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Introduction

• goal: study changes in North Pacific atmospheric circulation

• will concentrate on two atmospheric time series

– Fig. 1: average Nov–Mar Aleutian low sea level pressure field

(North Pacific index (NPI))

– Fig. 2: air temperatures at Sitka, Alaska

• shortness of both series (100 and 146 points) is major difficulty

• one approach is through modeling

– pure stochastic

– deterministic signal + stochastic noise

– other possibilities (nonlinear dynamics, SSA, . . . )

• models have different implications for extrapolations

• will fit/assess/compare three models

1. short memory stochastic model

2. long memory stochastic model

3. signal + noise model:

square wave oscillator (SWO) & white noise
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Figure 1: Plot of the NP index (thin curve) and a five year running average of the index
(thick). The thin horizontal line depicts the sample mean (1009.8) for the index.
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Figure 2: Plot of Sitka winter air temperatures (broken curve). The thin horizontal line
depicts the sample mean (2.13) for the series.
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Overview of Remainder of Talk

• describe short & long memory stochastic models

• describe rationale for SWO model (matching pursuit)

• discuss estimation of model parameters

• look at fitted models

• discuss goodness of fit tests used to assess models

(will find that all 3 models fit equally well)

• discuss how well we can expect to discriminate amongst models

• look at implications of models

• brief discussion on combining model together (model averaging)

• conclusions
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Short & Long Memory Models

• will consider two Gaussian stationary models

(stationarity reasonable; Gaussianity open to question)

1. first order autoregressive process (AR(1))

2. fractionally differenced (FD) process

• both processes fully specified by 3 parameters

(and hence both are ‘equally simple’)

1. process mean

2. parameter that controls process variance

3. parameter controlling shape of both

– autocovariance sequence (ACVS) and

– spectral density function (SDF)

• essential difference between processes

– AR(1) ACVS dies down quickly (exponentially),

so process said to have ‘short memory’

– FD ACVS dies down slowly (hyperbolically),

so process said to have ‘long memory’ (LM)
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Short Memory Stochastic Model

• regard data as realization of portion X0, X1, . . . , XN−1

of stationary Gaussian AR(1) process:

Xt − µX = φ(Xt−1 − µX) + εt =

∞∑
k=0

φkεt−k

where

1. µX = E{Xt} is process mean

2. εt is white noise with mean zero and variance σ2
ε

3. |φ| < 1 (if φ = 0, then Xt is white noise)

• ACVS and SDF given by

sX,τ ≡ cov{Xt,Xt+τ} =
σ2

ε φ
|τ |

1 − φ2
& SX(f ) =

σ2
ε

1 + φ2 − 2φ cos(2πf )
,

where τ ∈ Z (set of all integers) & |f | ≤ 1/2

• default model for correlated time series in climatology

• related to discretized 1st order differential equation

(has single damping constant dictated by φ)

• can define integral time scale (decorrelation measure):

τD ≡ 1 + 2

∞∑
τ=1

sX,τ

sX,0
=

1 + φ

1 − φ
;

implies subseries Xn
τD�, n ∈ Z, is close to white noise
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Long Memory Stochastic Model

• regard data as realization of portion Y0, Y1, . . . , YN−1

of stationary Gaussian FD process:

Yt − µY =

∞∑
k=0

Γ(1 + δ)

Γ(k + 1)Γ(1 + δ − k)
(−1)k(Yt−k − µY ) + εt

=

∞∑
k=0

Γ(1 − δ)

Γ(k + 1)Γ(1 − δ − k)
(−1)kεt−k

where

1. µY = E{Yt} is process mean

2. εt is white noise with mean zero and variance σ2
ε

3. |δ| < 1/2 (if δ = 0, then Yt is white noise; LM if δ > 0)

• ACVS and SDF given by

sY,τ =
σ2

ε sin(πδ)Γ(1 − 2δ)Γ(τ + δ)

πΓ(τ + 1 − δ)
& SY (f ) =

σ2
ε

|2 sin(πf )|2δ

• for large positive τ and small positive f , have approximately

sY,τ ∝ τ 2δ−1 & SY (f ) ∝ 1/f 2δ

• related to aggregation of 1st order differential equations

involving many different damping constants

• integral time scale τD is infinite
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Square Wave Oscillation Model: I

• Minobe (1999): NPI contains ‘regime’ shifts

• regime is time interval over which series is essentially

either > or < its long term average value

• Fig. 1: plot of NPI and 5 year running mean

– data for 1901–23 are essentially > sample mean

(exceptions are 1905 & 1919)

– called positive regime with duration of 23 years

– clearly identified in 5 year running mean

– latter is essentially < sample mean for 1924–46

(but not strictly so)

• Minobe (1999): regimes characterized by

– 20 & 50 year oscillations

– rapid transitions that ‘cannot be attributed to

a single sinusoidal-wavelike variability’

• can use matching pursuit to assess Minobe’s claim
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Matching Pursuit: Basics

• idea: approximate time series Z ≡ [Z0, . . . , ZN−1]
T

using small # of vectors selected from a large set (‘dictionary’)

• let D ≡ {Dk : k = 0, . . . , K − 1} be dictionary containing

K different vectors

– Dk = [Dk,0, Dk,1, . . . , Dk,N−1]
T

– vectors normalized to have unit norm (‘energy’):

‖Dk‖2 =

N−1∑
t=0

|Dk,t|2 = 1

– Dk can be real- or complex-valued

– assume D to be highly redundant in order to find Dk

well matched to Z

• matching pursuit successively approximates Z using

orthogonal projections onto elements of D
(similar in spirit to step-wise regression)
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Matching Pursuit Algorithm: I

• for each Dk ∈ D, form approximation Ak ≡ 〈Z,Dk〉Dk, where

〈Z,Dk〉 ≡
N−1∑
t=0

ZtDk,t

(assumes Dk real-valued; can adjust if not so)

• define residuals Rk ≡ Z − Ak so that Z = Ak + Rk

• Ak and Rk are orthogonal; i.e., 〈Ak,Rk〉 = 0

• hence ‖Z‖2 = ‖Ak‖2 + ‖Rk‖2 = |〈Z,Dk〉|2 + ‖Rk‖2

• to minimize ‖Rk‖2, select k(1) such that∣∣〈Z,Dk(1)〉
∣∣ = max

Dk∈D
|〈Z,Dk〉|

• let A(1) & R(1) be approximation and residuals

• 1st stage of algorithm thus yields Z = A(1) + R(1)

• 2nd stage: use R(1) rather than Z in above

• yields R(1) = A(2) + R(2) with k(2) picked such that∣∣∣〈R(1),Dk(2)〉
∣∣∣ = max

Dk∈D

∣∣∣〈R(1),Dk〉
∣∣∣
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Matching Pursuit Algorithm: II

• after m such steps, have additive decomposition

Z =

m∑
n=1

A(n) + R(m) ≡ Ẑ(m) + R(m),

where Ẑ(m) is mth order approximation to Z

• also have ‘energy’ decomposition

‖Z‖2 =

m∑
n=1

‖A(n)‖2 + ‖R(m)‖2

=

m∑
n=1

∣∣∣〈R(n−1),Dk(n)〉
∣∣∣2 + ‖R(m)‖2,

where R(0) ≡ Z

• note: as m increases, ‖R(m)‖2 must decrease

(must reach zero under certain conditions)
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Square Wave Oscillation Model: II

• Fig. 3: construct D containing

1. vectors from discrete Fourier transform (sinusoids)

2. SWOs with periods of 2, . . . , N & all possible shifts

3. single cycles from SWOs (Haar wavelet vectors)

4. half cycles from SWOs (Haar scaling vectors)

• Fig. 4: result of applying matching pursuit to NPI

(after subtraction of sample mean)

– 1st vector picked is SWO with period of 50 years

– 2nd to 4th vectors are Haar wavelet vectors

– 5th vector is sinusoid

• Fig. 5: result of applying matching pursuit to Sitka

– 1st vector picked is SWO with period of 54 years

(location of transitions match up well with NPI’s)

• results lend support for Minobe’s hypothesis
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Figure 3: Examples of dictionary vectors Dk used in various matching pursuits of the NP
index. The elements Dk,t, t = 0, . . . , 99, for each Dk are plotted versus t + 0.5. The vector
in (1) is a complex-valued vector from an orthonormal discrete Fourier transform (the real
and imaginary parts are indicated by, respectively, solid dots and open circles). The period
associated with this vector is twenty. In (2), the vector contains a square wave oscillation,
also with a period of twenty. In (3), the vector is created from a discretized Haar wavelet
function associated with changes on a scale of ten, while (4) shows one from a corresponding
Haar scaling function.
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Figure 4: Matching pursuit of NP index using dictionary consisting of sinusoids, square
wave oscillations, Haar wavelet vectors and Haar scaling vectors. The thin jagged curve
in each right-hand plot shows the NP index Z. The thick curves in the left-hand plots
depict the vector that was selected in steps m = 1, . . . , 5 (top to bottom, respectively).

The thick curves in the right-hand plots show the corresponding approximation Ẑ(m). The
period associated with each vector is stated in the left-hand margin, while the right-hand
margin lists the percentage of the variance that is explained by Ẑ(m) (by definition, this is

(‖Z‖2 − ‖R(m)‖2)/‖Z‖2 × 100%, where R(m) = Z − Ẑ(m)).
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Figure 5: As in Figure 4, but now using the Sitka air temperatures.
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Square Wave Oscillation Model: III

• will consider simple SWO model:

Zt = µZ + βDk(1),t + et

– µZ & β are parameters (if β = 0, Zt is white noise)

– Dk(1),t part of 1st vector from matching pursuit

– et is Gaussian white noise with mean zero and variance σ2
e
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Estimation of Model Parameters: I

• AR(1) process Xt parameterized by µX , φ & σ2
ε

• FD process Yt parameterized by µY , δ & σ2
ε

• SWO process Zt parameterized by µZ , β & σ2
e

• can estimate µX , µY & µZ via sample means:

µ̂X =
1

N

N−1∑
t=0

Xt, µ̂Y =
1

N

N−1∑
t=0

Yt & µ̂Z =
1

N

N−1∑
t=0

Zt

(might be suboptimal, but little practical loss)

• form recentered series:

X̃t ≡ Xt − µ̂X, Ỹt ≡ Yt − µ̂Y & Z̃t ≡ Zt − µ̂Z

• regard X̃t, Ỹt & Z̃t as AR(1), FD & SWO processes with µX =

µY = µZ = 0

• can estimate φ, σ2
ε , δ, σ2

ε , β & σ2
e via maximum likelihood (ML)
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Estimation of Model Parameters: II

• large sample theory on ML estimators says

– φ̂ & σ̂2
ε are approximately normally distributed with means

φ & σ2
ε and variances (1 − φ2)/N & 2σ4

ε /N

– δ̂ & σ̂2
ε are approximately normally distributed with means

δ & σ2
ε and variances 6/(π2N) & 2σ4

ε/N

– β̂ & σ̂2
e are approximately normally distributed with means

β & σ2
e and variances σ2

e & 2σ4
e/N

• Monte Carlo experiments: above valid for N ≥ 100

• can use ML theory to form 95% confidence intervals (CIs) for

unknown parameters

• can form residuals ε̂t, ε̂t and êt

• can use residuals to test adequacy of model

(if adequate, residuals should resemble Gaussian white noise)
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Fitted Models for NPI

• Tab. 1: parameter estimates & CIs for NPI

• all 3 models significantly different from white noise

(i.e., φ �= 0, δ �= 0 & β �= 0)

• SWO model has smallest estimated residual variation

• Fig. 6: plots of residuals and histograms

(latter calls into question Gaussian assumption)

• Fig. 7: estimated autocorrelation sequence (ACS) and estimated

SDF (periodogram) for NPI, i.e.,

ρ̂τ ≡
ŝX,τ

ŝX,0
=

∑N−τ−1
t=0 X̃tX̃t+τ∑N−1

t=0 X̃2
t

& Ŝ(fk) ≡
1

N

∣∣∣∣∣
N−1∑
t=0

X̃te
−i2πfkt

∣∣∣∣∣
2

,

along with ACSs & SDFs from fitted models

(for SWO, SDF taken to be E{Ŝ(fk)})
• qualitatively, all 3 models seem reasonable

(arguably AR(1) ACS poorest match to ρ̂τ )

• found similar results for Sitka air temperatures

• can use goodness of fit tests for quantitative assessment of models
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model parameter 95% CI σ 95% CI

AR φ̂ = 0.21 [0.02, 0.40] σ̂ε = 2.37 [2.01, 2.67]

FD δ̂ = 0.17 [0.02, 0.32] σ̂ε = 2.35 [2.00, 2.66]

SWO β̂ = −10.09 [−14.51,−5.67] σ̂e = 2.21 [1.88, 2.50]

Table 1: Autoregressive (AR), fractionally differenced (FD) and square wave oscillator
(SWO) process parameter estimates for the NP index.

21



0.00

0.25

 
-7

0

7

re
si

du
al

0.00

0.25
 

-7

0

7

re
si

du
al

0.00

0.25

 

-7 0 7

residual

-7

0

7

re
si

du
al

1900 1950 2000

year

Figure 6: Residuals from AR, NP and SWO fits to NP index (top to bottom, respectively, on
left-hand plots), along with histograms and Gaussian probability density functions (right-
hand plots) with same mean and variances as the residuals.
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Figure 7: Sample autocorrelation sequence (ACS) and periodogram for the NP index, along
with theoretical ACSs and spectral density functions (SDFs) for fitted AR, FD and SWO
models (left, middle and right plots, respectively).
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Goodness of Fit Tests: I

1. compare fitted SDF to periodogram:

T1 ≡
NA

4πB2
, where A ≡

�N−1
2 �∑

k=1

(
Ŝ(fk)

S(fk; θ̂)

)2

; B ≡
�N−1

2 �∑
k=1

Ŝ(fk)

S(fk; θ̂)
;

S(fk; θ̂) is theoretical SDF depending on θ̂; & either θ̂ = [φ̂, σ̂2
ε ]

T

or θ̂ = [δ̂, σ̂2
ε ]

T (can’t use with SWO)

2. cumulative periodogram test statistic:

T2 = max

{
max

l

(
l

�N−1
2 � − 1

− Pl

)
, max

l

(
Pl −

l − 1

�N−1
2 � − 1

)}
,

where Pl is the normalized cumulative periodogram for ε̂t (like-

wise for ε̂t & êt):

Pl ≡
∑l

k=1 Ŝε̂t(fk)∑�N−1
2 �

k=1 Ŝε̂t(fk)

3. Box–Pierce portmanteau test statistic:

T3 = N

K∑
τ=1

ρ̂2
ε̂t,τ

where ρε̂t,τ is estimated ACS for ε̂t (same for ε̂t & êt)
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Goodness of Fit Tests: II

• if Tj ‘too big,’ reject ‘model is adequate’ hypothesis

• can determine what is ‘too big’ under null hypothesis

(i.e., model is correct)

• Tab. 2: model goodness of fit tests for NPI

– can reject white noise model

– cannot reject any of the 3 models for NPI

• Q: can we really expect to distinguish amongst 3 models

given just N = 100 values for NPI?
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j model Tj Qj(0.90) Qj(0.95) Qj(0.99) α = 0.05 test result α̂
1 AR 0.30 0.38 0.39 0.42 fail to reject 0.67

FD 0.28 " " " fail to reject 0.78
WN 0.39 " " " reject 0.05

2 AR 0.10 0.17 0.19 0.23 fail to reject � 0.1
FD 0.07 " " " fail to reject � 0.1

SWO 0.10 " " " fail to reject � 0.1
WN 0.21 " " " reject ≈ 0.03

3 AR 4.65 7.74 9.45 13.31 fail to reject 0.32
FD 3.12 " " " fail to reject 0.54

SWO 2.83 " " " fail to reject 0.59
WN 12.63 " " " reject 0.01

Table 2: Model goodness of fit tests for the NP index.
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Model Discrimination

• to address question, consider following experiment

• assume FD model with observed δ̂ is correct for NPI

• simulate time series of length N ′ from FD model

• fit AR(1) model to simulated FD series

• evaluate fitted AR(1) model using each Tj

• repeat above large # of times (2500)

• can estimate probability that Tj will (correctly) reject

null hypothesis that AR(1) model is correct

• gives power of Tj in saying AR(1) model is incorrect

• repeat above for variety of sample sizes N ′

• can repeat all of the above with different combinations of

AR(1), FD & SWO processes

• Fig. 8: power of various test statistics vs. N ′

– at best, 30% chance of rejecting null hypothesis for N ′ = 100

– need N ′ ≈ 500 to have 50% chance of discriminating between

AR(1) & FD models

– no one test uniformly better than others
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Figure 8: Probability (as a function of sample size) of rejecting the null hypothesis at a 0.05
level of significance that a fitted model A is adequate for a realization of a process B when
using the test statistics T1, T2 and T3. For the plots in the left- to right-hand columns, the
fitted models A is, respectively, an FD, AR(1) and SWO model. The same ordering is used
for the process B for the plots in the top to bottom rows.
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Model Implications: I

• no statistical reason to prefer one model over other two

• all three models depend on 3 parameters &

hence are equally simple (ignoring matching pursuit step)

• even though all match NPI equally well, models can have

different & potentially important implications

• Fig. 9: examples of 1000 year simulations

• Q: how well do models support notion of regimes?
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Figure 9: Simulated realizations (left-hand column, bottom three rows) of AR(1), FD and
SWO processes (second, third and fourth rows, respectively) with model parameters set to
values estimated for the NP index, along with associated periodograms (right-hand column).
The actual NP index and its periodogram are shown in the top row. Each realization was
created using an exact circulant embedding method. This method converts 2N uncorrelated
standard Gaussian deviates into the desired realization of length N . For each series, the
same 2N deviates were used to make it easier to compare realizations from the different
models.
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Model Implications: II

• to address question, consider following experiment

• generate deviate δ̃ from normal distribution with mean δ̂ from

NPI and variance 6/(π2N) = 6(π2100)

• assume FD model with δ̃ is correct for NPI

• simulate time series of length 1024 from FD model

• tabulate sizes of observed regimes (i.e., run lengths) in

1. simulated series

2. five year running mean of series

• repeat above 1000 times

• also repeat using fitted AR(1) and SWO models

• Fig. 10: plots of empirically determined probabilities of regime

sizes being ≥ specified sizes

• intermediate regime sizes most likely under SWO

• large regime sizes most likely under FD

• regime size ≥ 23 is 4 times more likely under FD model

than under AR(1)
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Figure 10: Probability of observing a run that is greater than or equal to a specified run
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subjected to a five year running average.
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Combining Models

• since AR(1), FD & SWO models equally adequate, will consider

combined model:

Ut ≡ µ +
(
X̃t + Ỹt + Z̃t

)
/
√

3

– X̃t is zero mean version of Xt, etc.,

– X̃t, Ỹt and Z̃t are independent of each another

• Fig. 11: ‘regime size’ experiment redone using combined model

• variations on the above

– sample from standardized observed residuals to create Ut

(little change to Fig. 11, but does affect other statistics)

– assign random weights to X̃t, Ỹt and Z̃t

(again, little change to Fig. 11)

• presumably can formulate in terms of ‘Bayesian model averaging’

(Hoeting, Madigan, Raftery and Volinsky, 1999)
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Figure 11: As in right-hand plot of Figure 10, but now showing combined model (thick
curve) in comparison to AR, FD and SWO processes (thin curves).
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Conclusions

• AR(1), FD & SWO models equally adequate for NPI and Sitka

air temperatures

• all 3 models include white noise as special case

(all 3 lead to rejection of hypothesis of white noise)

• SWO models picked out by matching pursuit – offers some sup-

port for Minobe’s hypothesis

• cannot realistically hope to distinguish between three models

given available sample sizes

• loose physical considerations might favor FD model

(aggregation of first order differential equations)

• FD model more supportive of regimes than AR(1)

• FD model more supportive of long regimes than SWO

• combining models has considerable appeal (focus of current ef-

forts)

35


