Wavelet-Based Bootstrapping for Non-Gaussian Time Series

Don Percival

Applied Physics Laboratory
Department of Statistics
University of Washington
Seattle, Washington, USA

overheads for talk available at

http://faculty.washington.edu/dbp/talks.html
Overview

- start with some background on rationale behind bootstrapping
- review parametric and block bootstrapping (two approaches for handling correlated time series)
- review one wavelet-based approach to bootstrapping (Percival, Sardy and Davison, 2001)
- describe a new wavelet-based approach that uses ‘trees’ for resampling and is potentially useful for non-Gaussian time series
- demonstrate methodology on time series related to BMW stock
- conclude with some remarks
Motivating Question

• let $\mathbf{X} = [X_0, \ldots, X_{N-1}]^T$ be a portion of a stationary process with autocorrelation sequence (ACS)

$$\rho_{\tau} \equiv \frac{s_{\tau}}{s_0}, \text{ where } s_{\tau} \equiv \text{cov} \{X_t, X_{t+\tau}\} \text{ and } s_0 = \text{var} \{X_t\}$$

• given a time series, we can estimate its ACS at $\tau = 1$ using

$$\hat{\rho}_1 \equiv \frac{\sum_{t=0}^{N-2}(X_t - \overline{X})(X_{t+1} - \overline{X})}{\sum_{t=0}^{N-1}(X_t - \overline{X})^2}, \text{ where } \overline{X} = \frac{1}{N} \sum_{t=0}^{N-1} X_t$$

• Q: given the amount of data N we have, how close can we expect $\hat{\rho}_1$ to be to the true unknown ρ_1?

• i.e., how can we assess the sampling variability in $\hat{\rho}_1$?
Classic Approach – Large Sample Theory

- let $\mathcal{N}(\mu, \sigma^2)$ denote a Gaussian (normal) random variable (RV) with mean μ and variance σ^2
- under suitable conditions (see, e.g., Fuller, 1996), $\hat{\rho}_1$ is close to the distribution of $\mathcal{N}(\rho_1, \sigma_N^2)$ as $N \to \infty$, where
 \[\sigma_N^2 \equiv \frac{1}{N} \sum_{\tau=-\infty}^{\infty} \left\{ \rho_\tau^2 \left(1 + 2\rho_1^2 \right) + \rho_{\tau+1}\rho_{\tau-1} - 4\rho_1\rho_\tau\rho_{\tau-1} \right\} \]
- in practice, this result is unappealing because it requires
 - knowledge of theoretical ACS
 - ACS to damp down fast, ruling out some processes of interest
- while large sample theory has been worked out for $\hat{\rho}_1$ under certain conditions, similar theory for other statistics can be hard to come by
Alternative Approach – Bootstrapping: I

• if X_t’s were IID, we could apply ‘bootstrapping’ to assess the variability in $\hat{\rho}_1$, as follows

• consider a time series of length $N = 8$ that is a realization of a Gaussian white noise process ($\rho_1 = 0$):

\[\hat{\rho}_1 \equiv 0.18 \]
Alternative Approach – Bootstrapping: I

- If X_t’s were IID, we could apply ‘bootstrapping’ to assess the variability in $\hat{\rho}_1$, as follows

- Consider a time series of length $N = 8$ that is a realization of a Gaussian white noise process ($\rho_1 = 0$):

 \[\hat{\rho}_1 \approx 0.18 \]

- Generate new series by randomly sampling with replacement:
Alternative Approach – Bootstrapping: I

• if X_t’s were IID, we could apply ‘bootstrapping’ to assess the variability in $\hat{\rho}_1$, as follows

• consider a time series of length $N = 8$ that is a realization of a Gaussian white noise process ($\rho_1 = 0$):

\[\hat{\rho}_1 \approx 0.18 \]

• generate new series by randomly sampling with replacement:
Alternative Approach – Bootstrapping: I

- If X_t’s were IID, we could apply ‘bootstrapping’ to assess the variability in $\hat{\rho}_1$, as follows

- Consider a time series of length $N = 8$ that is a realization of a Gaussian white noise process ($\rho_1 = 0$):

\[\hat{\rho}_1 \approx 0.18 \]

- Generate new series by randomly sampling with replacement:
Alternative Approach – Bootstrapping: I

- if X_t’s were IID, we could apply ‘bootstrapping’ to assess the variability in $\hat{\rho}_1$, as follows
- consider a time series of length $N = 8$ that is a realization of a Gaussian white noise process ($\rho_1 = 0$):

 $\hat{\rho}_1 \doteq 0.18$

- generate new series by randomly sampling with replacement:
Alternative Approach – Bootstrapping: I

• if X_t’s were IID, we could apply ‘bootstrapping’ to assess the variability in $\hat{\rho}_1$, as follows

• consider a time series of length $N = 8$ that is a realization of a Gaussian white noise process ($\rho_1 = 0$):

\[
\hat{\rho}_1 \approx 0.18
\]

• generate new series by randomly sampling with replacement:

\[
\hat{\rho}_1 \approx 0.18
\]
Alternative Approach – Bootstrapping: I

- if X_t’s were IID, we could apply ‘bootstrapping’ to assess the variability in $\hat{\rho}_1$, as follows
- consider a time series of length $N = 8$ that is a realization of a Gaussian white noise process ($\rho_1 = 0$):

\begin{align*}
\hat{\rho}_1 &\doteq 0.18
\end{align*}

- generate new series by randomly sampling with replacement:
Alternative Approach – Bootstrapping: I

• if X_t’s were IID, we could apply ‘bootstrapping’ to assess the variability in $\hat{\rho}_1$, as follows

• consider a time series of length $N = 8$ that is a realization of a Gaussian white noise process ($\rho_1 = 0$):

\[
\hat{\rho}_1 \doteq 0.18
\]

• generate new series by randomly sampling with replacement:
Alternative Approach – Bootstrapping: I

- if X_t’s were IID, we could apply ‘bootstrapping’ to assess the variability in $\hat{\rho}_1$, as follows

- consider a time series of length $N = 8$ that is a realization of a Gaussian white noise process ($\rho_1 = 0$):

 \[K_{\rho U d \rho U} \]

 \[\hat{\rho}_1 \doteq 0.18 \]

- generate new series by randomly sampling with replacement:

 \[\hat{\rho}_1^{(1)} \doteq -0.24 \]
Alternative Approach – Bootstrapping: II

- repeat a large number of times \(M \) to get \(\hat{\rho}_1^{(1)}, \hat{\rho}_1^{(2)}, \ldots, \hat{\rho}_1^{(M)} \)

- plots show estimated probability density function (PDF) for \(\hat{\rho}_1^{(1)}, \hat{\rho}_1^{(2)}, \ldots, \hat{\rho}_1^{(100)} \), along with (a) PDF for \(\mathcal{N}(0, \frac{1}{8}) \) and (b) approximation to the true PDF for \(\hat{\rho}_1 \)

- can regard sample distribution of \(\{\hat{\rho}_1^{(m)}\} \) as an approximation to the unknown distribution of \(\hat{\rho}_1 \)
Alternative Approach – Bootstrapping: III

• quality of approximation depends upon particular time series
• here are bootstrap approximations to PDF of $\hat{\rho}_1$ based upon two other time series of length $N = 8$, along with true PDF

![Graph](image)

• repeating the above for 50 time series yields 50 bootstrap PDFs
• summarize via sample means and standard deviations (SDs):

 average of 50 sample means $\doteq -0.127$ (truth $\doteq -0.124$)
 \[\text{average of 50 sample SDs} \doteq 0.280 \quad (\text{truth} \doteq 0.284) \]
Bootstrapping Correlated Time Series: I

- key assumption: \mathbf{X} contains IID RVs
- if not true (as for most time series!), sample distribution of $\{\hat{\rho}_1^{(m)}\}$ can be a poor approximation to distribution of $\hat{\rho}_1$
- as an example, consider first order autoregressive (AR) process:
 \[X_t = \phi X_{t-1} + \epsilon_t, \]
 where $\phi = 0.9$ and $\{\epsilon_t\}$ is zero mean Gaussian white noise
- AR time series of length $N = 128$ with sample and true ACSs:
Bootstrapping Correlated Time Series: II

- use same procedure as before to get $\hat{\rho}_1^{(1)}, \hat{\rho}_1^{(2)}, \ldots, \hat{\rho}_1^{(100)}$
- bootstrap approximation to PDF of $\hat{\rho}_1$ along with true PDF:

![Graph](image)

- bootstrap approximation gets even worse as N increases
- to correct the problem caused by correlation in time series, can use specialized time- or frequency-domain bootstrapping (assuming true ACS damps downs sufficiently fast)
Parametric Bootstrapping: I

• one well-known time-domain bootstrapping scheme is the parametric (or residual) bootstrap

• suppose X is a realization of AR process $X_t = \phi X_{t-1} + \epsilon_t$

• note that $\text{var} \{X_t\} = \text{var} \{\epsilon_t\}/(1 - \phi^2)$ and $\rho_\tau = \phi^{|\tau|}$

• in particular, $\rho_1 = \phi$, so can estimate ϕ using $\hat{\phi} \equiv \hat{\rho}_1$

• since $\epsilon_t = X_t - \phi X_{t-1}$, can form residuals

$$r_t = X_t - \hat{\phi}X_{t-1}, \quad t = 1, \ldots, N - 1,$$

with the idea that r_t will be a good approximation to ϵ_t

• let $r_0^{(1)}, r_1^{(1)}, \ldots, r_{N-1}^{(1)}$ be a random sample from $r_1, r_2, \ldots, r_{N-1}$

• let $X_0^{(1)} = r_0^{(1)}/(1 - \hat{\phi}^2)^{1/2}$ (‘stationary initial condition’)

10
Parametric Bootstrapping: II

- form
 \[X_t^{(1)} = \hat{\phi}X_{t-1}^{(1)} + r_t^{(1)}, \quad t = 1, \ldots, N - 1, \]
yielding the bootstrapped time series \(X_0^{(1)}, X_1^{(1)}, \ldots, X_{N-1}^{(1)} \).

- AR time series (left-hand plot) and bootstrapped series (right):

- use bootstrapped series to compute \(\hat{\rho}_1^{(1)} \)

- repeat this procedure \(M \) times to get \(\hat{\rho}_1^{(1)}, \hat{\rho}_1^{(2)}, \ldots, \hat{\rho}_1^{(M)} \)
Parametric Bootstrapping: III

- bootstrap approximation to PDF of $\hat{\rho}_1$ along with true PDF:

- repeating the above for 50 AR time series yields:

 average of 50 sample means $\hat{=} 0.83$ (truth $\hat{=} 0.86$)
 average of 50 sample SDs $\hat{=} 0.053$ (truth $\hat{=} 0.048$)
Parametric Bootstrapping: IV

- important assumption: \(X \) generated by AR process
- to see what happens if assumption fails, consider a fractionally differenced (FD) process

\[
X_t = \sum_{k=0}^{\infty} \frac{\Gamma(1 - \delta)}{\Gamma(k + 1) \Gamma(1 - \delta - k)} \epsilon_{t-k},
\]

where \(\delta = 0.45 \) and \(\{\epsilon_t\} \) is zero mean Gaussian white noise
- FD time series of length \(N = 128 \) with sample and true ACSs:
Parametric Bootstrapping: V

- AR process has ‘short-range’ dependence, whereas FD process exhibits ‘long-range’ (or ‘long-memory’) dependence
- bootstrap approximation to PDF of $\hat{\rho}_1$ along with true PDF:

![Graph showing bootstrap approximation to PDF of $\hat{\rho}_1$ along with true PDF.]

- repeating the above for 50 FD time series yields:

 average of 50 sample means $\hat{\mu} = 0.49$ \hspace{1em} (truth $\mu = 0.53$)

 average of 50 sample SDs $\hat{\sigma} = 0.078$ \hspace{1em} (truth $\sigma = 0.107$)

 note: $\rho_1 \approx 0.82$ for this FD process; agreement in SD gets worse (better) as N increases (decreases)
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

$$\hat{\rho}_1 \doteq 0.78$$
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

$$\hat{\rho}_1 \approx 0.78$$

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

 $\hat{\rho}_1 \doteq 0.78$

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest.
- break time series up into B blocks (subseries) of equal length:

$$\hat{\rho}_1 \doteq 0.78$$

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

\[
\hat{\rho}_1 = 0.78
\]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

\[
\hat{\rho}_1 \doteq 0.78
\]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

\[\hat{\rho}_1 \approx 0.78 \]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

\[\hat{\rho}_1 \approx 0.78 \]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest.
- break time series up into B blocks (subseries) of equal length:

\[\hat{\rho}_1 \approx 0.78 \]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

\[
\hat{\rho}_1 \doteq 0.78
\]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest.
- break time series up into B blocks (subseries) of equal length:

\[
\hat{\rho}_1 \doteq 0.78
\]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

\[
\hat{\rho}_1 \approx 0.78
\]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

\[
\hat{\rho}_1 \approx 0.78
\]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

\[\hat{\rho}_1 \approx 0.78 \]

- generate bootstrapped AR series by randomly sampling blocks:
• another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest

• break time series up into B blocks (subseries) of equal length:

\[
\hat{\rho}_1 \doteq 0.78
\]

• generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

- another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest
- break time series up into B blocks (subseries) of equal length:

 \[\hat{\rho}_1 \doteq 0.78 \]

- generate bootstrapped AR series by randomly sampling blocks:
Block Bootstrapping: I

• another time-domain approach is block bootstrapping, which has many variations, of which the following is the simplest

• break time series up into B blocks (subseries) of equal length:

\[
\hat{\rho}_1 \doteq 0.78
\]

• generate bootstrapped AR series by randomly sampling blocks:

\[
\hat{\rho}_1^{(1)} \doteq 0.63
\]
Block Bootstrapping: II

- bootstrap approximation to PDF of $\hat{\rho}_1$ along with true PDF:

\[\hat{\rho}_1^{(m)} \]

vertical line indicates $\hat{\rho}_1$

- repeating the above for 50 AR time series yields:

 average of 50 sample means $\hat{=} 0.75$ (truth $\hat{=} 0.86$)
 average of 50 sample SDs $\hat{=} 0.049$ (truth $\hat{=} 0.048$)

- repeating the above for 50 FD time series yields:

 average of 50 sample means $\hat{=} 0.46$ (truth $\hat{=} 0.53$)
 average of 50 sample SDs $\hat{=} 0.082$ (truth $\hat{=} 0.107$)
Frequency-Domain Bootstrapping

• again, many variations, including the following three

• ‘phase scramble’ discrete Fourier transform (DFT)

\[
\hat{X}_k = \sum_{t=0}^{N-1} X_t e^{-i2\pi kt/N} = A_k e^{i\theta_k}
\]

of \(X\) and apply inverse DFT to create new series

• periodogram-based bootstrapping: in addition to phase scrambling, evoke large sample result that \(|A_k|’s\) are approximately uncorrelated with distribution related to a chi-square RV with 2 degrees of freedom

• circulant embedding bootstrapping: form nonparametric estimate of spectral density function and generate realizations using circulant embedding
Critique of Time/Frequency-Domain Bootstrapping

• time- and frequency-domain approaches are mainly designed for series with short-range dependence (e.g., AR) and are problematic for those exhibiting long-range dependence (e.g., FD)

• parametric and frequency-domain bootstraps work best for series that obey a Gaussian distribution, but can be problematic for non-Gaussian series

• non-Gaussian series better handled by block bootstrapping, but quality of this approach depends critically on chosen size for blocks (*ad hoc rule* is to set size close to \sqrt{N})

• room for improvement: will consider wavelet-based approaches
Overview of Discrete Wavelet Transform (DWT): I

- DWT is an orthonormal transform \(\mathcal{W} \) that reexpresses a time series \(\mathbf{X} \) of length \(N \) as a vector of DWT coefficients \(\mathbf{W} \):

 \[
 \mathbf{W} = \mathcal{W} \mathbf{X},
 \]

 where \(\mathcal{W} \) is an \(N \times N \) matrix such that \(\mathbf{X} = \mathcal{W}^T \mathbf{W} \)

- particular \(\mathcal{W} \) depends on the choice of

 - wavelet filter, the most basic of which is the Haar filter (fancier filters include the Daubechies family of ‘least asymmetric’ filters of width \(L \) – denoted by LA\((L) \), with \(L = 8 \) being a popular choice)

 - level \(J_0 \), which determines the number of dyadic scales \(\tau_j = 2^{j-1}, j = 1, 2, \ldots, J_0 \), involved in the transform
Overview of Discrete Wavelet Transform (DWT): II

• DWT coefficient vector \mathbf{W} can be partitioned into J_0 sub-vectors of wavelet coefficients $\mathbf{W}_j, j = 1, 2, \ldots, J_0$, along with one sub-vector of scaling coefficients \mathbf{V}_{J_0}

• wavelet coefficients in \mathbf{W}_j are associated with changes in averages over a scale of τ_j, whereas the scaling coefficients in \mathbf{V}_{J_0} are associated with averages over a scale of $2\tau_{J_0}$

• as a concrete example, let’s look at a level $J_0 = 4$ Haar DWT of the AR time series
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $\tau_1 = 1$ wavelet coefficient highlighted
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series \mathbf{X}, with scale $\tau_1 = 1$ wavelet coefficient highlighted
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $\tau_2 = 2$ wavelet coefficient highlighted
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $\tau_2 = 2$ wavelet coefficient highlighted
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $\tau_4 = 8$ wavelet coefficient highlighted
level $J_0 = 4$ Haar DWT of AR series X, with scale $\tau_4 = 8$ wavelet coefficient highlighted
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $2 \times \tau_4 = 16$ scaling coefficient highlighted
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $2 \times \tau_4 = 16$ scaling coefficient highlighted.
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $2 \times \tau_4 = 16$ scaling coefficient highlighted
level $J_0 = 4$ Haar DWT of AR series X, with scale $2 \times \tau_4 = 16$ scaling coefficient highlighted
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $2 \times \tau_4 = 16$ scaling coefficient highlighted
level $J_0 = 4$ Haar DWT of AR series X, with scale $2 \times \tau_4 = 16$ scaling coefficient highlighted
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $2 \times \tau_4 = 16$ scaling coefficient highlighted
DWT of Autoregressive Process: I

- level $J_0 = 4$ Haar DWT of AR series X, with scale $2 \times \tau_4 = 16$
 scaling coefficient highlighted
• Haar DWT of AR series X and sample ACSs for each W_j & V_4, along with 95% confidence intervals for white noise
DWT of Fractionally Differenced Process

- Haar DWT of FD series X and sample ACSs for each W_j & V_4, along with 95% confidence intervals for white noise
DWT as a Decorrelating Transform

• for many (but not all!) time series, DWT acts as a decorrelating transform: to a good approximation, each \(\mathbf{W}_j \) is a sample of a white noise process, and coefficients from different sub-vectors \(\mathbf{W}_j \) and \(\mathbf{W}_{j'} \) are also pairwise uncorrelated

• variance of coefficients in \(\mathbf{W}_j \) depends on \(j \)

• scaling coefficients \(\mathbf{V}_{J_0} \) are still autocorrelated, but there will be just a few of them if \(J_0 \) is selected to be large

• decorrelating property holds particularly well for FD and other processes with long-range dependence

• above suggests the following recipe for wavelet-domain bootstrapping
Recipe for Wavelet-Domain Bootstrapping

1. given \mathbf{X} of length $N = 2^J$, compute level J_0 DWT (the choice $J_0 = J - 3$ yields 8 coefficients in \mathbf{W}_{J_0} and \mathbf{V}_{J_0})

2. randomly sample with replacement from \mathbf{W}_j to create bootstrapped vector $\mathbf{W}_{j}^{(b)}$, $j = 1, \ldots, J_0$

3. create $\mathbf{V}_{J_0}^{(b)}$ using a parametric bootstrap

4. apply \mathcal{W}^T to $\mathbf{W}_1^{(b)}, \ldots, \mathbf{W}_{J_0}^{(b)}$ and $\mathbf{V}_{J_0}^{(b)}$ to obtain bootstrapped time series $\mathbf{X}^{(b)}$ and then form corresponding $\hat{\rho}_1^{(b)}$

• repeat above many times to build up sample distribution of bootstrapped autocorrelations
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series \(X \) (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series \(X\) (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series \(\mathbf{X} \) (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
• Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
- Haar DWT of FD(0.45) series \(X \) (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series \mathbf{X} (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series \(\mathbf{X} \) (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series \mathbf{X} (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series \(X \) (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series \(X \) (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and wavelet-domain bootstrap thereof (right-hand)
Wavelet-Domain Bootstrapping of AR Series

- approximations to true PDF using (a) Haar & (b) LA(8) wavelets

![Graphs showing approximations](image)

- using 50 AR time series and the Haar DWT yields:
 - average of 50 sample means \(\hat{\rho}_1 \approx 0.67 \) (truth \(\approx 0.86 \))
 - average of 50 sample SDs \(\hat{\sigma} \approx 0.071 \) (truth \(\approx 0.048 \))

- using 50 AR time series and the LA(8) DWT yields:
 - average of 50 sample means \(\hat{\rho}_1 \approx 0.80 \) (truth \(\approx 0.86 \))
 - average of 50 sample SDs \(\hat{\sigma} \approx 0.055 \) (truth \(\approx 0.048 \))
Wavelet-Domain Bootstrapping of FD Series

• approximations to true PDF using (a) Haar & (b) LA(8) wavelets

![Wavelet-Domain Bootstrapping of FD Series](image)

vertical line indicates $\hat{\rho}_1$

• using 50 FD time series and the Haar DWT yields:
 average of 50 sample means $\hat{=} 0.35$ (truth $\hat{=} 0.53$)
 average of 50 sample SDs $\hat{=} 0.096$ (truth $\hat{=} 0.107$)

• using 50 FD time series and the LA(8) DWT yields:
 average of 50 sample means $\hat{=} 0.43$ (truth $\hat{=} 0.53$)
 average of 50 sample SDs $\hat{=} 0.098$ (truth $\hat{=} 0.107$)
Effect of Non-Gaussianity: I

• wavelet-domain bootstrapping works well if we can assume Gaussianity, but can be problematic if this assumption fails

• for non-Gaussian series, wavelet-domain bootstraps are typically closer to Gaussianity than original series, which poses a problem for assessing variability in certain statistics
Effect of Non-Gaussianity: II

- consider Gaussian white noise X_t and $Y_t = \text{sign}\{X_t\} \times X_t^2$:

- right-hand plots show estimated PDFs and true PDFs
Effect of Non-Gaussianity: III

- wavelet-domain bootstraps of X_t and $Y_t = \text{sign}\{X_t\} \times X_t^2$:

- right-hand plots show estimated PDFs and true original PDFs
Tree-Based Bootstrapping

• to preserve non-Gaussianity, consider using groups (‘trees’) of wavelet coefficients co-located across small scales as basic sampling unit for bootstrapping at those scales

• wavelet coefficients at large scales treated in same way as in usual wavelet-domain bootstrap

• scaling coefficients handled using parametric bootstrap

• certain wavelet-based signal denoising schemes for non-Gaussian noise treat small scales in a special way and large scales in the same way as in the Gaussian case (see, e.g., Gao, 1997)

• tree-based structuring of wavelet coefficients is key idea behind denoising using Markov models (Crouse et al., 1998) and notion of wavelet ‘footprints’ (Dragotti and Vetterli, 2003)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
• Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
• Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level \(j = 3 \) tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series \(X \) (left-hand column) and level \(j = 3 \) tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series \mathbf{X} (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Illustration of Tree-Based Bootstrapping

- Haar DWT of FD(0.45) series X (left-hand column) and level $j = 3$ tree-based bootstrap thereof (right-hand)
Tree-Based Bootstraps of Non-Gaussian White Noise

- Y_t (top row) and $j = 1$ Haar tree-based bootstrap (bottom)

- right-hand plots show estimated PDFs and true original PDF
Tree-Based Bootstraps of Non-Gaussian White Noise

• Y_t (top row) and $j = 2$ Haar tree-based bootstrap (bottom)

• right-hand plots show estimated PDFs and true original PDF
Tree-Based Bootstraps of Non-Gaussian White Noise

- Y_t (top row) and $j = 3$ Haar tree-based bootstrap (bottom)

- right-hand plots show estimated PDFs and true original PDF
Tree-Based Bootstraps of Non-Gaussian White Noise

- Y_t (top row) and $j = 4$ Haar tree-based bootstrap (bottom)

- right-hand plots show estimated PDFs and true original PDF
Tree-Based Bootstraps of Non-Gaussian White Noise

- Y_t (top row) and $j = 5$ Haar tree-based bootstrap (bottom)

- right-hand plots show estimated PDFs and true original PDF
Summary of Computer Experiments

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Process</th>
<th>LA(8) $j = 2$</th>
<th>LA(8) $j = 4$</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parm</td>
<td>Block</td>
<td>DWT</td>
<td>Tree</td>
</tr>
<tr>
<td>mean</td>
<td>AR</td>
<td>0.86</td>
<td>0.83</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>FD</td>
<td>0.58</td>
<td>0.57</td>
<td>0.54</td>
</tr>
<tr>
<td>SD</td>
<td>AR</td>
<td>0.016</td>
<td>0.021</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>FD</td>
<td>0.025</td>
<td>0.042</td>
<td>0.054</td>
</tr>
</tbody>
</table>

- 50 time series of length $N = 1024$ for each $Y_t = \text{sign}\{X_t\} \times X_t^2$
- 100 bootstrap samples from each series, yielding 100 unit lag sample autocorrelations $\hat{\rho}_1^{(m)}$
- mean and SD of 100 sample autocorrelations recorded
- table reports averages of these two statistics over 50 time series
- true values based on 100,000 generated series for each process
Application to BMW Stock Prices - I

- right-hand plot: log of daily returns on BMW share prices
- left-hand: nonparametric and Gaussian PDF estimates
- series has small unit lag sample autocorrelation: $\hat{\rho}_1 \doteq 0.081$.
- large sample theory appropriate for Gaussian white noise gives standard deviation of $1/\sqrt{N} \doteq 0.013$
Application to BMW Stock Prices - II

- bootstrap estimates of standard deviations:

<table>
<thead>
<tr>
<th>LA(8) j = 2</th>
<th>j = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parm</td>
<td>Block</td>
</tr>
<tr>
<td>SD est.</td>
<td>0.012</td>
</tr>
</tbody>
</table>

- since $\hat{\rho}_1 = 0.081$, bootstrap methods all confirm presence of autocorrelation (small, but presumably exploitable by traders)
Concluding Remarks

• wavelet-domain & tree-based bootstraps competitive with parametric & block bootstraps for series with short-range dependence and offer improvement in case of long-range dependence
• results to date for tree-based bootstrapping encouraging, but many questions need to be answered, including:
 – are there statistics & non-Gaussian series for which tree-based approach offers more than just a marginal improvement over wavelet-domain approach?
 – what are asymptotic properties of tree-based approach?
 – how can the tree-based approach be adjusted to handle stationary processes that are not well decorrelated by the DWT?
• thanks to conference organizers for opportunity to speak!
References: I

References: II

References: III

• B. J Whitcher (2006), ‘Wavelet-Based Bootstrapping of Spatial Patterns on a Finite Lattice,’ Computational Statistics & Data Analysis 50(9), pp. 2399–421