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Introduction

e goal: investigate nature of changes in atmospheric
circulation over North Pacific

e will concentrate on two atmospheric time series

— Fig. 1: average Nov-Mar Aleutian low sea level
pressure field (North Pacific index (NPI))

— Fig. 2: Sitka, Alaska, air temperatures

e shortness of both series (100 and 146 points) is major
difficulty

e one approach is through modeling

— pure stochastic
— deterministic signal 4 stochastic noise

— other possibilities (nonlinear dynamics, SSA, .. .)
e models have different implications for extrapolations
e will fit/assess/compare three models

— short memory stochastic model
— long memory stochastic model

— signal + noise model: square wave oscillator (SWO)
& white noise



Overview of Remainder of Talk

e describe short & long memory stochastic models

e describe rationale for SWO model (matching pursuit)
e discuss estimation of model parameters

e look at fitted models

e discuss goodness of fit tests used to assess models
(will find that all 3 models fit equally well)

e discuss how well we can expect to discriminate
amongst models

e look at implications of models

e state conclusions



Short & Long Memory Models

e will consider two Gaussian stationary models

— first order autoregressive process (AR(1))
— fractionally differenced (FD) process
e both processes fully specified by 3 parameters
(and hence both are ‘equally simple’)
1. process mean
2. parameter that controls process variance
3. parameter controlling shape of both

— autocovariance sequence (ACVS) and

— spectral density function (SDF)

e cssential difference between processes

— AR(1) ACVS dies down quickly (exponentially),
so process said to have ‘short memory’

— FD ACVS dies down slowly (hyperbolically),
so process said to have ‘long memory” (LM)



Short Memory Stochastic Model

e regard data as realization of portion Xg, X1, ..., Xny_1
of stationary Gaussian AR(1) process:

Xy —px = ¢(Xi1 — px) + 6 = kgo Prert
where
1. pux = E{X;} is process mean
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2. € 1s white noise with mean zero and variance o7

3. |¢| <1 (if ¢ =0, then X; is white noise)
e ACVS and SDF given by

SX,T:COV{ t) t—i—T}_ 1_¢2 X(f)_ 1+¢2—2¢COS(27TJU)7

where 7 is an integer & |f] < 3

e related to discretized 1st order differential equation
(has single damping constant dictated by ¢)

e can define integral time scale (decorrelation measure):
X SXr 1+ Qb

Th=1+2 = ;
Y 72—21 sxo 1—¢
implies subseries X,,rr 1, n=...,—1,0,1,..., close
(7]

to white noise



Long Memory Stochastic Model

e regard data as realization of portion Yy, Y7, ..., Yv_1
of stationary Gaussian F'D process:

S ['(1+9)
e = kz::O Nk+DI'(1+0—k) (_1)k(Yt—k — y)
S ['(1—9)
- kz—:o Pk+1)I(1—6—k) (—1) &4

where

1. py = E{Y;} is process mean

2. g; is white noise with mean zero and variance o>

3. 18] < 5 (if 6 =0, Y is white noise; LM if § > 0)
e ACVS and SDF given by

o? sin(md)L(1 — 26)I(7 + 6) o’
= & Sy(f) = — "¢
o, nl(t+1—9) v(f) |2 sin (7 f)]20
e for 7 > 1 and approximately for large 7 & small f,

Sys =8y,1—= X |T and Sy (f) o< 5=
r—s I 17

e related to aggregation of 1st order differential equa-
tion involving many different damping constants

e integral time scale 7p is infinite
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Square Wave Oscillation Model: 1

e Minobe (1999): NPI contains ‘regime’ shifts

e regime is time interval over which series is essentially
either > or < its long term average value

e Fig. 1. plot of NPI and 5 year running mean

— data for 1901-23 are essentially > sample mean
(exceptions are 1905 & 1919)
— called positive regime with duration of 23 years
— clearly identified in 5 year running mean
— latter is essentially < sample mean for 192446
(but not strictly so)
e Minobe (1999): regimes characterized by

— 20 & 50 year oscillations

— rapid transitions that ‘cannot be attributed to a
single sinusoidal-wavelike variability’

e can use matching pursuit to assess Minobe’s claim



Matching Pursuit: Basics

e idea: approximate time series Z = [Zy, ..., Zy_1]t
using small # of vectors selected from a large set

elet D={Dy: k=0,...,K — 1} be ‘dictionary’
containing K different vectors

— Dy, = [Dyo, Dias - - -, Dk,N—l]T

— vectors normalized to have unit norm (‘energy’):
2 A 2
IDi? =5 Dyl = 1

— Dy can be real- or complex-valued
— assume D to be highly redundant in order to find
D;. well matched to Z

e matching pursuit successively approximates Z with
orthogonal projections onto elements of D



Matching Pursuit Algorithm: I

e for each Dy € D, form approximation Ay = (Z, Dy) Dy,
where

(Z,Dy,) = Zjé)l Z Dy
(assumes Dy, real-valued; ca—n adjust if not so)
e defineresiduals R, =Z — A, sothat Z = A, + R,
e A; and Ry are orthogonal; i.e., (Ag, Ri) =0
o hence || Z[” = || A4l°+ [ Ryl* = [(Z, Dy) "+ || Ry |
e to minimize ||Ry||? select &) such that

(Z,Dyw)| = max [(Z, Dy)

o let AW & RW be approximation and residuals

e Ist stage of algorithm thus yields Z = AW + R
e 2nd stage: use RW rather than Z in above

o yields RM = A® + R® with £ picked such that

‘ = max Dk>’
DkED



Matching Pursuit Algorithm: II

e after m such steps, have additive decomposition

Z =3 A0 LR = Zm L R,
n=1

where Z(™ is mth order approximation to Z

e also have ‘energy’ decomposition
I1z|* = > |A™]2 4 R

2
+ R,

|
NE

| ‘<R(n_1)a Dk(n)>

where R0 = 7

e note: as m increases, |R™)|? must decrease
(must reach zero under certain conditions)
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Square Wave Oscillation Model: 11

e Fig. 3: construct D containing

1. vectors from discrete Fourier transform (sinusoids)
2. SWOs with periods of 2, ..., N & all shifts
3. single cycles from SWOs (Haar wavelet vectors)

4. half cycles from SWOs (Haar scaling vectors)

e [ig. 4: result of applying matching pursuit to NPI
(after subtraction of sample mean)

— 1st vector picked is SWO with period of 50 years
— 2nd to 4th vectors are Haar wavelet vectors

— bth vector is sinusoid
e Fig. 5: result of applying matching pursuit to Sitka

— 1st vector picked is SWO with period of 54 years
(location of transitions match up well with NPI’s)

e results lend support for Minobe’s hypothesis
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Square Wave Oscillation Model: III

e will consider simple SWO model:
Zi = gz + ﬁDk(O),t + e
— puz & [ are parameters (if § = 0, Z; is white
noise)
— D, (), part of 1st vector from matching pursuit
— ¢; 1s Gaussian white noise with mean zero and

2

variance o,
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Estimation of Model Parameters: 1

e AR(1) process X; parameterized by ux, ¢ & o?
e I'D process Y; parameterized by py, § & o?
e SWO process Z; parameterized by uz, 8 & o2

e can estimate py, puy & pz via sample means:

A RSN 1NZ—1Y&A 1Nz—:12
MX_NE:O b MY_Nt:O ! MZ_Ntzo !

(might be suboptimal, but little practical loss)
e form recentered series:
)AQEXt—ﬂX, EEYQ—,&Y & ZtEZt—ﬂZ
o regard X;, Y, & Z; as AR(1), FD & SWO processes
with uxy = puy = puz =0

e can estimate ¢ & 02, 0 & o2 or 3 & o2 via
maximum likelihood (ML) method
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Estimation of Model Parameters: 11

e large sample theory on ML estimators says

— g% & 62 are approximately normally distributed

. . 2 ) 4
with means ¢ & o2 and variances 5% & 2%

—0 & 62 are approximately normally distributed

. . 9254
with means § & o2 and variances 5 & ==

— B & 6?2 are approximately normally distributed
4
with means 8 & o2 and variances o2 & 2%

e Monte Carlo experiments: above valid for N > 100

e can use ML theory to form 95% confidence intervals
(ClIs) for unknown parameters

e can form residuals €, &; and é;

e can use residuals to test adequacy of model
(if adequate, residuals should resemble white noise)
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Fitted Models for NPI

e Tab. 1. parameter estimates & ClIs for NPI

e all 3 models significantly different from white noise
(e, 6 £0,6 £0& 3 £0)

e SWO model has smallest estimated residual variation

e Fig. 6: estimated autocorrelation sequence (ACS)
and estimated SDF (periodogram) for NP1, i.e.,

2

a N-1—-1v v _
! <§X,() Zi\iﬁl th N | i=o 7

along with ACSs & SDF's from fitted models
(for SWO, SDF taken to be E{S(fx)})

e qualitatively, all 3 models seem reasonable
(arguably AR(1) ACS poorest match to p,)

e found similar results for Sitka air temperatures

e can use goodness of fit tests for quantitative assess-
ment of models
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Goodness of Fit Tests: 1

1. compare fitted SDF to periodogram:

NA 28U ), T S
IR where A = E_: ( (/.6 )) B = 2::1 S(fk;é)7

S fr; ) is theoretical SDF depending on é; & either
0 =[0,6%7" or 0 =1[6,64T (can’t use with SWO)

TlE

2. cumulative periodogram test statistic:

!

where P; is the normalized cumulative periodogram

for é (likewise for &; & &;):

where pe, ; is estimated ACS for & (same for &; & &)
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Goodness of Fit Tests: 11

e if T} “too big,” reject ‘model is adequate” hypothesis

e can determine what is ‘too big’ under null hypothesis
that model is correct

e Tab. 2: model goodness of fit tests for NPI

— can reject white noise model

— cannot reject any of the 3 models for NPI

e (): can we really expect to distinguish amongst 3
models given just N = 100 values for NPI?
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Model Discrimination

to address question, consider following experiment
assume FD model with observed 4 is correct for NPI
simulate time series of length N’ from FD model

fit AR(1) model to simulated FD series

evaluate fitted AR(1) model using each T;

repeat above large # of times (2500)

can estimate probability that T} will (correctly)
reject null hypothesis that AR(1) model is correct

gives power of T; in saying AR(1) model is incorrect
repeat above for variety of sample sizes N’

can repeat all of the above with different combina-
tions of AR(1), FD & SWO processes

Fig. 7: power of various test statistics vs. N’

— at best, 30% chance of rejecting null hypothesis

— need N’ =~ 500 to have 50% chance of discrimi-
nating between AR(1) & FD models

— no one test uniformly better than others
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Model Implications: I

e no statistical reason to one model over other two

e all three models depend on 3 parameters & hence are
equally simple (ignoring matching pursuit step)

e cven though all match NPI equally well, models can
have different & potentially important implications

e Fig. 8: examples of 1000 year simulations

e (): how well do models support notion of regimes?
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Model Implications: 1I

e to address question, consider following experiment

e generate deviate 0 from normal distribution with mean

6 _ _6
2N 72100

0 from NPI and variance
e assume FD model with 4 is correct for NPI
e simulate time series of length 1024 from FD model
e tabulate sizes of observed regimes in

1. simulated series

2. five year running mean of series
e repeat above 1000 times

e also repeat using fitted AR(1) and SWO models

e [ig. 9: plots of empirically determined probabilities
of regime sizes being > specified sizes

e intermediate regime sizes most likely under SWO
e large regime sizes most likely under FD

e regime size > 23 is 4 times more likely under FD
model than under AR(1)
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Conclusions

e AR(1), FD & SWO models equally adequate for NP1

and Sitka air temperatures

e SWO models picked out by matching pursuit & offer
some support for Minobe’s hypothesis

e cannot realistically hope to distinguish between three
models given available sample sizes

e all 3 models include white noise as special case
(all 3 lead to rejection of hypothesis of white noise)

e AR(1) model has most rapid drop off of ACS
e I'D model has long tail of small positive correlations

e SWO model has oscillating ACS

e loose physical considerations might favor FD model
(aggregation of first order differential equations)

e I'D model more supportive of regimes than AR(1)
e F'D model more supportive of long regimes than SWO

e estimated 0 compatible with notion of regimes, but
neither NPI nor Sitka exhibit strong long memory
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