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Abstract – Current methods for power spectrum estimation by wavelet thresholding use the em-

pirical wavelet coefficients derived from the log periodogram. Unfortunately, the periodogram is a

very poor estimate when the true spectrum has a high dynamic range and/or is rapidly varying.

Also, because the distribution of the log periodogram is markedly non-Gaussian, special wavelet-

dependent thresholding schemes are needed. These difficulties can be bypassed by starting with a

multitaper spectrum estimator. The logarithm of this estimator is close to Gaussian distributed if

a moderate number (≥ 5) of tapers are used. In contrast to the log periodogram, log multitaper

estimates are not approximately pairwise uncorrelated at the Fourier frequencies, but the form of

the correlation can be accurately and simply approximated. For scale-independent thresholding the

correlation acts in accordance with the wavelet shrinkage paradigm to suppress small scale ‘noise

spikes’ while leaving informative coarse scale coefficients relatively unattenuated. This simple ap-

proach to spectrum estimation is demonstrated to work very well in practice. Additionally, the

progression of the variance of wavelet coefficients with scale can be accurately calculated, allowing

the use of scale-dependent thresholds. This more involved approach also works well in practice,

but is not uniformly preferable to the scale-independent approach.
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I. INTRODUCTION

Let {Xt} be a discrete, real-valued stationary process with power spectrum (spectral density)

S. Given a time series that can be regarded as a realization of a finite portion X1, . . . , XN of this

process, we consider the problem of estimating S. A large number of nonparametric and parametric

spectrum estimators has been studied as solutions to this problem (see, e.g., [16,18,19] and references

therein), but, due to the rich variety of spectra found in practical applications, estimators are usually

designed for a restricted subclass of spectra and can exhibit poor performance on spectra outside

of that subclass. Recently there has been interest in tackling spectrum estimation by using wavelet

thresholding techniques to produce a smooth estimate of the logarithm of the power spectrum. The

appeal of wavelet thresholding is that it has been shown to have desirable minimax properties for

function estimation over a broad classes of functions and to automatically adapt to the smoothness

properties of the underlying function [3,4,9]. In the context of spectrum estimation, the basic idea,

as discussed by Gao [6,7] and Moulin [14], consists of four basic steps:

(i) Calculate the logarithm of the periodogram 1
N

∣∣∣∑N
t=1Xte

−i2πft
∣∣∣2 at f = j/N , j = 1, . . . , N/2.

(ii) Apply a standard, periodic, partial discrete wavelet transform (DWT) out to level q0 to the

log periodogram ordinates, where q0 is specified in advance.

(iii) Apply a thresholding procedure to the resulting empirical wavelet coefficients (leaving the

remaining empirical scaling coefficients entirely alone).

(iv) Invert the partial DWT, producing a hopefully smooth estimate of the log spectrum.

Clearly, without (iii), this procedure would leave the log periodogram unmodified. Thresholding is

thus a key step and is based on representing the log periodogram as a ‘signal’ plus ‘noise,’ where the

signal is the true spectrum. Hence, the procedure falls in the class of wavelet shrinkage estimates

for noisy data: when the noise has a Gaussian distribution, Donoho and Johnstone [3] proposed a

simple level-independent ‘universal’ threshold.

There are three main problems with the above procedure. First, the noise is log χ2
2 distributed

and hence markedly non-Gaussian so that one cannot use simple Gaussian-based thresholds in

the wavelet-shrinkage scheme. This problem has been addressed in Gao [6,7] and Moulin [14]

by developing special threshold levels that depend on scale and wavelet. Second, independent of

wavelet thresholding, the periodogram can be a very poor spectrum estimate because of substantial

bias due to sidelobe leakage. Third, use of the standard partial DWT out to level q0 with the

periodogram requires the restrictive assumption that the sample size N is a multiple of 2q0 .
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To eliminate problems due to the periodogram, we must start with a better log spectrum

estimator. A well-known procedure for alleviating bias due to leakage in the periodogram is to

apply a data taper (window) to the time series prior to computing the spectrum estimator, resulting

in a so-called direct spectrum estimator. A direct spectrum estimator has better small sample bias

properties than the periodogram, but, when subsequently smoothed across frequencies, has an

asymptotic variance larger than that of a smoothed periodogram. The idea behind the multitaper

spectrum estimator is to reduce this variance by computing a small number K of direct spectrum

estimators, each with a different data taper, and then to average the K estimators together. If all

K tapers are pairwise orthogonal and properly designed to prevent leakage, the resulting multitaper

estimator will be superior to the periodogram in terms of reduced bias and variance, particularly

for spectra with high dynamic range and/or rapid variations. Multitapering has been successfully

used to study, e.g., the relationship between carbon dioxide and global temperature [11], turbulent

plasma fluctuations [20] and heights of ocean waves [22]. Extensive discussion and background

information on multitapering can be found in [21] and [18, Chapter 7].

In the present context, if we replace the log periodogram with the log of a multitaper spectrum

estimator using K tapers, then the noise distribution is of log χ2
2K form, which is approximately

Gaussian for moderate choice of K. Hence this choice of spectrum estimator largely avoids the

problem of the non-Gaussianity of the noise, but the noise will now be correlated at the Fourier

frequencies. This paper studies the nature of this correlation and shows how it can be handled in

both scale-independent and scale-dependent wavelet thresholding to produce attractive practical

spectrum estimators (in particular, the restriction on the sample size is eliminated).

In Section II we discuss multitapering and point out that the log of the spectrum estimator

has close to a Gaussian distribution for five or more tapers. The covariance of the logarithm of the

multitaper spectrum estimator is also derived. In Section III, after establishing notation for the

DWT, we consider its application to the log of the multitaper spectrum estimator. The concepts of

wavelet shrinkage and scale-independent thresholding are discussed. Scale-dependent thresholding

requires an understanding of the scale-dependent variance of the wavelet coefficients; we show that

these variances are easy to compute and in fact increase with scale. Also in Section III a two-sided

log multitaper spectrum estimator is introduced, and a summary of our proposed algorithm is

given. Results of extensive simulation studies are reported in Section IV using four very different

processes previously proposed in the literature as representative test cases. These show that wavelet

thresholding of log multitaper spectrum estimates gives better results than previously reported
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in [6,7,14] using the log periodogram. Section V gives our conclusions and some areas for future

research.

II. MULTITAPERING

A. Basics

We assume for convenience that {Xt} has zero mean. Given the sample X1, . . . , XN , a

multitaper spectrum estimator [21] utilizes several different data tapers, the kth of which is denoted

{ht,k : t = 1, . . . , N}. These tapers are chosen to be orthonormal:
∑

t ht,jht,k = 0 if j �= k and

= 1 if j = k. The multitaper spectrum estimator is the average of K direct spectral estimators

(eigenspectra) and hence takes the form

Ŝ(mt)(f) ≡ 1
K

K−1∑
k=0

Ŝ
(mt)
k (f) with Ŝ

(mt)
k (f) ≡

∣∣∣∣∣
N∑

t=1

ht,kXte
−i2πft

∣∣∣∣∣
2

. (1)

Each taper {ht,k} has an associated spectral window Hk(f) ≡
∣∣∣∑N

t=1 ht,k exp(−i2πft)
∣∣∣2, and the

overall spectral window H(f) is the average of the individual Hk(f)’s. If the spectrum is not rapidly

varying over the effective bandwidth of H(f), the eigenspectra are approximately uncorrelated,

which in turn yields the approximation

v(f) ≡ Ŝ(mt)(f)
S(f)

∼ χ2
2K

2K
, 0 < f < 1/2 (2)

(see, e.g., [18, p. 360]). A convenient set of easily computable orthonormal tapers is the set of the

sine tapers, the kth of which is given by

ht,k =
{

2
N + 1

}1/2

sin
{

(k + 1)πt
N + 1

}
, t = 1, . . . , N. (3)

These tapers were introduced by Riedel and Sidorenko [20] and are used henceforth.

Assuming (2), it follows from Bartlett and Kendall [1] that E{log v(f)} = ψ(K) − logK and

var{log v(f)} = ψ′(K), where ψ(·) and ψ′(·) denote, respectively, the digamma and trigamma

functions. Comparison of the distribution of log v(f) with a normal distribution having the same

mean and variance shows very good agreement for K ≥ 5 [1]. Hence, provided K is at least 5, the

random variable

η(f) ≡ log v(f) − ψ(K) + logK

is approximately Gaussian distributed with mean 0 and variance σ2
η = ψ′(K). If we let

Y (f) ≡ log Ŝ(mt)(f) − ψ(K) + logK, (4)
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then we have

Y (f) = logS(f) + η(f); (5)

i.e., the log multitaper estimator (plus a known constant) can be written as a signal (the true log

spectrum) plus approximately Gaussian noise with zero mean and known variance σ2
η. If we now

evaluate (5) over a grid of equally spaced frequencies, the resulting model is close to the model

usually assumed for wavelet thresholding, with the important exception that the error terms need

not be uncorrelated. To see how this correlation affects thresholding, we must first consider the

covariance structure of η(f) across frequencies.

B. Covariance of Log of Multitaper Spectrum Estimator

For a fixed f and ν such that 0 < f < 1/2 and 0 < f + ν < 1/2, let us define

sη(ν) ≡ cov{η(f), η(f + ν)} = cov{log v(f), log v(f + ν)}.

If log v(f) and log v(f + ν) were exactly bivariate normal, we would have

cov{log v(f), log v(f + ν)} = log (1 + cov{v(f), v(f + ν)})

[8, Section 3.7]; since log v(f) and log v(f + ν) are approximately so, we can take the above to be

a reasonable approximation, and hence sη(ν) ≈ log (1 + sv(ν)), where sv(ν) ≡ cov{v(f), v(f + ν)}.
Under the assumption that S(f) ≈ S(f + ν) for small ν, we have

sv(ν) ≈ 1
K2S2(f)

K−1∑
k=0

K−1∑
l=0

cov
{
Ŝ

(mt)
k (f), Ŝ(mt)

l (f + ν)
}
.

Under the same assumption on S, Thomson [21, p. 1069] showed that

cov
{
Ŝ

(mt)
k (f), Ŝ(mt)

l (f + ν)
}
≈ S2(f)

∣∣∣∣∣
N∑

t=1

ht,kht,le
i2πνt

∣∣∣∣∣
2

,

an approximation that neglects a frequency dependent term that is only significant for f close to 0

or 1/2. Hence, we have

sv(ν) ≈ s̃v(ν) ≡ 1
K2

K−1∑
k=0

K−1∑
l=0

∣∣∣∣∣
N∑

t=1

ht,kht,le
i2πνt

∣∣∣∣∣
2

.

The above development thus gives sη(ν) ≈ s̃η(ν) ≡ log (1 + s̃v(ν)).

Figure 1 shows a plot of s̃η(ν) versus ν for K = 10 sine tapers with N = 2048. We note

that s̃η(ν) is negligible for ν ≥ 2W , where 2W ≡ (K + 1)/(N + 1) .= 0.0054 is the bandwidth of a
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multitaper estimator using sine tapers; see [20] or [22]. The straight line shape of the autocovariance

is maintained for other values of N and K. Recalling that sη(0) = σ2
η and using 2W ≈ (K + 1)/N ,

we can thus formulate a very simple and convenient model, namely,

sη(ν) =

{
σ2

η

(
1 − |ν|N

K+1

)
, if |ν| ≤ (K + 1)/N ;

0, otherwise.
(6)

III. WAVELET THRESHOLDING OF MULTITAPER ESTIMATORS

A. Basics of the Discrete Wavelet Transform

Let {h(D)
1,0 , . . . , h

(D)
1,L1−1} denote the coefficients of a Daubechies compactly supported wavelet

filter of even length L1 [2, Ch. 6]. We associate this filter with unit scale, and we assume the

normalization
∑

[h(D)
1,m]2 = 1. For any M = 2q ≥ L1, define h(D)

1,m = 0 for m = L1, . . . , M − 1, and

let

H
(D)
1,n ≡

M−1∑
m=0

h
(D)
1,me

−i2πmn/M , n = 0, . . . ,M − 1,

be the discrete Fourier transform (DFT) of the zero padded wavelet filter. Let {g(D)
1,m} be the scaling

filter, defined as g(D)
1,m ≡ (−1)m+1h

(D)
1,L1−1−m for m = 0, . . . , L1 − 1. Let {G(D)

1,n } denote the DFT of

the zero-padded scaling filter. Define the length M periodized wavelet filter {h(D)
j,m} for scale 2j−1

as the inverse DFT of

H
(D)
j,n ≡ H

(D)
1,2j−1n mod M

j−2∏
l=0

G
(D)

1,2ln mod M
, n = 0, . . . ,M − 1.

The discrete wavelet transform (DWT) of an M = 2q dimensional column vector Y is defined

via an M ×M dimensional matrix W whose rows contain circularly shifted versions of the wavelet

filters {h(D)
j,m}, j = 1, 2, . . . , q. Application of the DWT matrix W to the vector Y gives y ≡ WY.

We denote the elements of y as

y =
[
y1,1, y1,2, . . . , y1, M

2
, y2,1, y2,2, . . . , y2, M

4
, . . . , yq−1,1, yq−1,2, yq,1, yq+1

]T

where the yj,k’s are known as the wavelet coefficients, and the remaining term yq+1 is the so-called

scaling coefficient (in fact this is equal to
√
M times the sample mean of Y because all of the

elements of the last row of W are equal to 1/
√
M [13]). Note that {yj,k : k = 1, . . . ,M/2j} is the

set of wavelet coefficients associated with scale 2j−1.

In practice, the rows of the matrix W are not constructed explicitly, but rather the DWT is

implemented via a ‘pyramid’ algorithm that computes the wavelet coefficients one scale at a time
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starting with unit scale [12]. This algorithm allows the construction of partial DWTs, in which the

wavelet coefficients are computed only for scales indexed by j = 1, . . . , q0 with q0 < q. For a partial

DWT, there are M/2q0 scaling coefficients, which are unaltered but required for computation of

the inverse partial DWT.

B. The DWT of the Log Multitaper Spectrum

Let 2M = 2q+1 be a power of two greater than or equal to the sample size N . By applying a

standard fast Fourier transform algorithm to the sequences

{h1,kX1, . . . , hN,kXN , 0, . . . , 0︸ ︷︷ ︸
2M−N zeros

}, k = 0, . . . ,K − 1,

we can readily compute the log multitaper spectrum ordinates Y (fn) = log Ŝ(mt)(fn)−ψ(K)+logK

at the M = 2q frequencies fn ≡ n/(2M), n = 0, . . . ,M − 1. This yields a sampled version of the

model (5), which we can express in vector notation as

Y ≡

 Y (f0)
...

Y (fM−1)

 = S + N ≡

 logS(f0)
...

logS(fM−1)

 +

 η(f0)
...

η(fM−1)

 . (7)

We assume that N is multivariate Gaussian with zero mean and covariance matrix

ΣN ≡



sη(f0) sη(f1) · · · sη(fM
2 −1) sη(fM

2
) sη(fM

2 −1) · · · sη(f1)
sη(f1) sη(f0) · · · sη(fM

2 −2) sη(fM
2 −1) sη(fM

2
) · · · sη(f2)

sη(f2) sη(f1) · · · sη(fM
2 −3) sη(fM

2 −2) sη(fM
2 −1) · · · sη(f3)

...
...

...
...

...
...

sη(f1) sη(f2) · · · sη(fM
2

) sη(fM
2 −1) sη(fM

2 −2) · · · sη(f0)

 (8)

with sη(fn) defined by (6). This circular matrix is symmetric and positive semidefinite. Its elements

are in accordance with the discussion in Section II for η(fn)’s with fn sufficiently far from 0 and

1/2; for other frequencies, it provides a convenient mathematical structure that is put to good use

in (9) below. The matrix ΣN can be regarded as an approximation to what would be a more natural

assumption for the covariance structure of N, namely, a Toeplitz matrix Σ′
N whose first row is given

by sη(fn), n = 0, . . . ,M − 1. In their study of wavelet shrinkage for correlated data, Johnstone

and Silverman [9, pp. 322, 342] also assume a circular covariance matrix and cite arguments as to

why it is a reasonable approximation to Σ′
N. Because of (6), the matrix ΣN is almost a banded

Toeplitz matrix: it has 2K + 1 nonzero diagonals, but it also has K(K + 1)/2 nonzero ‘off-band’

elements in both the upper right-hand and lower left-hand corners – these off-band elements are

what distinguish ΣN and Σ′
N.
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Note that the DWT of Y can be written as y ≡ WY = WS + WN ≡ s + n. On an element

by element basis, we have yj,k = sj,k + nj,k and yq+1 = sq+1 + nq+1.

C. Wavelet Shrinkage

Because the noise term N in model (7) is assumed to be Gaussian, it follows that the wavelet

coefficients {yj,k} are Gaussian distributed, so we can make use of the hard and soft thresholding

schemes discussed in [3] and [4]. A soft threshold function can be defined, with threshold T :

δS(ω, T ) = sgn(ω)(|ω| − T )+ , where (|ω| − T )+ =
{
|ω| − T, if |ω| > T ;
0, otherwise.

The soft threshold shrinks or kills all the wavelet coefficients to which it is applied. As a result,

soft thresholding produces smoother results than hard thresholding, with a rule defined by

δH(ω, T ) = ω 1{|ω| > T}.

A compromise between soft and hard thresholding is a ‘mid’ threshold, defined by

δM (ω, T ) = sgn(ω)(|ω| − T )M , where (|ω| − T )M =
{

2(|ω| − T )+, if |ω| < 2T ;
|ω|, otherwise.

With such a threshold, large coefficients, i.e., those exceeding 2T in magnitude, are left untouched,

those between T and 2T in magnitude are shrunk, while those less than T in magnitude are killed.

The wavelet coefficients yj,k could be thresholded using δ(·, ·) set to δS(·, ·), δH(·, ·) or δM (·, ·):

ŷj,k =
{
δ(yj,k, T ), if 1 ≤ j ≤ q0;
yj,k, if j > q0,

where q0 < q is some specified coarse resolution level.

D. Scale-independent Universal Thresholding

For either soft, mid or hard thresholding, a critical issue is to determine an appropriate thresh-

old level T. If the signal component is in fact zero, then with high probability the combination of

(zero) signal plus noise should not exceed the threshold level. A simple, but useful, approach is

discussed in [3] and [4]. If the elements of N were independent and identically distributed N (0, σ2
η)

random variables, then the elements of their wavelet transform n would also be such. In this case

the threshold is chosen as T = TM = ση
√

(2 logM). The justification for this so-called universal

threshold TM is that, if Z1, . . . , ZM is a sequence of independent and identically distributed N (0, 1)

random variables, then as M → ∞

PM ≡ Pr
[
max

i
|Zi| >

√
(2 logM)

]
→ 0.
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This means that, asymptotically, if the signal component is in fact zero, then the probability

of a ‘false alarm’ will tend to zero, so that the combination of (zero) signal plus noise will not

exceed the threshold level, and will hence be set to zero. Hastie and Tibshirani (in the discussion

of [4], pp. 347–9) point out that such a threshold will frequently allow noise ‘wiggles’ into the

reconstruction of smooth functions. Donoho et al. [4, p. 366] comment that such wiggles can be

made rarer by changing TM to TM = σ
√

(3 logM).

The universal threshold is attractively simple, but is strictly suitable only for iid Gaussian n.

In model (7) we have assumed the noise N to be Gaussian and hence the corresponding wavelet

coefficients n also have a Gaussian distribution; however, because the elements of N have covari-

ance (8), the elements of n are also correlated. We need to see how the correlation of the noise N

feeds through to the variance of the wavelet coefficients at each scale.

E. Scale-dependent Thresholding

Johnstone and Silverman [9] look at scale-dependent thresholding, which in our context would

explicitly allow for a different variance for the nj,k at each scale, induced by the correlation in the

noise. The current work provides a near-ideal application for the Johnstone–Silverman technique.

As indicated below, we can easily compute the required scale-dependent variances from the pa-

rameters defining the multitaper estimator and the chosen wavelet filters. In most other statistical

applications these variances must be estimated from the coefficients at each scale, which becomes

problematic as the number of coefficients {nj,k} decreases with increasing level j. Moreover, we can

derive insightful properties about the scale-dependent variances that enable us to better understand

how scale-independent thresholding contrasts with the scale-dependent method.

Under the mild assumption that L1 ≤ M , scale-dependent variances can be easily computed as

follows. Because by construction the covariance matrix ΣN in (8) is circular, we have, e.g., Fuller [5,

p. 151], that ΣN = GHDG, where the kth row of G contains {e−i2πkn/M/
√
M : n = 0, . . . ,M − 1};

‘H’ denotes Hermitian transpose; and D is a diagonal matrix with diagonal elements {Sn : n =

0, . . . ,M − 1}, which is the DFT of the first row of ΣN. Let aT
j,k represent the row of W whose

multiplication with N yields nj,k, and let {An} be its DFT. Because |An| = |H(D)
j,n |, we have

var {nj,k} = aT ΣNa = aHGHDGa =
1
M

M−1∑
n=0

Sn

∣∣∣H(D)
j,n

∣∣∣2 ≡ σ2
j , (9)

which are the required scale-dependent variances (note that σ2
j does not depend on k).
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Scale-dependent thresholding uses a different threshold at each scale, with the threshold at scale

2j−1 being given by TM,j = σj
√

(2 logM). To understand the effect of this type of thresholding,

we worked out an explicit progression for the variances σ2
j under the special case of the Haar DWT

and found that, with M = N/2 = 2q as before and with the mild condition K < M/2,

σ2
1 < σ2

2 < · · · < σ2
q < σ̄2

q+1, (10)

where σ̄2
q+1 is the variance of the single scaling coefficient nq+1 (see the appendix for a proof;

for selected q and K, we have used (9) to demonstrate numerically that the above still holds for

DWTs based on other Daubechies wavelets). For comparison with scale-dependent thresholding

TM = ση
√

(2 logM), note that tr {ΣN} = tr {WΣNWT } says that

σ2
η =

σ̄2
q+1

2q
+

q∑
j=1

σ2
j

2j
,

so (10) along with an easy ‘proof by contradiction’ shows that σ2
1 < σ2

η < σ̄2
q+1. Computations

indicate that in fact σ2
2 < σ2

η < σ2
3 when K = 5, . . . , 9; σ2

η
.= σ2

3 when K = 10; and σ2
3 < σ2

η < σ2
4

when K = 11, . . . , 41 (this covers the range of K likely to be used in practical applications). This

positioning of the scale-independent variance σ2
η with respect to the scale-dependent variances σ2

j

becomes important in interpreting the results of our simulation study (see Section V).

To confirm the increase in σ2
j with j and, more importantly, to validate the statistical model

defined by (6), (7) and (8), we conducted a simulation study in which the following steps were

repeated 1000 times:

(i) a sample X1, . . . , XN from a specified Gaussian stationary process was generated, with 2M =

N = 2048;

(ii) the multitaper estimator was calculated using K = 10 sinusoidal tapers;

(iii) the DWT of N = Y − S was computed based upon wavelet filters of lengths L1 = 2, 4, 8 and

16, yielding the wavelet coefficients {nj,k}; and

(iv) the standard deviation of the wavelet coefficients {nj,k} at scales 1, 2, 4 and 8 was estimated

from the square root of σ̂2
j ≡ 2j−q

∑2q−j

k=1 n2
j,k.

Two different processes were used, a white noise process and the autoregressive process of order

2, AR(2), used by Moulin [14] (see Section IV for details), but the results proved to be virtually

identical, so we only report on the AR(2) case here. Box plots for the 1000 standard deviations for

10



each wavelet filter and each scale are plotted in Fig. 2 (the box plots shown there are defined as

follows: a thin horizontal line is drawn through the box at the median of the data, the upper and

lower ends of the box are at the upper and lower quartiles, and the vertical lines extend from the

box to points within a standard range of the data, defined as 1.5 times the inter-quartile range).

The variability of the estimates σ̂j increases with scale, mainly because the number of wavelet

coefficients from which the standard deviation is calculated reduces from M/2 = 512 for unit scale

to M/16 = 64 for scale 8. The thick horizontal lines extending beyond each box plot indicate the

value of σj derived from (9). The ‘nominal’ standard deviation ση =
√

[ψ′(10)] .= 0.32 (to be used

in the scale-independent thresholding) is marked as a thin horizontal line spanning the width of

each plot. This exceeds the sample median of the σ̂j ’s for scales 1, 2 and 4, when using Daubechies’

extremal phase wavelet with 4 coefficients, (D(4)), or her least asymmetric wavelets with 8 or 16

coefficients, (LA(8) and LA(16)). For the Haar wavelet, the nominal standard deviation exceeds

the sample median of the σ̂j ’s for scales 1 and 2. Fig. 2 thus nicely illustrates (10) and supports

our contention that the approximations leading up to (6), (7) and (8) are reasonable.

F. Two-Sided Multitaper Spectrum Estimate

The theoretical results, which were compared to the empirical results in Fig. 2, were derived

using the covariance matrix in (8), which was formulated using nonnegative frequencies less than

1/2. However, because Ŝ(mt)(f) is an even periodic function with unit period, we could just as

easily have used nonpositive frequencies greater than −1/2 or, equivalently, frequencies fn satisfying

1/2 < fn ≤ 1 so that (7) would involve fM+1, . . . , f2M rather than f0, . . . , fM−1. There is an

advantage to using all 2M frequencies f0, . . . , f2M−1 because then we compute the DWT of a

complete period of the log multitaper spectrum estimate, which better matches the circular nature

of the DWT and hence avoids severe discontinuities at the boundaries. We note that Moulin [14]

makes a similar argument and that standard lag window spectral estimates are similarly formed by

circularly smoothing over a complete period of the periodogram. Accordingly, in practise we take

the DWT of an expanded version of (7), namely,

Y ≡

 Y (f0)
...

Y (f2M−1)

 = S + N ≡

 logS(f0)
...

logS(f2M−1)

 +

 η(f0)
...

η(f2M−1)

 . (11)

Note that we still use TM for thresholding: this level is appropriate for the nonnegative and

nonpositive cases separately, and, because of the localized nature of the DWT for small j, the
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DWT of (11) is essentially a combination of these two cases except for frequencies close to 0

or ±1/2, for which our theoretical development does not apply anyway. We also note that, in

contrast to lag window estimates, the thresholded multitaper estimates need not be symmetric

about f = 1/2, so we have chosen to average Ŝ(wtmt)(fn) and Ŝ(wtmt)(f2M−n), where Ŝ(wtmt)(f)

is the wavelet-thresholded spectrum estimate, in all results discussed below.

G. Summary of Proposed Spectrum Estimation Algorithm

Given (a) X1, . . . , XN , a time series that is a realization of a portion of a zero mean station-

ary process; (b) K, the number of tapers ; (c) M , a power of two satisfying 2M ≡ 2q+1 ≥ N ;

(d) q0, a resolution level satisfying q0 ≤ q; (e) δ(·, ·), one of the thresholding functions discussed in

Section III.C; and (f) {h(D)
1,m}, a Daubechies wavelet filter of length L1; we construct our spectrum

estimator Ŝ(wtmt) in the following manner:

(i) Calculate the logarithm of the multitaper estimate. For k = 1, . . . ,K, we form the tapered time

series h1,kX1, . . . , hN,kXN using the ht,k’s defined in (3). We then append 2M − N zeros to

the tapered series and use a standard ‘power of two’ fast Fourier transform algorithm to form

the kth eigenspectrum

Ŝ
(mt)
k ( n

2M ) =

∣∣∣∣∣
2M∑
t=1

ht,kXte
−i2πnt/2M

∣∣∣∣∣
2

, n = 0, . . . , 2M − 1

(cf. (1); here ht,kXt ≡ 0 for t > N). We then average the K eigenspectra to form the multitaper

estimate Ŝ(mt)( n
2M ) (cf. (1)). Next we form Y ( n

2M ) ≡ loge Ŝ
(mt)( n

2M )−ψ(K)+logK and place

these 2M values in the column vector Y (cf. (4) and (11)).

(ii) Apply a partial DWT out to level q0. Let Wq0 represent the q0th order partial DWT. By

q0 recursive applications of the pyramid algorithm described by Mallat [12], we obtain the

DWT transform coefficients y ≡ Wq0Y. The elements of y to be thresholded are the wavelet

coefficients for levels j = 1, . . . , q0, denoted as yj,k, k = 1, . . . ,M/2j−1. The remaining M/2q0−1

coefficients in y, i.e., the level q0 scaling coefficients, are left alone.

(iii) Apply thresholding to the wavelet coefficients.

(a) For scale-independent thresholding, we set ŷj,k = δ(yj,k, ση
√

[2 loge M ]), where ση ≡
√
ψ′(K).

(b) For scale-dependent thresholding, we set ŷj,k = δ(yj,k, σj
√

[2 loge M ]), where σ2
j is defined

in (9) and involves the sequences {H(D)
j,n } and {Sj}. Computation of {H(D)

j,n } is discussed

12



in the first paragraph of Section III, while {Sj} is the DFT of the first row of ΣN in (8),

which in turn involves sη(fn) of (6) with fn ≡ n/(2M) and σ2
η ≡ ψ′(K).

(iv) Invert the partial DWT and produce the smoothed spectrum estimate. We form ŷ by starting

with y and then replacing each wavelet coefficient yj,k with the corresponding thresholded ŷj,k.

We then compute Ŷ ≡ WT
q0

ŷ by q0 recursive applications of the inverse pyramid algorithm [12].

With Ŷn denoting the nth element of Ŷ, we can now form our proposed spectrum estimate:

Ŝ(wtmt)(fn) ≡


eŶ0 , n = 0 (i.e., fn = 0);
(eŶn + eŶ2M−n)/2, n = 1, . . . ,M − 1 (i.e., fn = 1

2M , . . . , M−1
2M ); and

eŶM , n = M (i.e., fn = 1
2 ).

If {Xt} cannot be assumed to have zero mean (usually the case in practical applications), we replace

Xt in the above by X ′
t − X̄, where X̄ is the sample mean.

IV. SIMULATION STUDY

We tested our scale-independent and scale-dependent schemes on four different Gaussian sta-

tionary processes. In models A, B and D, the variance of the zero mean Gaussian white noise

process {εt} is set to unity.

A. The AR(24) process Xt =
∑24

n=1 φn,24Xt−n + εt used by Gao [6,7], where the φn,24’s are

specified by equating coefficients of zn in

12∏
l=1

(
1 − 2 cos(αl)

Al
z +

z2

A2
l

)
= 1 −

24∑
n=1

φn,24z
n

with

αl ≡
{

0.2l, l = 1, . . . , 5;
0.2 + 0.2l, l = 6, . . . , 12; and Al ≡

{
1.005, l = 3;
1.03, otherwise

(thus φ1,24
.= 2.521627, φ2,24

.= −4.771540, . . . , φ24,24
.= −0.516712). Each realization of this

process (and also of the AR(2) process below) was produced by generating stationary start-up

values [10].

B. The AR(2) process used by Moulin [14] specified by Xt = φ1,2Xt−1 + φ2,2Xt−2 + εt, where

φ1,2 ≡ 0.97
√

2 and φ2,2 ≡ −(0.97)2.

C. The ‘typical mobile radio communications’ spectrum used by Moulin [14] specified by a su-

perposition of two bandlimited, fading, mobile radio signals, a white background noise, and a

narrow-band interference term with Gaussian spectrum. The overall power spectrum is

S(f) =10−3 + 0.2 exp−(|f |−0.45)2/(2·10−6) +
√

[1 − (f/B0)2]1{0 ≤ |f | ≤ B0}

+
√

[1 − ({|f | − f0}/B0)2]1{f0 −B0 ≤ |f | ≤ f0 +B0}
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with f0 = 0.3 and B0 = 0.1. To generate the sequences, let N ′ be any positive even integer.

From a Gaussian white noise sequence {Z1, . . . , ZN ′} construct C0 = Z1, CN ′/2 = ZN ′ , and

Cn = (Z2n+iZ2n+1)/
√

2, n = 1, . . . , (N ′/2)−1. Then for fn = n/N ′ define Fn = Cn

√
[S(fn)],

n = 0, . . . , N ′/2, and Fn = F ∗
N ′−n, n > N ′/2. Finally, let

Xt =
1√
N ′

N ′−1∑
n=0

Fne
i2πfnt,

corresponding effectively to a discretization of the spectral representation formula. By sampling

N � N ′ values, with N ′ large, this approximate frequency domain method gives excellent

synthesis [17]. In our simulations N ′ was set to 4N.

D. The high order moving average (MA) process Xt =
∑15000

n=0 θn εt−n used by Gao [6,7] for which

θ0 = 1; θ1 = π/4; and θn+1 = sin(πn/2)/n, n = 1, 2, . . . , 14999. Note that, starting with

θ3, the odd numbered coefficients are exactly zero. Each realization of X1, . . . , XN requires

generation of N+15000 deviates from {εt}. As will be seen the spectrum corresponding to this

series has a sharply-defined peak and trough covering some 25 dB, and is difficult to estimate.

Except for the simulations reported in the second paragraphs of subsections B and C below, we

used a K = 10 multitaper spectrum estimate, a series length of N = 2048, and the Daubechies

LA(8) wavelet filter. The bandwidth of the multitaper estimator is (K+1)/(N+1) .= 0.0054, which

is small relative to the widths of the peaks in models A, B and C, but is too large to faithfully

capture the tip of the very sharp peak in model D. Other choices of wavelet filter (D(4) and LA(10))

produced very similar results.

For each model, scale-independent and scale-dependent soft, mid and hard thresholds were

investigated, and different numbers of wavelet coefficients were left untouched by the thresholding,

namely 64, 32 and 8, corresponding to setting q0 to 5, 6 and 8, respectively. For each of 1000

repetitions over each choice of thresholding and value of q0, the root mean square error (rmse)

 1
N/2 + 1

N/2∑
n=0

{10 log10 Ŝ
(wtmt)(fn) − 10 log10 S(fn)}2

1/2

(12)

was calculated, and the average and standard error of these rms errors over the 1000 simulations

was recorded. Results are summarized in Fig. 3. Furthermore, the spectrum estimate with rmse

closest to the average of the 1000 is plotted in Figs. 4–7 as a ‘representative’ estimate for the stated

choice of model, threshold type and q0.
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A. The AR(24) Model

The spectrum of the AR(24) process has a dynamic range close to 90 dB. This process was used

by Gao [7] in his study of wavelet thresholding of the log periodogram, but in fact the periodogram

for this process is badly biased due to leakage at least for sample sizes N ≤ 2048 and f ≥ 0.4

(see Fig. 1 of [7]). In contrast, the multitaper scheme suppresses leakage and, when combined with

wavelet shrinkage, produces a smoothed log spectrum estimate with no leakage, as shown in Fig. 4.

This figure shows the representative estimates for (a) scale-independent, soft thresholding and

(b) scale-dependent, hard thresholding, both with q0 = 5 (these choices give the minimum average

rmse across parameter combinations for both scale-independent and scale-dependent thresholding;

see Fig. 3). Both estimates are good, but the scale-independent estimate (a) would probably be

judged superior in the estimation of the three highest frequency peaks in the spectrum. The

scale-dependent estimate (b) shows evidence of fine-scale noise coefficients unattenuated by the

thresholding.

B. The AR(2) Model

Figure 5 shows the representative estimates for (a) scale-independent, soft thresholding and

(b) scale-dependent, hard thresholding, both with q0 = 8 (these choices again giving the minimum

average rmse for both types of thresholding; see Fig. 3). Both estimates are quite good. The

scale-dependent estimate (b) again shows evidence of fine-scale noise coefficients unattenuated by

the thresholding, but also does slightly better in estimating the height of the peak in the spectrum.

By using his scale and wavelet-dependent thresholding scheme applied to the periodogram with

N = 512, Moulin [14] obtained a mean square error 43% (using his RC3 wavelet) and 41% (using

his RD6 wavelet) of that found by scale-independent universal thresholding of the periodogram.

The multitaper approach (N = 512, K = 10, LA(8) wavelet filter coefficients, scale-independent

soft thresholding or scale-dependent hard thresholding) gave a mean square error 32% of that found

by scale-independent universal thresholding of the periodogram; hence the improvement using our

scheme is larger than obtained by Moulin [14].

C. Mobile Radio Communications Model

Figure 6 shows the representative estimates for (a) scale-independent, soft thresholding and

(b) scale-dependent, hard thresholding, both with q0 = 6 (again corresponding to the minimum

average rmse for both types of thresholding; see Fig. 3). Both the 30 dB rises and falls of the

bandlimited part of the spectrum, and the narrow-band interference at f = 0.45 are well estimated
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by both methods, with the scale-independent estimate (a) being somewhat better at capturing

the height of the peak. Again, the scale-dependent estimate (b) shows evidence of fine-scale noise

coefficients unattenuated by the thresholding.

By using his scale and wavelet-dependent thresholding scheme applied to the periodogram with

N = 256, Moulin [14] obtained a mean square error 89% (using his RC3 wavelet) and 88% (using

his RD6 wavelet) of that found by scale-independent universal thresholding of the periodogram.

The multitaper approach (N = 256 with K = 5 because of the relatively shorter data length, LA(8)

wavelet filter coefficients) gave a mean square error 49% (using scale-independent soft thresholding)

and 56% (using scale-dependent hard thresholding), of that found by scale-independent universal

thresholding of the periodogram. The improvement using our simpler scheme is again larger than

obtained by Moulin [14].

D. High Order MA Model

The true spectrum of this model, shown by the light curves in Fig. 7, comprises a slow decay, a

very sharp peak followed by a deep trough, and then a gradual increase. The minimum average rmse

across parameter combinations occurs with q0 = 6 for both (a) scale-independent, soft thresholding

and (b) scale-dependent, hard thresholding (see Fig. 3). The representative spectrum estimates

are shown in Fig. 7. Here the scale-dependent estimate (b) gives a better overall visual impression

than the scale-independent estimate (a), even though the observed rmse’s for the two estimates

are virtually identical (see Fig. 3). The very sharp peak is too sharp to be properly resolved

from a series of this length by either estimate. Again, both methods do much better than Gao’s

method [6,7].

V. CONCLUSIONS AND DISCUSSION

We have developed a technique for spectrum estimation based on wavelet thresholding of the log

of multitaper spectrum estimates. In contrast to the log periodogram, the log multitaper estimator

can have much better small sample bias properties and is close to Gaussian distributed provided

a moderate number of tapers is used (K ≥ 5). As quantified approximately by Equation (6),

the log multitaper estimator is correlated across frequencies. When formulated as the ‘signal plus

noise’ model (5), the resulting spectrum estimation problem falls into the variation on wavelet

shrinkage studied recently by Johnstone and Silverman [9], who demonstrate that correlated noise

can be handled by basing thresholds on scale-dependent variances. The structure of our model

is such that these scale-dependent variances can be readily calculated using (9). Simulations of
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four representative stationary processes show that hard thresholding is the best to use with scale-

dependent thresholds and that our proposed estimator outperforms the log periodogram-based

estimators proposed previously in the literature [6,7,14].

We also considered scale-independent thresholding. Because the scale-independent noise vari-

ance σ2
η falls above just the lowest 2 or 3 scale-dependent variances σ2

j (see the thin horizontal lines

spanning the plots in Fig. 2), the correlation that multitapering induces acts in accordance with

the underlying paradigm for wavelet shrinkage in that it actually helps suppress small scale ‘noise

spikes’ while leaving informative large scale wavelet coefficients relatively unattenuated (this result

suggests that the usual scale-independent wavelet shrinkage can be expected to work well in other

‘signal plus correlated noise’ scenarios in which the correlation of the noise decays in a manner

similar to (6)). In our simulation study, scale-independent thresholding actually outperformed the

scale-dependent thresholding in a number of cases (see Fig. 3, in which scale-independent results

are indicated by dashed lines). The simulations also suggest that soft thresholding is the best

scheme to use in combination with scale-independent universal thresholds.

The rmse of the spectrum estimators does vary somewhat with the choice of q0, as shown in

Fig. 3. However, provided that soft thresholding is used with scale-independent universal thresholds,

and hard thresholding is used with scale-dependent universal thresholds, the variation of rmse with

q0 does not cause the corresponding spectrum estimates to be markedly different in their visual

appearances. Thus choice of q0 should not be too critical in practice, but this issue certainly

deserves more research (e.g., cross-validation might be useful in picking q0).

There are several lines of research that are left open and should be explored in the future.

First, by itself the multitaper method is capable of producing excellent spectrum estimates in

the sense of exhibiting all the important spectral features, but smoothing is required to achieve

statistical consistency if the number of tapers K is held fixed as the sample size N increases. The

purpose of wavelet shrinkage is to provide this smoothing, so it would be helpful to know that,

as N → ∞, we are guaranteed that our spectrum estimator converges in some sense to the true

spectrum. The approach of Johnstone and Silverman [9] provides a pathway to proving consistency,

but unfortunately we cannot evoke their main theorem directly because our covariance matrix (8) is

that of a (circularized) noninvertible moving average process and hence fails to satisfy the bounded

dependence condition that Johnstone and Silverman [9, p. 334] assume. Because of the good

results we obtained in our simulations, we conjecture that it is possible to prove the Johnstone–

Silverman theorem under a condition that allows for noninvertible covariance matrices. Second,
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because thresholding is so critical to our scheme, it is important to look beyond simple universal

thresholding and consider more recent ideas for setting threshold levels, including approaches based

upon Stein’s unbiased risk estimator (SURE) [3,9] and cross-validation [15]. Finally, Johnstone and

Silverman [9] note that ‘shift-invariant’ wavelet denoising can be used to eliminate certain alignment

effects with the ordinary DWT, so it would interesting to explore how this impacts our proposed

spectrum estimator.

APPENDIX

Here we prove (10) for the special case of the Haar wavelet under the assumption that K <

M/2. First we use (9) to develop an explicit expression for σ̃2
j ≡ σ2

j /σ
2
η, which requires expressions

for {Sn} (the DFT of the first row of (8)) and for {|H(D)
j,n |2}. Using (6) and the fact N = 2M , we

have

sη(fl) =

{
σ2

η

(
1 − |l|

K+1

)
, |l| ≤ K;

0, otherwise;
so Sn = σ2

η

K∑
l=−K

(
1 − |l|

K + 1

)
e−i2πln/M . (13)

Hence we can write

σ̃2
j =

K∑
l=−K

(
1 − |l|

K + 1

)
Al, where Al ≡

1
M

M−1∑
n=0

∣∣H(D)
j,n

∣∣2ei2πln/M .

For the Haar wavelet, {
∣∣H(D)

j,n

∣∣2} is the DFT of the circular autocorrelation of

1
2j/2

, . . . ,
1

2j/2︸ ︷︷ ︸
2j−1 of these

,− 1
2j/2

, . . . ,− 1
2j/2︸ ︷︷ ︸

2j−1 of these

, 0, . . . , 0︸ ︷︷ ︸
M−2j of these

;

for j < q and letting λj ≡ 2j , the inverse DFT is given by

Al =


1 − 3|l|

λj
, |l| = 0, . . . , λj/2;

−
(
1 − |l|

λj

)
, |l| = λj/2, . . . , λj − 1;

0, otherwise;

and, for j = q,

Al = 1 − 4|l|
M

, |l| = 0, . . . ,
M

2
.

With B ≡ K + 1, we can obtain explicit expressions for σ̃2
j , j < q, and for σ̃2

q :

[i] σ̃2
j = 1−B2+Bλj

λj
when B ≤ λj/2;

[ii] σ̃2
j = 6λ2

jB+4λj−6λjB2+2B3−2B−λ3
j

6Bλj
when λj/2 < B < λj ;

[iii] σ̃2
j = 2+λ2

j

6B when B ≥ λj : and
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[iv] σ̃2
q = 3BM−4B2+4

3M .

Our first claim is that σ̃2
j < σ̃2

j+1 for j = 1, . . . , q − 2. Suppose first that B = 2p for integer

p such that 1 ≤ p ≤ q − 2. The condition B ≤ λj/2 of case [i] then holds when j ≥ p + 1, while

the condition B > λj − 1 of case [iii] holds when j ≤ p. Hence σ̃2
j < σ̃2

j+1 for all p+ 1 ≤ j ≤ q − 2

because case [i] implies

1 −B2 +Bλj

λj
<

1 −B2 +Bλj+1

λj+1
⇐⇒ 2 − 2B2 + 2Bλj < 1 −B2 + 2Bλj ⇐⇒ 1 < B2,

which holds since B ≥ 2. Also σ̃2
j < σ̃2

j+1 for all j ≤ p− 1 because case [iii] implies

2 + λ2
j

6B
<

2 + λ2
j+1

6B
=

2 + 4λ2
j

6B
⇐⇒ 0 < 3λ2

j ,

which holds since λj ≥ 1. The claim thus holds for B = 2p if we can show that it holds for the case

j = p; i.e., σ̃2
p < σ̃2

p+1. From cases [iii] and [i] we have, respectively,

σ̃2
p =

2 + λ2
p

6B
=

2 + λ2
p

6λp
and σ̃2

p+1 =
1 −B2 +Bλp+1

λp+1
=

1 + λ2
p

2λp
.

The statement σ̃2
p < σ̃2

p+1 is thus equivalent to

2 + λ2
p

6λp
<

1 + λ2
p

2λp
⇐⇒ 4 + 2λ2

p < 6 + 6λ2
p ⇐⇒ 0 < 1 + 2λ2

p,

which is obviously true. This establishes the claim when B is a power of two.

If B is not a power of two, there exists an integer p ≥ 2 such that 2p−1 < B < 2p so that we

can write B = 2p−1 + J , where 1 ≤ J ≤ 2p−1 − 1; i.e., λp−1 < B ≤ λp − 1 with B = λp−1 + J and

1 ≤ J ≤ λp−1 − 1. Since B ≤ λj−1 holds if j ≥ p+ 1, it follows from the same ‘case [i]’ argument

as before that σ̃2
j < σ̃2

j+1 for all j ≥ p + 1; likewise, since B > λj − 1 holds for all j ≤ p − 1, it

follows from the same ‘case [iii]’ argument as before that σ̃2
j < σ̃2

j+1 for all j ≤ p− 2. The desired

result thus holds if we can establish the j = p − 1 and j = p cases, i.e., that σ̃2
p−1 < σ̃2

p < σ̃2
p+1.

From cases [i], [ii] and [iii] we have

σ̃2
p+1 =

1 −B2 + 4Bλp−1

4λp−1
; σ̃2

p =
12λ2

p−1B + 4λp−1 − 6λp−1B
2 +B3 −B − 4λ3

p−1

6Bλp−1
;

and σ̃2
p−1 = 2+λ2

p−1
6B . Using B = λp−1 + J , the inequality σ̃2

p−1 < σ̃2
p is equivalent to

0 < 2λ3
p−1 + 3λp−1J(λp−1 − J) + λp−1 + J(J2 − 1).
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Because λp−1 − J > 0 and J2 − 1 ≥ 0, all terms on the right-hand side are nonnegative; moreover,

since the first term is always greater than zero, the above expression is also such. We can now

conclude that σ̃2
p−1 < σ̃2

p. Similarly, σ̃2
p < σ̃2

p+1 is equivalent to

0 < 10J + 6λp−1(λ2
p−1 − 1) + 18λ2

p−1J + 8λp−1J
2 + 10J2(λp−1 − J).

Because λ2
p−1 − 1 > 0 and λp−1 − J > 0, all terms on the right-hand side are positive, and hence

the above expression is also such. This establishes our first claim.

Our second claim is that σ̃2
q−1 < σ̃2

q , which we establish by comparing the expression for σ̃2
q

in [iv] with expressions for σ̃2
q−1 in [i], [ii] and [iii] (note that λq−1 = M/2):

[i] Here B ≤ M/4 and σ̃2
q−1 = (2 − 2B2 +BM)/M , so σ̃2

q−1 < σ̃2
q holds if

2 − 2B2 +BM

M
<

3BM − 4B2 + 4
3M

⇐⇒ B2 > 1,

which is true because B ≥ 2 always.

[ii] Here M/4 < B < M/2 and

σ̃2
q−1 =

12BM2 + 16M − 24B2M + 16B3 − 16B −M3

24BM
.

Writing B = M
4 + J , where 1 ≤ J < M/4, the claim σ̃2

q−1 < σ̃2
q is true in this case if

12J3 +M <
M3

16
+

3JM2

4
+ 3J2M + 12J,

which holds because (a) 12J3 < 3JM2/4 since J < M/4 and (b) M < 3J2M since J ≥ 1,

thus establishing the claim in this case.

[iii] Here B = M/2 (the largest value it can attain because of the assumption K < M/2), so we

have σ̃2
q−1 = (M2 + 8)/12M and σ̃2

q = (M2 + 8)/6M , from which it is obvious that σ̃2
q−1 < σ̃2

q

holds.

This establishes the second claim.

Finally, letting σ̃2
q+1 ≡ σ̄2

q+1/σ
2
η, we claim that σ̃2

q < σ̃2
q+1. An argument similar to that used

to obtain (9) yields

σ̄2
q+1 =

1
M

M−1∑
n=0

Sn

∣∣G(D)
q,n

∣∣2,
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where {G(D)
q,n } is the DFT of the sequence of length M whose values are all equal to 1/

√
M ; i.e.,

G
(D)
q,0 =

√
M while G(D)

q,n = 0 otherwise, thus yielding σ̄2
q+1 = S0. From (13) we have

S0 = σ2
η

(
1 + 2

K∑
l=1

1 − l

K + 1

)
= σ2

η(K + 1),

so σ̃2
q+1 = B. Thus σ̃2

q < σ̃2
q+1 is true if

3BM − 4B2 + 4
3M

< B ⇐⇒ B2 > 1,

which is true because B ≥ 2 always. This establishes the final claim and hence (10).
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LIST OF FIGURES

Figure 1 – The autocovariance function s̃η(ν) versus ν for N = 2048 and K = 10 sine tapers.

Figure 2 – Box plots of the estimated standard deviations σ̂j of wavelet coefficients nj,k at scales

1, 2, 4 and 8 derived from the AR(2) process using different wavelet filters with N = 2048 and

K = 10. The thick horizontal lines extending beyond each box plot indicate the value of σj derived

from (9). The ‘nominal’ standard deviation ση =
√

[ψ′(10)] .= 0.32 (used in scale-independent

thresholding) is marked as a thin horizontal line extending across each of the plots.

Figure 3 – Average value over 1000 simulations of the rmse given in Equation (12) for each of the four

stationary processes described in Section IV. The average rmse is plotted for the scale-dependent

method with the three types of thresholding, hard (thick solid line), mid (medium solid line), soft

(thin solid line), and for the scale-independent method with the three types of thresholding, hard

(thick dashed line), mid (medium dashed line), soft (thin dashed line). Three values of coarse

resolution level, q0, were considered, namely, 5, 6 and 8, corresponding to 64, 32 and 8 scaling

coefficients left untouched by the thresholding. Series of length N = 2048 and the LA(8) wavelet

filter were used.

Figure 4 – Estimated spectrum (thick curves) and true spectrum (thin) for the AR(24) process.

The spectrum estimates are representative in that they have rmse closest to the average of the 1000

simulations. (a) Scale-independent, soft thresholding, and (b) scale-dependent, hard thresholding.

q0 = 5 in both cases. Series of length 2048 and LA(8) wavelet coefficients were used.

Figure 5 – As in Fig. 4, but for AR(2) process.

Figure 6 – As in Fig. 4, but for mobile radio communications process.

Figure 7 – As in Fig. 4, but for high order MA model.
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