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Abstract

In examining a plot of a time series of a scalar climate variable for indica-

tions of climate change, we might pick out what appears to be a linear trend

commencing near the end of the record. We demonstrate that visual determina-

tion of the starting time of the trend can lead us to incorrectly declare a trend

to be significant when we base our assessment on standard linear regression

analysis; in fact a presumed level of significance of 5% can be smaller than the

actual level by up to an order of magnitude. We suggest an alternative pro-

cedure that is more appropriate for assessing the significance of a trend whose

starting point is identified visually.



1 Introduction

There is currently a strong scientific and societal interest in the issue of climate change. It

is not uncommon that one examines a simple time series of a scalar climatic variable and

asks whether it contains a trend that might indicate whether, by how much, and in what

direction climate has changed. We offer here some thoughts about the pitfalls in estimating

trends and their significance from selected portions of time series.

Our example is one familiar in our own field of research: the North Atlantic Oscillation

(NAO) index. It indicates the strength of the Icelandic low, a persistent feature of northern

hemispheric surface atmospheric pressure. It is of interest particularly because its simple

definition as the pressure difference from the center to the edge of the low pressure cell

allows one to establish a long historical record. The two sites of pressure observations for

the original NAO index are Ponta Delgada in the Azores and Reykjavik, Iceland (Hurrell

1995); by using observations from Gibraltar and Iceland (Jones et al. 1997), the beginning of

the record can be pushed back to 1824, giving a record for one and three quarters centuries.

We use this latter record here. Contiguous monthly values for this index from November

1824 through October 2000 are available from the Web site for the Climatic Research Unit,

University of East Anglia. By reflecting the strength of the Icelandic cyclonic circulation,

this index is an indicator of the intensity of heat and moisture advection from the North

Atlantic into Eurasia and from Eurasia into the arctic. It also indicates the strength of sea

ice and fresh water outflow from the Arctic Ocean to the North Atlantic Ocean, and hence

of the North Atlantic’s control of the global ocean’s thermohaline circulation. Because of its

coarse characterization of these climatic processes, this index and its interannual variability

are commonly cited and hence provide a familiar example with which to illustrate the point

of this paper.

In Section 2, we show by a standard trend analysis that the NAO index has increased
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during the last thirty years at a rate of 0.05 yr−1 and that this rate is significant at the 95%

level. We also illustrate that in Gaussian white noise processes, as the NAO index appears

to be a sample of, one will find “significant” trends over several decades far more often than

the 5% suggested by the 95% level of confidence. The flaw is in selecting the trial interval

after viewing the longer data record rather than a priori , as is the premise of the statistical

theory. In Section 3, we show how one could construct a more stringent test that yields a

more appropriate assessment of the significance of a linear trend. We consider in Section 4

the more pathological case of time series with weak but undetectable autocorrelation; in this

case even more stringent tests are necessary to keep from wrongly identifying trends. There

is a concluding discussion in Section 5.

Before we begin, some comments are in order about prior literature that is related to

our main point and to our analysis of the NAO index. The flaw that is at the heart of our

discussion has been discussed extensively in the statistical literature under various guises.

For example, in his classic work on the analysis of variance, Scheffé (1959) has an extensive

discussion about making multiple comparisons between sample means of subsets of the data

after viewing the data. The flaw has also been discussed recently in this journal by Lund

and Reeves (2002) in the context of the detection of undocumented change points in a time

series. Their work considers the proper statistical evaluation of a test for hypothesized

changes between two trends, whereas we concentrate on the task of testing for a single

trend at the end of a series. Their conclusions are quite similar to ours, as is their remedy

of constructing a more stringent test with the help of computer experiments. Their more

stringent test is based upon a null hypothesis of Gaussian white noise, but they speculated

that further adjustments to their test would be needed for ‘heavily correlated errors.’ In

fact, we find (Section 4) that even weak autocorrelations are enough to change substantially

the actual level of significance.
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The NAO index has been analyzed in a number of papers, but Wunsch (1999) does so in

the context of examining it as a realization of a stationary process. He shows that simulated

time series from stationary processes that are reasonable models for the NAO often exhibit

‘regimes’ (i.e., long stretches during which the time series is consistently above or below its

long term mean). While his discussion focuses on these regimes, he briefly notes there is ‘. . .

a period, particularly since about 1960, of an apparent trend’ in the actual NAO series, but

also points out that portions of the simulated series also have similar ‘trends,’ concluding

that ‘one must . . . be wary of apparent trends.’ The particular NAO series he investigated

is the winter-average Lisbon minus Iceland pressure difference from 1864 to 1996, which is

evidently constructed somewhat differently from our NOA series and has 44 fewer values.

These differences are evidently why his conclusions are slightly different from what we state in

the next section. In particular, whereas his NAO series is consistent with a weak power-law

(red) process having a ‘near-white spectral density,’ and is described as ‘somewhat non-

Gaussian,’ our series appears to be indistinguishable from a realization of Gaussian white

noise. His analysis provides good motivation for entertaining weakly correlated anomalies,

as we do in Section 4.

2 False Trends in the Case of Uncorrelated Anomalies

To motivate our discussion, let us consider the NAO index Xl consisting of N = 177 yearly

winter-time atmospheric pressure values for the years l = 1824, . . . , 2000. For a particular

year l, we use the average of the January, February and March values for year l and the

value for the preceding December (l − 1). The left-hand plot of Figure 1 shows this index

versus time. The right-hand plot gives its sample autocorrelation sequence (ACS) for lags τ
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from one to twenty years, i.e.,

ρ̂τ =

∑2000−τ
l=1824 (Xl − X)(Xl+τ − X)

∑2000
l=1824(Xl − X)2

, τ = 1, . . . , 20,

where X =
∑

l Xl/N
.
= 0.4759 is the average of the 177 values. The lines above and below

the sample ACS depict upper and lower 95% confidence limits based upon the assumption

that the NAO index is a sample from a Gaussian (normally distributed) white noise process;

i.e., the true autocorrelations ρτ at nonzero lags are all zero (Fuller 1996). If we were to

observe many different samples of size 177 from such a process, then the sample ACS at any

particular lag should fall between these limits about 95% of the time. The fact that all of

the sample autocorrelations fall within these limits suggests we cannot reject the hypothesis

that there is no significant correlation in the NAO index. In addition, a plot (not shown) of

the quantiles of the NAO index versus the quantiles from a Gaussian distribution indicates

that the index follows this distribution quite closely (Chambers et al. 1983). This analysis

of the NAO index thus indicates it to be indistinguishable from a sample of Gaussian white

noise.

Mindful of the well-known hypothesis that the climate has significantly changed in the

recent past, let us visually examine the end of the NAO index in Figure 1. Arguably there

is a linear trend with a positive slope starting in 1969 (the dotted vertical line on the figure

is placed at 1968). To assess whether or not this trend is statistically significant, we might

be tempted to do the following. We entertain a model consisting of a line observed in the

presence of Gaussian white noise; i.e., we write

Xl = a + bl + εl, l = 1969, . . . , 2000, (1)

where a is an unknown intercept, b is an unknown slope, and εl represents a random anomaly

associated with the observation for year l. We assume that these anomalies are a sample

of Gaussian white noise with mean zero and unknown variance σ2
ε . With this formulation,
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we can estimate the line via least squares (Draper and Smith 1998). The estimated line is

drawn on Figure 1. The estimator for the slope b takes the form

b̂ =

∑
l(l − 1984.5)Xl∑
l(l − 1984.5)2

.
= 0.0516 year−1,

where the summations run from l = 1969 to l = 2000, and the value 1984.5 is the mean

value of the years 1969, . . . , 2000. We can calculate, say, a 95% confidence interval for the

unknown true slope b using the formula

b̂ ± t30(0.975)
σ̂ε√∑

l(l − 1984.5)2
,

where t30(0.975)
.
= 2.042 is the upper 97.5% percentage point of student’s t-distribution with

30 degrees of freedom, and

σ̂2
ε ≡ 1

30

∑

l

(Xl − â − b̂l)2 .
= 1.3419

is an estimator of σ2
ε , while â = 1

32

∑
l Xl− b̂ ·1984.5

.
= −101.87 is the least squares estimator

of a. This yields a 95% confidence interval for b of the form [0.006, 0.097]. Because this

interval does not contain the value zero, we seem to have evidence (at the 0.05 level of

significance) that the slope is indeed statistically different from zero. Moreover, if we do a

careful study of the residuals el ≡ Xl − â − b̂l, we find that there is no compelling reason

to doubt the validity of our assumptions about the anomalies εl. It appears that we have

evidence for the claim that the NAO index has an upward linear trend over the last 32 years.

There is, however, a source of concern here, namely, that we did not pick the starting

point of the trend a prior , but rather made this choice after we had examined the data.

The procedure that we just used to assess the significance of a linear trend really requires

that we set up the testing procedure prior to any examination of the data. To illustrate this

subtle but crucial point, let us conduct the following experiment.

Let Wl be a Gaussian white noise process with zero mean. This process is a sequence of

uncorrelated random variables (each with an expected value of zero) and hence by definition
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does not contain a linear trend. We can create a realization of a portion W1824, . . . , W2000

of this process covering the same years as the NAO index by sampling 177 deviates from a

Gaussian random number generator. One such realization is shown in Figure 2(a). What

happens if we decide to search for a linear trend somewhere over, say, the most recent 10 to

50 years? To automate this search, we can fit linear regression models to the last m years of

this simulated series, where we allow m to vary from 10 to 50. The model for a particular

m takes the form

Wl = am + bml + εm,t, l = 2000 − (m − 1), 2000 − (m − 2), . . . , 2000.

The fitted regression lines for the cases m = 10, 20, 30, 40 and 50 are drawn on Figure 2.

There are 41 fitted regression lines in all for 41 different segments, and we can test for

a significant slope for each segment using the same procedure as outlined above; i.e., we

compute an appropriate 95% confidence interval and see if the interval contains the value zero

or not. If any one of these 41 tests indicates a significant slope, we would claim (incorrectly)

that there is a linear trend over the corresponding segment. For the example shown in

Figure 2(a), it happens that all 41 tested slopes are declared to be insignificant, so we would

claim (correctly) that there is not a trend in any of the segments we have examined from

this simulated series. Figure 2(b) shows a second realization, for which our conclusion would

be different. Here we reject the null hypothesis for 18 of the 41 tested slopes, including two

of the 5 cases depicted on the plot (m = 20 and 40). We would now claim (incorrectly) that

there is a trend over several examined segments.

How often can we expect to claim there is a trend when there really isn’t one, as happened

with the series in Figure 2(b)? We can address this question by repeating our experiment a

large number of times (100,000). When we do so, we find at least one significant trend slightly

more than 38% of the time; i.e., we incorrectly identify a significant trend approximately 7.5

times more often than what would be indicated by the level of significance for an individual
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test (5%). The implications of this result on our claim that the NAO index has a significant

upward trend are alarming. If this index were a sample from a white noise process and if

we could repeatedly sample from this process, we would find a trend not just in 5% of the

samples, but rather in 38% of them. This casts serious doubt on the significance of a linear

trend in the NAO index.

3 More Realistic Assessment of Significance

Here we consider a more stringent procedure that offer better protection against falsely

identifying trends. The proper assessment of the significance of a trend over a stretch of

time that has been preferentially picked out by eye raises some difficult questions, some of

which are related to what statisticians call the “multiple comparison” problem. Reasonable

analytic solutions to this problem are difficult to obtain. In the present case, we propose a

simple method for providing a more realistic assessment of significance. The method relies

upon computer experiments and hence can be readily adapted to situations that deviate in

detail from our motivating example of the NAO index.

The computer experiment we discussed in Section 2 was based on the assumption that

we can equate a visual inspection for a linear trend at the end of the NAO index to a series of

statistical tests over the most recent 10 to 50 years. We found that, if we perform individual

tests for the null hypothesis of a zero slope at a level of significance αI = 0.05 and if we

declare there to be a significant slope if any one of the 41 tests rejects the null hypothesis,

the overall level of significance αO is unreasonably high, namely, αO = 0.38. If we were

to decrease αI , we can expect the corresponding αO to decrease also. The idea then is to

perform a series of computer experiments to determine what value of αI we would need

to use so that the overall significance of the test would be, say, αO = 0.05. The thickest

(bottom) curve in Figure 3 shows a plot of αO versus αI in which we varied αI from 0.0001
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to 0.05. The thin horizontal line indicates when αO = 0.05. This line cuts the thickest curve

when αI = 0.004. Hence, in order to have a test with an overall significance of αO = 0.05,

we need to perform the 41 individual tests at a level of significance of αI = 0.004 (i.e., rather

than using 95% confidence intervals, we increase the confidence level to 99.6%).

Let us now reconsider the example of the NAO index. If we fit 41 least squares lines

starting at years 1951, . . . , 1991 and ending in 2000 and if we test the null hypothesis of a

zero slope at a level of significance of αI = 0.004 using each of the 41 estimates slopes, we

find that we cannot reject the null hypothesis in any of the 41 cases. We conclude that our

preferentially picked linear trend is not significant at the 0.05 level of significance.

4 False Trends in the Presence of Undetected Weakly Correlated Anomalies

In Section 2 we entertained a white noise model in our experiment to demonstrate the

problems that can arise when we attempt to assess the significance of a linear trend at the

end of a time series. This choice for a model was motivated by the fact that we could not

reject the null hypothesis of white noise for the NAO index. We now demonstrate that the

shortness of the NAO index (177 values in all) limits our ability to assess the hypothesis of

uncorrelatedness. It is thus of interest to redo our experiments using correlated models that

might be appropriate for the NAO index.

One of the most commonly used models in climate research for a correlated time series is

a first order stationary autoregressive (AR) process Ul (von Storch and Zwiers 1999). This

process is defined via the equation

Ul = µ + φ(Ul−1 − µ) + εl,

where µ is the mean value of the process; φ is a parameter that is less than unity in magnitude

and is equal to the unit lag autocorrelation ρ1 for the process; and εl is a Gaussian white
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noise process with mean zero and variance σ2
ε . The theoretical ACS for this AR process is

given by φ|τ | at lag τ ; i.e., the ACS decays to zero exponentially. When φ = 0, the AR

process reduces to white noise. The popularity of this model stems in part from the fact

that it is related to a stochastic version of a first order differential equation.

Suppose now that the NAO index is actually a realization of an AR process with a small

unit lag autocorrelation (i.e., ρ1 = φ is small). Given a sample size of only 177, can we

expect to be able to detect a small amount of autocorrelation in the series? To address this

question, we can generate a realization of length N = 177 from an AR process with a given

nonzero φ and then subject it to the Ljung–Box portmanteau test for white noise (Ljung

and Box 1978; Brockwell and Davis 1991). This test is based upon the test statistic

TK = N(N + 2)
K∑

τ=1

ρ̂2
τ

N − τ
,

where K is typically chosen to be much smaller than N , and ρ̂τ is the sample ACS for

the realization (here we set K = 10, but we also obtained similar results using K = 5

and 20). The test consists of comparing TK to an upper percentage point (say 95%) of a

chi-square distribution with K degrees of freedom. If TK exceeds this percentage point, we

have evidence for rejecting the white noise hypothesis. By repeating this procedure many

times (100,000), we can determine the probability that the portmanteau test will be able

to correctly reject the null hypothesis that this sample of 177 values is from a white noise

process. For φ = 0.1 and 0.2, we find this probability to be, respectively, 0.12 and 0.41.

Thus, if we were to examine many different time series, each of which is a realization of

a first order AR process with φ = 0.2, the portmanteau test will correctly reject the null

hypothesis of white noise for about 41% of these series, but the majority of these series

(59%) will be declared to be indistinguishable from white noise. The situation is even more

unfavorable when φ = 0.1. If we strengthen the correlation by increasing φ, the ability of the

portmanteau test to detect autocorrelation improves. For φ = 0.25 and 0.3, the probabilities
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of correctly rejecting the white noise hypothesis are, respectively, 0.62 and 0.81. We also note

that the poor performance of the portmanteau test when φ = 0.1 and 0.2 is not unique to this

particular test. Similar results hold for other tests that can be used to detect autocorrelation,

including the cumulative periodogram test, the turning point test, the difference-sign test

and the rank test (Brockwell and Davis 1991).

To allow for the possibility that the NAO index consists of undetected weakly correlated

anomalies, let us repeat the experiment described in Section 2 by replacing W1824, . . . , W2000

with a realization from an AR processes with φ = 0.1. As was true in the case of white

noise, this process by definition does not contain a linear trend. With the experiment so

modified we now incorrectly find a significant trend about 49% of the time; i.e., we are now

incorrect approximately 10 times more often than indicated by the 5% level of significance

for an individual test. If we now redo the entire experiment letting φ = 0.2, we incorrectly

find a significant trend about 59% of the time.

As for the corrective procedure described in Section 3, since the portmanteau test is un-

likely to detect weak autocorrelation, we extend the computer experiments to AR processes,

leading to the middle (φ = 0.1) and upper (φ = 0.2) curves in Figure 3. We see that, under

these two scenarios, we need to set αI = 0.002 and αI = 0.0008 to achieve αO = 0.05.

In summary, if the NAO index were in fact a sample of a weakly correlated AR process,

we are unlikely to be able to detect this correlation due to the limited number of observations.

The presence of this undetected weak correlation has the undesirable effect of increasing the

probability of our incorrectly identifying a significant trend at the end of the series to the

point that we will be finding a trend more likely than not!
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5 Discussion

Statistical significance as it is commonly presented in introductory textbooks on statistics is

cast in terms of a well-defined repeatable experiment designed to test a scientific hypothesis.

For example, we might entertain the null hypothesis that a particular coin is fair and design

an experiment in which we count the number of observed “heads” after flipping the coin a

certain number of times. We can then evaluate the null hypothesis by comparing the results

of our experiment with statistics dictated by the binomial distribution.

The analysis of climate time series such as the NAO index does not fit well into this

simple mindset; i.e., while we can flip a coin as many times as we like to obtain multiple

realizations, we only have a single realization of the NAO index. Because the study of the

climate is empirical rather than experimental, we often find ourselves entertaining scientific

hypotheses after we have already obtained and studied the data in some detail. The main

point of this cautionary note is that the notion of statistical significance can be quite subtle

in this setup and that caution is called for in the use of statistical tests. We need to beware

of the effect of preselection (“eyeballing” in our example) when evaluating the significance

of certain results. To this end, and in keeping with recommendations by Wunsch (1999) and

Lund and Reeves (2002), we advocate the use of computer experiments – in the spirit of the

ones presented in this paper – to guard against unwarranted claims of statistical significance.

The key here is to come up with some way of modeling (at least roughly) the preselection

procedure. In our case, we were able to model preselection as a series of elementary tests

that then forms the basis for obtaining a more realistic overall assessment of significance.

Other ways of modeling preselection in our example can be entertained, but the point that

we wish to make is that it is incumbent upon us to model preselection in some manner and

to temper claims of statistical significance by thinking carefully about the subtleties raised

by preselection.
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FIGURE CAPTIONS

Figure 1. (a) NAO index and (b) its sample autocorrelation sequence (ACS) for lags of

one to twenty years. The vertical dotted line in (a) marks the year 1968, while the thick

line shows a linear least squares fit for the data from 1969 to 2000. In (b), the curves above

and below the sample ACS are upper and lower 95% confidence limits under the assumption

that the NAO index is a realization of Gaussian white noise.

Figure 2. Two time series simulated from a white noise process, along with regression lines

fit over the last 10, 20, 30, 40 and 50 years of data.

Figure 3. Plot of overall significance αO versus assumed significance αI for individual tests.

As discussed in Section 4, the curves are for time series whose lag one autocorrelations are

φ = 0 (i.e., white noise), 0.1 and 0.2.
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Figure 1: (a) NAO index and (b) its sample autocorrelation sequence (ACS) for lags of one

to twenty years. The vertical dotted line in (a) marks the year 1968, while the thick line

shows a linear least squares fit for the data from 1969 to 2000. In (b), the curves above and

below the sample ACS are upper and lower 95% confidence limits under the assumption that

the NAO index is a realization of Gaussian white noise.
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Figure 2: Two time series simulated from a white noise process, along with regression lines

fit over the last 10, 20, 30, 40 and 50 years of data.
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Figure 3: Plot of overall significance αO versus assumed significance αI for individual tests.

As discussed in Section 4, the curves are for time series whose lag one autocorrelations are

φ = 0 (i.e., white noise), 0.1 and 0.2.
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