0

1.3
(b)

−1 0 1

vertical line
indicates ρ̂1

ρ̂(m)
1 ρ̂(m)

1

• can regard sample distribution of {ρ̂(m)
1 } as an approximation

to the unknown distribution of ρ̂1
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Alternative Approach – Bootstrapping: III

• quality of approximation depends upon particular time series

• here are bootstrap approximations to PDF of ρ̂1 based upon
two other time series of length N = 8, along with true PDF

−1 0 1
0.0

1.3

−1 0 1

vertical line
indicates ρ̂1

ρ̂(m)
1 ρ̂(m)

1

• repeating the above for 50 time series yields 50 bootstrap PDFs

• summarize via sample means and standard deviations (SDs):

average of 50 sample means
.
= −0.127 (truth

.
= −0.124)

average of 50 sample SDs
.
= 0.280 (truth

.
= 0.284)
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Bootstrapping Correlated Time Series: I

• key assumption: X contains IID RVs

• if not true (as for most time series!), sample distribution of

{ρ̂(m)
1 } can be a poor approximation to distribution of ρ̂1

• as an example, consider first order autoregressive (AR) process:

Xt = φXt−1 + ≤t,

where φ = 0.9 and {≤t} is zero mean Gaussian white noise

• AR time series of length N = 128 with sample and true ACSs:

0 32 64 96 128
−1

0

1

0 32
−1

0

1

X ρ̂τ , ρτ

t τ
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Bootstrapping Correlated Time Series: II

• use same procedure as before to get ρ̂
(1)
1 , ρ̂

(2)
1 , . . . , ρ̂

(100)
1

• bootstrap approximation to PDF of ρ̂1 along with true PDF:

−1 0 1
0

10

vertical line
indicates ρ̂1

ρ̂(m)
1

• bootstrap approximation gets even worse as N increases

• to correct the problem caused by correlation in time series,
can use specialized time- or frequency-domain bootstrapping
(assuming true ACS damps downs sufficiently fast)
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Parametric Bootstrapping: I

• one well-known time-domain bootstrapping scheme is the para-
metric (or residual) bootstrap

• suppose X is a realization of AR process Xt = φXt−1 + ≤t

• note that var {Xt} = var {≤t}/(1− φ2) and ρτ = φ|τ |

• in particular, ρ1 = φ, so can estimate φ using φ̂ = ρ̂1

• since ≤t = Xt − φXt−1, can form residuals

rt = Xt − φ̂Xt−1, t = 1, . . . , N − 1,

with the idea that rt will be a good approximation to ≤t

• let r
(1)
0 , r

(1)
1 , . . . , r

(1)
N−1 be a random sample from r1, r2, . . . , rN−1

• let X
(1)
0 = r

(1)
0 /(1− φ̂2)1/2 (‘stationary initial condition’)
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Parametric Bootstrapping: II

• form
X

(1)
t = φ̂X

(1)
t−1 + r

(1)
t , t = 1, . . . , N − 1,

yielding the bootstrapped time series X
(1)
0 , X

(1)
1 , . . . , X

(1)
N−1

• AR time series (left-hand plot) and bootstrapped series (right):

0 32 64 96 128
−1

0

1

0 32 64 96 128

X X(1)

• use bootstrapped series to compute ρ̂
(1)
1

• repeat this procedure M times to get ρ̂
(1)
1 , ρ̂

(2)
1 , . . . , ρ̂

(M)
1
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Parametric Bootstrapping: III

• bootstrap approximation to PDF of ρ̂1 along with true PDF:

−1 0 1
0

10

vertical line
indicates ρ̂1

ρ̂(m)
1

• repeating the above for 50 AR time series yields:

average of 50 sample means
.
= 0.83 (truth

.
= 0.86)

average of 50 sample SDs
.
= 0.053 (truth

.
= 0.048)
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Parametric Bootstrapping: IV

• important assumption: X generated by AR process

• to see what happens if assumption fails, consider a fractionally
differenced (FD) process

Xt =
∞X

k=0

Γ(1− δ)

Γ(k + 1)Γ(1− δ − k)
≤t−k,

where δ = 0.45 and {≤t} is zero mean Gaussian white noise

• FD time series of length N = 128 with sample and true ACSs:

0 32 64 96 128
−1

0

1

0 32
−1

0

1

X ρ̂τ , ρτ
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Parametric Bootstrapping: V

• AR process has ‘short-range’ dependence, whereas FD process
exhibits ‘long-range’ (or ‘long-memory’) dependence

• bootstrap approximation to PDF of ρ̂1 along with true PDF:

−1 0 1
0

10

vertical line
indicates ρ̂1

ρ̂(m)
1

• repeating the above for 50 FD time series yields:

average of 50 sample means
.
= 0.49 (truth

.
= 0.53)

average of 50 sample SDs
.
= 0.078 (truth

.
= 0.107)

note: ρ1
.
= 0.82 for this FD process; agreement in SD gets

worse (better) as N increases (decreases)
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Block Bootstrapping: I

• another time-domain approach is block bootstrapping, which
has many variations, of which the following is the simplest

• break time series up into B blocks (subseries) of equal length:

ρ̂1
.
= 0.78
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Block Bootstrapping: I

• another time-domain approach is block bootstrapping, which
has many variations, of which the following is the simplest

• break time series up into B blocks (subseries) of equal length:

ρ̂1
.
= 0.78

• generate bootstrapped AR series by randomly sampling blocks:

ρ̂
(1)
1

.
= 0.63
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Block Bootstrapping: II

• bootstrap approximation to PDF of ρ̂1 along with true PDF:

−1 0 1
0

10

vertical line
indicates ρ̂1

ρ̂(m)
1

• repeating the above for 50 AR time series yields:

average of 50 sample means
.
= 0.75 (truth

.
= 0.86)

average of 50 sample SDs
.
= 0.049 (truth

.
= 0.048)

• repeating the above for 50 FD time series yields:

average of 50 sample means
.
= 0.46 (truth

.
= 0.53)

average of 50 sample SDs
.
= 0.082 (truth

.
= 0.107)
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Frequency-Domain Bootstrapping

• again, many variations, including the following three

• ‘phase scramble’ discrete Fourier transform (DFT)

Xk =
N−1X

t=0

Xte
−i2πkt/N = Ake

iθk

of X and apply inverse DFT to create new series

• periodogram-based bootstrapping: in addition to phase scram-
bling, evoke large sample result that |Ak|’s are approximately
uncorrelated with distribution related to a chi-square RV with
2 degrees of freedom

• circulant embedding bootstrapping: form nonparametric esti-
mate of spectral density function and generate realizations us-
ing circulant embedding (Percival and Constantine, 2006)
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Critique of Time/Frequency-Domain Bootstrapping

• time- and frequency-domain approaches are mainly designed
for series with short-range dependence (e.g., AR) and are prob-
lematic for those exhibiting long-range dependence (e.g., FD)

• parametric and frequency-domain bootstraps work best for se-
ries that obey a Gaussian distribution, but can be problematic
for non-Gaussian series

• non-Gaussian series better handled by block bootstrapping, but
quality of this approach depends critically on chosen size for
blocks (ad hoc rule is to set size close to

√
N)

• room for improvement: will consider wavelet-based approaches
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Overview of Discrete Wavelet Transform (DWT): I

• DWT is an orthonormal transform W that reexpresses a time
series X of length N as a vector of DWT coefficients W:

W = WX,

where W is an N ×N matrix such that X = WTW

• particular W depends on the choice of

− wavelet filter, the most basic of which is the Haar filter
(fancier filters include the Daubechies family of ‘least asym-
metric’ filters of width L – denoted by LA(L), with L = 8
being a popular choice)

− level J0, which determines the number of dyadic scales τj =
2j−1, j = 1, 2, . . . , J0, involved in the transform
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Overview of Discrete Wavelet Transform (DWT): II

• DWT coefficient vector W can be partitioned into J0 sub-
vectors of wavelet coefficients Wj, j = 1, 2, . . . , J0, along with
one sub-vector of scaling coefficients VJ0

• wavelet coefficients in Wj are associated with changes in aver-
ages over a scale of τj, whereas the scaling coefficients in VJ0
are associated with averages over a scale of 2τJ0

• as a concrete example, let’s look at a level J0 = 4 Haar DWT
of the AR time series
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DWT of Autoregressive Process: I

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−1
0
1

0 32 64 96 128
−1
0
1

V4

W4

W3

W2

W1

X

• level J0 = 4 Haar DWT of AR series X
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DWT of Autoregressive Process: II
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DWT of Fractionally Differenced Process

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−1
0
1

0 32 64 96 128
−1
0
1

0 32
−1
0
1

V4

W4

W3

W2

W1

X
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DWT as a Decorrelating Transform

• for many (but not all!) time series, DWT acts as a decorrelating
transform: to a good approximation, each Wj is a sample of a
white noise process, and coefficients from different sub-vectors
Wj and Wj0 are also pairwise uncorrelated

• variance of coefficients in Wj depends on j

• scaling coefficients VJ0
are still autocorrelated, but there will

be just a few of them if J0 is selected to be large

• decorrelating property holds particularly well for FD and other
processes with long-range dependence

• above suggests the following recipe for wavelet-domain boot-
strapping
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Recipe for Wavelet-Domain Bootstrapping

1. given X of length N = 2J , compute level J0 DWT (the choice
J0 = J − 3 yields 8 coefficients in WJ0

and VJ0
)

2. randomly sample with replacement from Wj to create boot-

strapped vector W
(b)
j , j = 1, . . . , J0

3. create V
(b)
J0

using a parametric bootstrap

4. applyWT to W
(b)
1 , . . ., W

(b)
J0

and V
(b)
J0

to obtain bootstrapped

time series X(b) and then form corresponding ρ̂
(b)
1

• repeat above many times to build up sample distribution of
bootstrapped autocorrelations
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Illustration of Wavelet-Domain Bootstrapping
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Wavelet-Domain Bootstrapping of AR Series

• approximations to true PDF using (a) Haar & (b) LA(8) wavelets

(a)

−1 0 1
0

10 (b)

−1 0 1

vertical line
indicates ρ̂1

ρ̂(m)
1 ρ̂(m)

1

• using 50 AR time series and the Haar DWT yields:

average of 50 sample means
.
= 0.67 (truth

.
= 0.86)

average of 50 sample SDs
.
= 0.071 (truth

.
= 0.048)

• using 50 AR time series and the LA(8) DWT yields:

average of 50 sample means
.
= 0.80 (truth

.
= 0.86)

average of 50 sample SDs
.
= 0.055 (truth

.
= 0.048)
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Wavelet-Domain Bootstrapping of FD Series

• approximations to true PDF using (a) Haar & (b) LA(8) wavelets

(a)

−1 0 1
0

10 (b)

−1 0 1

vertical line
indicates ρ̂1

ρ̂(m)
1 ρ̂(m)

1

• using 50 FD time series and the Haar DWT yields:

average of 50 sample means
.
= 0.35 (truth

.
= 0.53)

average of 50 sample SDs
.
= 0.096 (truth

.
= 0.107)

• using 50 FD time series and the LA(8) DWT yields:

average of 50 sample means
.
= 0.43 (truth

.
= 0.53)

average of 50 sample SDs
.
= 0.098 (truth

.
= 0.107)
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Effect of Non-Gaussianity: I

• wavelet-domain bootstrapping works well if we can assume
Gaussianity, but can be problematic if this assumption fails

• for non-Gaussian series, wavelet-domain bootstraps are typi-
cally closer to Gaussianity than original series, which poses a
problem for assessing variability in certain statistics
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Effect of Non-Gaussianity: II

• consider Gaussian white noise Xt and Yt = sign{Xt}×X2
t :
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• right-hand plots show estimated PDFs and true PDFs
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Effect of Non-Gaussianity: III

• wavelet-domain bootstraps of Xt and Yt = sign{Xt}×X2
t :
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• right-hand plots show estimated PDFs and true original PDFs
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Tree-Based Bootstrapping

• to preserve non-Gaussianity, consider using groups (‘trees’) of
wavelet coefficients co-located across small scales as basic sam-
pling unit for bootstrapping at those scales

• wavelet coefficients at large scales treated in same way as in
usual wavelet-domain bootstrap

• scaling coefficients handled using parametric bootstrap

• certain wavelet-based signal denoising schemes for non-Gaussian
noise treat small scales in a special way and large scales in the
same way as in the Gaussian case (see, e.g., Gao, 1997)

• tree-based structuring of wavelet coefficients is key idea behind
denoising using Markov models (Crouse et al., 1998) and notion
of wavelet ‘footprints’ (Dragotti and Vetterli, 2003)
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Illustration of Tree-Based Bootstrapping
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Tree-Based Bootstraps of Non-Gaussian White Noise

• Yt (top row) and j = 1 Haar tree-based bootstrap (bottom)
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• right-hand plots show estimated PDFs and true original PDF
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Tree-Based Bootstraps of Non-Gaussian White Noise

• Yt (top row) and j = 2 Haar tree-based bootstrap (bottom)
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• right-hand plots show estimated PDFs and true original PDF
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Tree-Based Bootstraps of Non-Gaussian White Noise

• Yt (top row) and j = 3 Haar tree-based bootstrap (bottom)
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Tree-Based Bootstraps of Non-Gaussian White Noise

• Yt (top row) and j = 4 Haar tree-based bootstrap (bottom)
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• right-hand plots show estimated PDFs and true original PDF
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Tree-Based Bootstraps of Non-Gaussian White Noise

• Yt (top row) and j = 5 Haar tree-based bootstrap (bottom)
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• right-hand plots show estimated PDFs and true original PDF
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Summary of Computer Experiments

LA(8) j = 2 j = 4
Statistic Process Parm Block DWT Tree Tree True
mean AR 0.86 0.83 0.83 0.84 0.85 0.86

FD 0.58 0.57 0.54 0.55 0.57 0.59
SD AR 0.016 0.021 0.025 0.025 0.024 0.021

FD 0.025 0.042 0.054 0.051 0.055 0.059

• 50 time series of length N = 1024 for each Yt = sign{Xt}×X2
t

• 100 bootstrap samples from each series, yielding 100 unit lag

sample autocorrelations ρ̂
(m)
1

• mean and SD of 100 sample autocorrelations recorded

• table reports averages of these two statistics over 50 time series

• true values based on 100, 000 generated series for each process
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Application to BMW Stock Prices - I
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• right-hand plot: log of daily returns on BMW share prices

• left-hand: nonparametric and Gaussian PDF estimates

• series has small unit lag sample autocorrelation: ρ̂1
.
= 0.081.

• large sample theory appropriate for Gaussian white noise gives
standard deviation of 1/

√
N

.
= 0.013
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Application to BMW Stock Prices - II

• bootstrap estimates of standard deviations:

LA(8) j = 2 j = 4
Parm Block DWT Tree Tree Gaussian

SD est. 0.012 0.016 0.021 0.019 0.019 0.013

• since ρ̂1
.
= 0.081, bootstrap methods all confirm presence of

autocorrelation (small, but presumably exploitable by traders)
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Concluding Remarks

• wavelet-domain & tree-based bootstraps competitive with para-
metric & block bootstraps for series with short-range depen-
dence and offer improvement in case of long-range dependence

• results to date for tree-based bootstrapping encouraging, but
many questions need to be answered, including:

− are there statistics & non-Gaussian series for which tree-
based approach offers more than just a marginal improve-
ment over wavelet-domain approach?

− what are asymptotic properties of tree-based approach?

− how can the tree-based approach be adjusted to handle sta-
tionary processes that are not well decorrelated by the DWT?
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