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Overview

• will discuss notion of characteristic scale, noting its lack of a
standard definition

• will consider new definition in terms of discrete wavelet trans-
form (DWT) as formulated by Daubechies, Mallat and others

• will present background on DWT, the wavelet variance (WV)
and its sampling theory for intrinsically stationary Gaussian
processes

• will then formulate definition of characteristic scale in terms of
WV and present large-sample theory for its estimation

• will give four examples of time series of geophysical interest

• will conclude with comments on extensions of potential interest
in telemedicine

1



Characteristic Scale: I

• geophysical time series often seem describable as a series of
‘states’ or ‘events’ whose durations tend to cluster around a
value known as a characteristic scale (CS)
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Characteristic Scale: II

• CS not defined outside of summary statistics used to extract it
from a time series Xt, t ∈ Z (set of all integers)

• von Storch and Zwiers (1999) discuss several definitions when
Xt is taken to be a stochastic process

• one definition quantifies ‘memory’ of process

• assuming P[Xt+τ > 0 |Xt > 0] > 0.5 for small lags τ > 0,
but P[Xt+τ > 0 |Xt > 0] = 0.5 at large lags, CS is smallest
τ such that latter holds; i.e., CS is length of time needed for
process to ‘forget’ its current positive state

• definition intuitively appealing, but of limited use: e.g., if Xt
is a first order autoregressive process (AR(1)), τ = ∞
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Characteristic Scale: III

• second attempt at a definition (assumes Xt is stationary process)

• suppose var {Xt} = σ2

• form sample mean of X1, X2, . . . , XN , i.e.,

X =
1

N

NX

t=1

Xt, and consider its variance var
©
X

™

• suppose Y1, Y2, . . . , YN are independent & identically distrib-
uted random variables, also with variance σ2

• implies var
©
Y

™
= σ2/N

• equivalent sample size N 0 defined by setting var
©
X

™
= σ2/N 0

• limit of N/N 0 as N → ∞ defines a decorrelation time τD, a
reasonable definition of CS for some – but not all – time series
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Characteristic Scale: IV

• can show that
τD =

X

k∈Z
ρk,

where ρk = cov {Xt+k,Xt}/σ2 is autocorrelation sequence
(ACS) for Xt

• for an AR(1) process, above reduces to τD = (1 + ρ1)/(1− ρ1)

• for other stationary processes, can use estimated ACS to esti-
mate τD (doing so can be tricky!)

• von Storch and Zwiers (1999) note that variance of other sample
statistics can be used in a similar manner to define a CS

• other definitions in literature involve structure functions (semi-
variograms), fractal dimension, detrended fluctuation analysis,
. . .
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Wavelet-based Definition of Characteristic Scale

• theme of talk: a wavelet-based definition of CS

• discrete wavelet transform (DWT) describable as scale-based

• to fix ideas, consider Haar maximal overlap DWT, which yields
wavelet coefficients W Haar

τ,t for integer scale τ as follows:

2W Haar
τ,t =

1

τ

τ−1X

l=0

Xt−l −
1

τ

τ−1X

l=0

Xt−τ−l,

i.e., a difference in adjacent averages spanning τ values

• if ‘event’ near Xt is of duration τ , |W Haar
τ,t | will tend to be large

• summary of ‘largeness’ of |W Haar
τ,t | is var {W Haar

τ,t }, which is known
as the wavelet variance (WV)

• large var {W Haar
τ,t } should provide basis for useful CS definition
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Wavelet Variance for Subtidal Sea-level Time Series

• right-hand plot shows decomposition of sample variance of Xt
via empirical wavelet variances at scales 1, 2, 4, 8, 16, 32 and
64, plus a term (the asterisk) summarizing all higher scales
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Background on Wavelet Variance: I

• wavelet variance well-defined for an intrinsically stationary process
Xt of integer order d ≥ 0, so let’s review this concept

• if d = 0, Xt is a stationary process; i.e., both E{Xt} and
cov {Xt+τ ,Xt} = sτ – its autocovariance sequence (ACVS) –
exist and are finite and independent of t

• if d > 0, subjecting Xt to dth order backward difference filter

yields a stationary process with ACVS s
(d)
τ , namely,

X
(d)
t =

dX

k=0

µ
d

k

∂
(−1)kXt−k =






Xt −Xt−1 for d = 1;

Xt − 2Xt−1 + Xt−2 for d = 2;
...,

whereas X
(d−1)
t , . . . , X

(1)
t & X

(0)
t = Xt are all nonstationary

(an example being a random walk process)
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Background on Wavelet Variance: II

• let h1,l, l = 0, 1, . . . , L1 − 1, be unit-level Daubechies wavelet

filter of even width L1 with normalization
P

l h
2
1,l = 1/2

• L1 = 2 case is the Haar filter: h1,0 = 1
2, h1,1 = −1

2

• for L1 ≥ 4, use of h1,l equivalent to subjecting output from

order L1
2 backward difference filter to width L1

2 low-pass filter

• can use unit level filter to construct jth level filter hj,l of width

Lj = (2j − 1)(L1 − 1) + 1

• jth level wavelet coefficient process for Xt given by

Wj,t =

Lj−1X

l=0

hj,lXt−l
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Background on Wavelet Variance: III

• coefficient Wj,t is proportional to changes in adjacent weighted
averages with effective scale (span) of τj = 2j−1

• assuming Xt is a dth order intrinsically stationary process and
L1 ≥ 2d, wavelet coefficient process Wj,t is stationary

• wavelet variance ν2
j for Xt at scale τj is variance of Wj,t:

ν2
j = var {Wj,t}

• if Xt is stationary,

var {Xt} =
∞X

j=1

ν2
j ,

in which case ν2
j is contribution to overall variance due to

changes in adjacent weighted averages over scale τj
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Background on Wavelet Variance: IV

• on the hand,
PJ

j=1 ν2
j → ∞ as J → ∞ if Xt is intrinsically

stationary of order d ≥ 1, but ν2
j can still be interpreted as

measuring variability of changes in adjacent weighted averages

• can express ν2
j in terms of ACVS s

(d)
τ for underlying stationary

component X
(d)
t for Xt:

ν2
j = s

(d)
0

Lj−d−1X

l=0

≥
h

(d)
j,l

¥2
+2

Lj−d−1X

τ=1

s
(d)
τ

Lj−d−1−τX

l=0

h
(d)
j,l h

(d)
j,l+τ ,

where h
(d)
j,l is dth-order cumulative summation of hj,l (i.e.,

h
(1)
j,l =

Pl
n=0 hj,n, while h

(2)
j,l =

Pl
n=0 h

(1)
j,n and so forth)
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Estimation Theory for Wavelet Variance: I

• given a time series X0, X1, . . . , XN−1, can compute level j
wavelet coefficients for indices Lj − 1 ≤ t ≤ N − 1 assuming
Mj = N − Lj + 1 > 0

• sufficient (but not necessary) condition for Wj,t to be a zero
mean stationary process is L1 > 2d (Wj,t is necessarily sta-
tionary if L1 = 2d, but might not have zero mean)

• assuming L1 chosen such that Wj,t is a zero mean stationary
process, then ν2

j = E{W 2
j,t} and hence

ν̂2
j =

1

Mj

N−1X

t=Lj−1

W 2
j,t

is unbiased estimator of wavelet variance ν2
j

12



Estimation Theory for Wavelet Variance: II

• can deduce second moment properties of ν̂2
j under assumption

that Wj,t’s are multivariate Gaussian: for j ≤ k, have

cov {ν̂2
j , ν̂

2
k} =

2

Mj

Mk−1X

τ=−(Mk−1)

µ
1− |τ |

Mk

∂
s2
j,k,τ

+
2

MjMk

Lk−2X

t=Lj−1

N−1X

u=Lk−1

s2
j,k,t−u,

where sj,k,τ is cross-covariance sequence for bivariate station-
ary processes Wj,t & Wk,t:

sj,k,τ = cov
©
Wj,t+τ ,Wk,t

™
=

Lj−d−1X

l=0

h
(d)
j,l

Lk−d−1X

m=0

h
(d)
k,ms

(d)
τ−l+m
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Estimation Theory for Wavelet Variance: III

• if Mj is not too small (≥ 100 or so), useful approximation is

cov {ν̂2
j , ν̂

2
k} ≈

2Aj,k

Mj
, where Aj,k =

∞X

τ=−∞
s2
j,k,τ

• can estimate Aj,k (and hence cov {ν̂2
j , ν̂

2
k}) via

Âj,k =
1

2



ν̂2
j ν̂

2
k + 2

Mk−1X

τ=1

ŝj,τ ŝk,τ



 ,

where ŝj,τ is biased estimator of ACVS:

ŝj,τ =
1

Mj

N−1−τX

t=Lj−1

Wj,t+τWj,t, 0 ≤ τ ≤Mj − 1
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Estimation Theory for Wavelet Variance: IV

• under mild conditions, ν̂2
j is asymptotically normal with mean

ν2
j and large-sample variance 2Aj,j/Mj

• to summarize, ν̂2
j is an unbiased estimator of νj with tractable

statistical properties

• in particular, can determine var {ν̂2
j} and cov {ν̂2

j , ν̂
2
k} by sub-

stituting readily computable estimates Âj,k for Aj,k in expres-
sions above
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Wavelet-Based Definition of Characteristic Scale: I

• interpretation of WV as scaled-based analysis of variance mo-
tivates the following definition for CS (basic idea is to consider
τj’s where ν2

j is large compared to neighboring values)

• suppose Xt is intrinsically stationary with WVs such that ν2
j ≥

ν2
j±1 for some j ≥ 2, with strict inequality holding in at least

one case

• fit a quadratic yk = a + bxk + cx2
k passing through (xk, yk) =

(log2(τk), log2(ν
2
k)), k = j − 1, j, j + 1

• define a local CS as location at which quadratic is maximized:

τc,j = 2−β1/β2τj, where β1 =
yj+1 − yj−1

2
& β2 = yj+1−2yj+yj−1

16



Wavelet-Based Definition of Characteristic Scale: II

• note: τj/
√

2 ≤ τc,j ≤ τj
√

2

• note: ν2
j−1 < ν2

j = ν2
j+1 > ν2

j+2 yields τc,j = τc,j+1 = τj
√

2

• in addition, if Xt has local CS τc,j such that ν2
j > ν2

k for all

k ∈ Z+ (the positive integers) excluding k = j − 1, j, j + 1,
then Xt is said to have global CS τc = τc,j

• let’s look at some examples of theoretical WV curves possessing
local and global CSs
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First-Order Autoregressive Process

• AR(1) process defined by Xt = φXt−1+≤t, where here φ = 0.7

and ≤t is white noise (τc and decorrelation time τD = 1+φ
1−φ

similar, with agreement getting better as φ→ 1)
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Sum of AR(1) & Fractionally Differenced Processes

• FD process has ‘long-memory’ – CS measure τD =
P

k∈Z ρk =
∞ (reflecting asymptotic decay rate of ρk); by contrast, wavelet-
based τc is finite (concentrates on localized properties of Xt)
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Sum of AR(1) & White Processes

• example of process with a local CS that is not also a global CS
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Sum of Two AR(1) Processes

• example of process with two local CSs, one of which is also a
global CS; AR(1) parameters are φ = 0.65 and φ = 0.99
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Comments on Definition of Wavelet-Based CS

• natural definition of CS would involve WV defined over a con-
tinuum of scales from a continuous wavelet transform (CWT)

• for AR(1) processes, CWT-based CS and DWT-based τc using
Haar wavelet are virtually the same

• DWT-based CS is preferable due to its greater degree of statis-
tical tractability

• τc defined in terms of quadratic fit in log/log space, which is
preferable to linear/linear, linear/log or log/linear spaces, also
because of considerations involving agreement with CWT and
statistical tractability
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Estimation of Wavelet-Based Characteristic Scale

• suppose we have a time series that is a realization of a portion
X0, X1, . . . , XN−1 of an intrinsically stationary process of
order d

• given an appropriately chosen wavelet filter and an unbiased
estimator ν̂2

j for levels j = 1, . . . , J0, suppose there is some

1 < j < J0 such that ν̂2
j ≥ ν̂2

±j (with strict inequality holding
in at least one case)

• conditional on observed pattern and estimating yk = log2(ν
2
k)

using ŷk = log2(ν̂
2
k), obvious estimator of τc,j is

τc,j = 2−β̂1/β̂2τj, where β̂1 =
ŷj+1 − ŷj−1

2
& β̂2 = ŷj+1−2ŷj+ŷj−1
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Statistical Properties of CS Estimator: I

• assuming [ν̂2
j−1, ν̂

2
j , ν̂

2
j+1]

T is multivariate Gaussian with mean
& covariance given by large-sample theory, delta method says
h
log2

≥
ν̂2
j−1

¥
, log2

≥
ν̂2
j

¥
, log2

≥
ν̂2
j+1

¥iT
=

£
ŷj−1, ŷj, ŷj+1

§T

is approximately Gaussian with mean
h
log2

≥
ν2
j−1

¥
, log2

≥
ν2
j

¥
, log2

≥
ν2
j+1

¥iT
=

£
yj−1, yj, yj+1

§T

and large-sample covariance matrix Σ whose (m,n)th element
is

cov {ν̂2
j0+m, ν̂2

j0+n}

ν2
j0+mν2

j0+n log2(2)
+2

var {ν̂2
j0+m} var {ν̂2

j0+n} + (cov {ν̂2
j0+m, ν̂2

j0+n})
2

ν4
j0+mν4

j0+n log2(2)
;

here j0 = j − 1 and 0 ≤ (m,n) ≤ 2
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Statistical Properties of CS Estimator: II

• note that"
β̂1

β̂2

#

=

∑
−1

2 0 1
2

1 −2 1

∏


ŷj−1
ŷj

ŷj+1



 ≡ H




ŷj−1
ŷj

ŷj+1





• hence [β̂1, β̂2]
T is asymptotically Gaussian with mean [β1, β2]

T

and covariance HΣHT

• letting κ̂ = −β̂1/β̂2, delta method says κ̂ is asymptotically
Gaussian with mean −β1/β2 and large-sample variance

σ2
κ̂ =

var {β̂1}
β2

2

+
β2

1 var {β̂2}
β4

2

+
var {β̂1} var {β̂2} + 2(cov {β̂1, β̂2})2

β4
2

+
3β2

1(var {β̂2})2

β6
2

− 2β1 cov {β̂1, β̂2}
β3

2

25



Statistical Properties of CS Estimator: III

• final use of delta method says τ̂c,j is asymptotically normal
with mean τc,j and large-sample variance τ2

c,j σ2
κ̂ log2

e(2)

• approximate 95% confidence interval (CI) for τc,j given by
h
2−1.96σκ̂τ̂c,j, 2

1.96σκ̂τ̂c,j
i

• in practical applications, can use ‘plug-in’ estimate for σ2
κ̂

• caveat: approach conditioned upon ν̂2
j ≥ ν̂2

j±1 correctly indi-
cating the presence of a local CS (asymptotically OK)

• sanity check: generate realizations of trivariate Gaussian with
mean [ν̂2

j−1, ν̂
2
j , ν̂

2
j+1]

T & covariance matrix given by large sam-
ple theory, and look at proportion of realizations with maximum
at j (if large, have some faith observed pattern actually exists)
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Monte Carlo Experiments: I

• for each of four processes and for sample sizes N ranging from
256 to 8192, generated 1000 realizations using exact simulation
method for AR and FD processes

• recorded number of realizations M for which peak there was a
peak in Haar WV curve at either proper level j or j ± 1

• for each of these M realizations, estimated CS and computed
95% CI using plug-in procedure

• following tables show average of estimated CSs and percentage
of times CIs trapped true CS
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Monte Carlo Experiments: II

• AR(1) process (φ = ρ1 = 0.7)
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Monte Carlo Experiments: III

• results for AR(1) process (φ = ρ1 = 0.7)

N τc τ̂c M % coverage
256 4.53 4.75 953 88.6
512 4.69 992 88.2
1024 4.68 999 87.9
2048 4.66 1000 87.1
4096 4.60 1000 90.0
8192 4.57 1000 94.4
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Monte Carlo Experiments: IV

• sum of AR(1) & FD processes (φ = 0.75 & δ = 0.45)
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Monte Carlo Experiments: V

• results for sum of AR(1) & FD processes (φ = 0.75 & δ = 0.45)

N τc τ̂c M % coverage
256 5.87 6.58 942 89.2
512 6.16 981 89.2
1024 5.88 1000 90.8
2048 5.84 1000 90.5
4096 5.81 1000 92.6
8192 5.83 1000 93.8
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Monte Carlo Experiments: VI

• sum of AR(1) & white noise processes (φ = 0.95)
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Monte Carlo Experiments: VII

• results for sum of AR(1) & white noise processes (φ = 0.95)

N τc τ̂c M % coverage
256 30.42 33.51 798 87.0
512 33.51 838 86.8
1024 33.51 900 89.1
2048 32.49 964 88.5
4096 31.73 999 91.4
8192 31.41 1000 93.1

33



Monte Carlo Experiments: VIII

• sum of two AR(1) processes (φ = 0.65 & 0.99)
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Monte Carlo Experiments: IX

• first CS of sum of two AR(1) processes (φ = 0.65 & 0.99)

N τc τ̂c M % coverage
256 3.76 4.08 935 90.4
512 4.00 971 91.0
1024 3.87 997 92.6
2048 3.84 999 96.7
4096 3.80 1000 97.2
8192 3.76 1000 96.1
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Monte Carlo Experiments: X

• second CS of sum of two AR(1) processes (φ = 0.65 & 0.99)

N τc τ̂c M % coverage
256 122.96 — — —
512 89.31 454 86.8
1024 139.31 690 88.0
2048 149.60 703 88.9
4096 152.97 757 89.8
8192 153.43 775 86.7

• note: 8192/τc
.
= 67; i.e., small number of replications of CS
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Monte Carlo Experiments: XI

• tendency for τ̂c to be positively biased

• closeness of coverage percentage to nominal 95% tends to de-
pend on true τc: the smaller τc is, the better the coverage rate

• for small sample sizes, cover rate tends to be below 95%

• coverage rates tend to improve with increasing sample size, as
asymptotic theory would suggest

• bottom line: experiments indicate large-sample theory gives
useful – but admittedly not perfect – approximations to vari-
ability in τ̂c for moderate sample sizes

• note: similar results hold in experiments using Daubechies
wavelet filters of lengths L1 = 4 and 8
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Four Real-World Examples

• global temperature record

• coherent structures in river flow

• Madden–Julian atmospheric oscillation

• medium multiyear Arctic sea ice

38



Global Temperature Record: I

• monthly global temperature anomalies (land and water com-
bined) from Jan. 1880 to Dec. 2009 (N = 1560; data obtained
from NOAA Web site); note prominent trend upwards
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Global Temperature Record: II

• τ̂c,5
.
= 14.9 months with associated 95% CI of [9.6, 23.0]
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Global Temperature Record: III

• Tsonis et al. (1998) detrended series using singular spectrum
analysis and used residuals to estimate a CS of 20 months via
involved procedure based on cumulative sums

• interpreted CS as being due to influence of El Niño/La Niña
cycles on global temperatures

• 95% CI for wavelet-based CS traps 20 months, but no need
for explicit detrending due to differencing operations embedded
within wavelet filters (eliminates trends that can be modelled by
low-order polynomials, as verified here by use of length L1 = 8
wavelet filter)
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Coherent Structures in River Flows: I

• first 5000 values from time series of length N = 29972 sampled
every 1

25 sec. from Univ. of WA velocity profiler set on bottom
of river estuary downstream from sill pointing upwards
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Coherent Structures in River Flows: II

• videos of river surface clearly show quasi-periodic upwellings
from river appearing as temporary ‘blobs’ (coherent structures),
with each blob dissipating within a second or so, with another
one forming immediately afterwards

• quantifying this little-understood phenomenon using standard
Fourier-based spectral analysis problematic because it appears
as a small perturbation in a low-frequency rolloff

• by contrast, as shown on next overhead, WV clearly displays a
peak, rendering phenomenon as interpretable in terms of a CS

• time-evolving properties of blobs can be studied by estimating
CSs for portions of time series spanning successive 20-minute
time intervals
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Coherent Structures in River Flows: III

• τ̂c,6 = 1.6 seconds with associated 95% CI of [1.4, 1.9]

10!1 100 101 102
104

105

106

scale (seconds)

Ha
ar

 w
av

el
et

 v
ar

ia
nc

e

44



Madden–Julian Atmospheric Oscillation: I

• 200 hectopascal velocity potential anomalies, a Madden–Julian
oscillation (MJO) index from NOAA Web site (N = 2354 val-
ues covering 32+ years with sampling interval of 5 days)
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Madden–Julian Atmospheric Oscillation: II

• Madden and Julian (1994) originally discussed 40–50 day oscil-
lation appearing in various atmospheric time series collected in
tropics

• MJO now called 30–60 day or intraseasonal oscillation
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Madden–Julian Atmospheric Oscillation: III

• τ̂c,2 = 12.7 days with associated 95% CI of [11.9, 13.5]
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Madden–Julian Atmospheric Oscillation: IV

• since scale of τ is associated with periods in interval [2τ, 4τ ],
CS point estimate of 12.7 days matches up with 25–51 day
oscillations and hence with description of MJO as a 30–60 day
oscillation

• deduction of MJO from Fourier-based spectral analysis prob-
lematic due to lack of standard way to determine beginning/end
of frequency interval associated with broadband oscillations

• notion of CS bypasses this difficulty, opening up means of objec-
tively tracking how MJO varies across time and over different
time series
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Madden–Julian Atmospheric Oscillation: V

• τ̂c,7
.
= 304 days with associated 95% CI of [79, 1170]

101 102 103
10!3

10!2

10!1

100

scale (days)

Ha
ar

 w
av

el
et

 v
ar

ia
nc

e

49



Madden–Julian Atmospheric Oscillation: VI

• interval of periods associated with second CS suggests an oscil-
lation spanning two to three years that is about 5 times weaker
than MJO

• presence of this weak CS is conditional upon peak pattern in
WV being correct

• as example of use of sanity check, generated 100, 000 realiza-
tions of trivariate Gaussian with mean [ν̂2

6, ν̂
2
7, ν̂

2
8]T & covari-

ance matrix given by large sample theory

• of these realizations, 60% obeyed observed ν̂2
6 ≤ ν̂2

7 ≥ ν̂2
8 pat-

tern, but remaining 40% did not, casting considerable doubt on
validity of observed peak pattern

• similar test on MJO-related CS yielded 99, 916 realizations with
observed peak pattern and only 84 without
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Medium Multiyear Arctic Sea Ice: I

• part of ice thickness measurements spaced a meter apart from
a 50 km track collected using an upward-looking sonar on a
submarine (data from U.S. National Snow and Ice Data Center)
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Medium Multiyear Arctic Sea Ice: II

• binary series indicating presence (1) or absence (0) of medium
multiyear Arctic sea ice, which by definition has a thickness
between 2 and 5 m
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Medium Multiyear Arctic Sea Ice: III

• τ̂c,7
.
= 48.9 m with associated 95% CI of [27.3, 87.5]
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Medium Multiyear Arctic Sea Ice: IV

• CS is indicator of ‘typical’ extent of medium multiyear ice

• in face of other evidence that Arctic climate is dramatically
changing, question of considerable interest is how stable CSs
for different ice types are both spatially and temporally

• note: evidence of long-range dependence in ice thickness mea-
surements implies long-range dependence in indicator series
also, meaning that decorrelation time τD would be infinite for
the medium multiyear ice indicators, rendering it useless as a
measure of CS

• by contract, wavelet-based CS is finite and provides a useful
summary of one aspect of indicator series
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Concluding Remarks: I

• CS based upon peaks in WV curves has certain advantages over
other definitions for CS, including

− use of well-defined scale-based decomposition of variance af-
forded by DWT

− ability to focus on localized properties of process rather than
asymptotic decay rates of autocorrelation sequences

− ability to handle certain nonstationary processes

− ability to handle series with trends well approximated by
low-order polynomials

− availability of tractable large-sample theory that is applicable
to time series of moderate size
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Concluding Remarks: II

• avenues for future research

− extension to non-Gaussian process (including better handling
of indicator series)

− handling irregularly sampled time series

− extension to two-dimensional data, with potential applica-
tions in medical image processing (telemedicine?)
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