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Overview of Talk

definition and basic properties of wavelet variance
application to fractionally differenced processes
estimation of wavelet variance via discrete wavelet transform

— unbiased estimator

— biased estimator
estimation based upon reflection boundary conditions
example: ocean shear measurements

conclusions and future research



Definition of Wavelet Variance: 1

o let { X, :t € Z} be a zero mean stochastic process,
where 7 is the set of all integers

e assume that {X;} has stationary backward differences; i.e.,

d
i=(1-B)X;=>" (Z) (—D)*X,_p, tez,

k=0
forms a stationary process, where
% d 1S a nonnegative integer
*x d = 0 implies { X}} is stationary
* if d =1, Y} is output from first difference filter
% B is backward shift operator: BX; = X;_1 & B*X, = X;_;
o let {h1;,1 € Z} be scale 1 Daubechies wavelet filter of width L
— ‘width L’ implies
* hyy=0whenl<0orl>L,
* hig#0and hyp 1 #0
- Zz ill,l =0
- Zz ﬁ%,z - 1/ 2
— Zz iLLliLLH_Qk = (0 for nonzero integers k
— L must be an even integer

— equivalent to using L/2 first difference filters & smoothing
filter of width L /2



Definition of Wavelet Variance: 11

o lct {ﬁj,l} be scale 7; = 271 wavelet filter, j = 2,3, ...

— ‘scale’ is effective half-width of {h;,}
— {h;;} ‘stretched out’ version of scale 1 filter {fy,}
— actual width of {h;;}is L; = (2 — 1)(L — 1) 4+ 1
e Fig. 1: Haar and L = 8 ‘least asymmetric’ Daubechies filters
(henceforth LA(8))
e assume L/2 > d & filter { X;} to create new stochastic process

L;-1

Wj,t = Z iljJXt_g, teZ,
[=0

called scale 7; wavelet coeflicients

° {Wj’t} is a zero mean stationary process with variance
— —2
vy (1)) = var {W .} = E{W},}

known as the scale 7; wavelet variance (or wavelet spectrum)



Haar

Figure 1: Haar and LA(8) wavelet filters {Bﬂ} for scales indexed by j = 1,2, ...



Basic Properties of Wavelet Variance: I

e if {X;} stationary process, then
(0. 9]
S v (n) = var { X}
j=1

i.e., decomposes var { X;} across scales 7;

e if { X}} nonstationary, then
Y vk(m) = o0
j=1

e in either case, v%(7;) is contribution to var {X;} due to scale T;



Basic Properties of Wavelet Variance:

e let Sx(-) be spectral density function (SDF) for {X;}
(well-defined for processes with stationary increments)

o if {X;} stationary process, then
1/2
/ Sx(f)df =var{X;}
172
i.e., decomposes var { X;} across frequencies f
e if { X;} nonstationary, then
1/2
| supdr =

1/2

o {h;;} ~ bandpass over |f| € [1/27*!,1/2/] and hence
1/27
v (7)) %2/  Sx(f)df
1/27+1
e as L. — oo,

— {h;;} — ideal bandpass filter
— cov {Wj¢,Wj/’t/} — 0 for all j # j

(i.e., asymptotic ‘between-scale’” decorrelation)

I1



Fractionally Differenced (FD) Processes: I

will consider wavelet variance for FD processes as examples
if {X;} has SDF Sx(+), then Y; = X; — X;_; has SDF
Sy (f) = 4sin®(7 f)Sx(f)
since 4sin®(w f) is squared gain function for first difference filter
{X:} called FD(9) process if it possesses SDF given by
Sx(f) = o[4sin*(w ), |f] <1/2
where 02 > 0 and —0co < § < o0

if 6 < 1/2, {X;} is stationary with autocovariance sequence
sx,r = cov { Xy, Xii |-} given by

oT'(1 — 26) T+6—1
Sx0 = %2(1 =3 and sx, = SX’T_l’T——5’ T=12,...
if 6 > 1/2, {X;} is nonstationary process with dth order sta-
tionary backward differences {Y;}

* d =10+ 1/2], where |z] is integer part of
* {Y;} is stationary FD(§ — d) process

if 0 < 0, FD process is antipersistent
if 6 =0, FD process becomes white noise
if 6 > 0, FD process has ‘long memory’

if & = 1, FD process is random walk (sampled Brownian motion)



Fractionally Differenced (FD) Processes: 11

e at low (small) frequencies f,
Sx(f) = o2[dsin*(nf)]"* = o2[2m f]7*,
i.e., an approximate power-law
e at large scales, thus have
1/27
im)~z [ S~ or
1/2j+1
® since
log (v5(7;)) ~ log (C) + (26 — 1) log (7;),

log/log plot of V% (7;) vs. 7; looks approximately linear with slope
20 — 1 for 7; large enough

e Fig. 2: v3(7;) & sample realizations for four FD processes
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Figure 2: LA(8) wavelet variances v%(7;), j = 1,...,8, for four FD(4d) processes (left-hand
column), along with one realization of length N = 256 from each processs generated by the
circulant embedding method using the same set of 2N = 512 standard Gaussian random
deviates (right-hand).
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Maximal Overlap Discrete Wavelet Transform

o let X = [X(, X1,..., Xny_1]! beatimeseries (i.c., part of {X;})
o for j=1,...,Jy, form MODWT wavelet coefficients

Lj—1

Wj’tE Zﬁ]}lXt—l mod N t:O,l,... ,N—l,
[=0

where X_1mod v = Xn-1, X2 mod ;v = X2, etc
(note: actually computed via an efficient ‘pyramid’ algorithm)

—_—

o let Wj = [/Wj’(], /I/I\//vjjl, ceey Wj7N_1]T
e also form vector V 7, of MODWT scaling coefficients:

VJo,t = §J0,5Xt—z, t = O, 1, R ,N — 1;

{4} called scaling filter (depends just on {h1;})
e Fig. 3: Haar & LA(8) scaling filters {g,}
_ ‘N/Jo’t is weighted average over scale 27;

e obtain ‘scale by scale’ analysis of sample variance:

><|

1 -— 9 1 o ~
=52 (X = X) =5 | 2 IWIP+ 1V [* ) -
t=0 J=1
o if N =2%, then |V, |?/N =X

11
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Figure 3: Haar and LA(8) scaling filters {gy,,} for scales indexed by Jy =1,2,...
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Unbiased Estimator of Wavelet Variance

e recall that V%(Tj) = var {Wj,t} = E{th}

e compare MODWT'T' coeflicients
Lj-1
/-ij’t = Z Bj,lXt—lmodN; t=0,1,... , N —1
1=0
to
Lj—1
Wii=> hjXe, te

1=0

——

o W;; =W, if ‘mod N"not needed; ie., L; =1 <t <N

o if N — L; >0, unbiased estimator of v%(7;) is

| N-1 A

52 — W2 _ T4

vx (7)) = N—L,+1 Z Wi = ﬁ] Z Wi
t=L;—1 t=L;—1

where M; = N — L; +1
e statistical properties of % (7;) tractable, but . ..

— for L > 4 and large j, filter width L; = (2/ — 1)(L — 1) + 1
approximate L — 1 times longer than for L = 2 (i.e., Haar)

— Fig. 4: effective width of {h;,} is 27; for all L

e (): can we use profitably use W2

j,t7j:07"' 7L]_27
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Figure 4: Haar wavelet filter {hs;} for scale 75 = 16 (top plot) and corresponding LA(8)
wavelet filter (bottom). The actual widths of the Haar and LA(8) filters are L; = 32 and
Ls = 218. Their effective widths are both 32.
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Biased Estimator of Wavelet Variance

e can construct ‘biased’ estimator of v3-(7;):

Lj—=2 N—1
N 1~ 1 [~ ~ .
) = W - (S W 3 )
t=0

t=L;—1

e biased estimator offers exact analysis of 6%

o if { X;} stationary, bias goes to 0 as N — o0;
not true in general if {X;} nonstationary

e Fig. 5: EF{v%(7;)} for LA(8) wavelet and N = 256

e problem: possible large mismatch between Xy & X1 (cf. Fig. 2)
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Figure 5: LA(8) wavelet variances v%(7;) for four FD(d) processes (thin curves) and corre-

sponding E{0%(7;)} for N = 256 (circles) versus
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Reflection Boundary Conditions

e construct 2nd biased estimator using idea from Fourier analysis

e extend X,..., Xy_1 to length 2N by ‘reflection’:

X/: Xt; t:O,,N—l,
t Xon_1-4, t=N,... 2N —1

e Fig. 6: examples of reflected series

e 2N series has same sample mean & variance

o let \/7\\/7; denote wavelet coefficients of X, ..., X0y 4
e second biased estimator of v3(7;) is thus

N I =
Ail) = 5 W1

e Fig. 7. E{v3,(7;)} for LA(8) wavelet and N = 256

e Fig. 8 root mean square errors for 05 (7;) and 3. ()
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Figure 6: Realizations of length N = 256 from four FD(d) processes extended to length
N = 512 by tacking a time-reversed version of the original series onto the end of the series.
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Figure 7: LA(8) wavelet variances v%(7;) for four FD(d) processes (thin curves) along with
E{v%,(1j)} for N = 256 (circles) versus 7; for j =1,...,8.
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Figure 8: Ratios of root mean square error (rmse) for unbiased estimator 2% (7;) to rmse for
biased estimator 7%, (7;) of LA(8) wavelet variance for N = 256 and j = 1,...,5 (circles).

20



Vertical Ocean Shear Measurements

e [ig. 9: plot of depth series and its first difference Y; = X; — X,
e data sampled vertically every At = 0.1 meters
e Fig. 10: three wavelet variance estimates

— x’s: unbiased Haar estimates 0% (7;) up to 19 At

— o’s: unbiased LA(8) estimates % (7;) up to 19 At

— +’s: biased LA(8) estimates 03,(7;) up to 12 At

— x shows ‘remainder variance’ for biased LA(8) estimate: since

N-1 12

1 =\ 2 1 — ~ —
LY (% -) SIWP + Vil | - X
0 j=1

t=

A9 2
ox = =N

remainder variance given by
J 2
ﬁHV/mHQ - X

e associated with averages over scale 2779 A = 409.6 meters
(equal to total length of original series)

e accounts for 1.3% of total variance here
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Figure 9: N = 4096 vertical shear measurements {X;} (top plot) and associated backward
differences {Y;} (bottom).
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Figure 10: Wavelet variances estimates for vertical shear series. The x’s indicate the unbiased
Haar estimates 0% (7;); the o’s, the unbiased LA(8) estimates 0% (7;); and the +’s, the biased
LA(8) estimates v%,(7;). The * indicates the ‘remainder variance’ for the biased LA(8)
estimate.
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Conclusions and Future Research

e reflection boundary conditions gives viable estimator of V)Q((Tj)

— need to assess performance outside of FD processes
— need to develop large sample theory

— need to look into question of polynomial drift
e other potential uses for reflection boundary conditions

— wavelet-based bootstrapping

— alternative to tapering in spectral analysis?
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