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Overview of Talk

• definition and basic properties of wavelet variance

• application to fractionally differenced processes

• estimation of wavelet variance via discrete wavelet transform

– unbiased estimator

– biased estimator

• estimation based upon reflection boundary conditions

• example: ocean shear measurements

• conclusions and future research
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Definition of Wavelet Variance: I

• let {Xt : t ∈ Z} be a zero mean stochastic process,

where Z is the set of all integers

• assume that {Xt} has stationary backward differences; i.e.,

Yt ≡ (1 −B)dXt =

d∑
k=0

(
d

k

)
(−1)kXt−k, t ∈ Z,

forms a stationary process, where

∗ d is a nonnegative integer

� d = 0 implies {Xt} is stationary

� if d = 1, Yt is output from first difference filter

∗ B is backward shift operator: BXt ≡ Xt−1 & BkXt = Xt−k

• let {h̃1,l, l ∈ Z} be scale 1 Daubechies wavelet filter of width L

– ‘width L’ implies

∗ h̃1,l = 0 when l < 0 or l ≥ L,

∗ h̃1,0 	= 0 and h̃1,L−1 	= 0

–
∑

l h̃1,l = 0

–
∑

l h̃
2
1,l = 1/2

–
∑

l h̃1,lh̃1,l+2k = 0 for nonzero integers k

– L must be an even integer

– equivalent to using L/2 first difference filters & smoothing

filter of width L/2
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Definition of Wavelet Variance: II

• let {h̃j,l} be scale τj = 2j−1 wavelet filter, j = 2, 3, . . .

– ‘scale’ is effective half-width of {h̃j,l}
– {h̃j,l} ‘stretched out’ version of scale 1 filter {h̃1,l}
– actual width of {h̃j,l} is Lj = (2j − 1)(L− 1) + 1

• Fig. 1: Haar and L = 8 ‘least asymmetric’ Daubechies filters

(henceforth LA(8))

• assume L/2 ≥ d & filter {Xt} to create new stochastic process

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z,

called scale τj wavelet coefficients

• {Wj,t} is a zero mean stationary process with variance

ν2
X(τj) ≡ var {Wj,t} = E{W 2

j,t}

known as the scale τj wavelet variance (or wavelet spectrum)
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Haar LA(8)

j

Figure 1: Haar and LA(8) wavelet filters {h̃j,l} for scales indexed by j = 1, 2, . . . , 7.
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Basic Properties of Wavelet Variance: I

• if {Xt} stationary process, then

∞∑
j=1

ν2
X(τj) = var {Xt}

i.e., decomposes var {Xt} across scales τj

• if {Xt} nonstationary, then

∞∑
j=1

ν2
X(τj) = ∞

• in either case, ν2
X(τj) is contribution to var {Xt} due to scale τj
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Basic Properties of Wavelet Variance: II

• let SX(·) be spectral density function (SDF) for {Xt}
(well-defined for processes with stationary increments)

• if {Xt} stationary process, then∫ 1/2

−1/2

SX(f ) df = var {Xt}

i.e., decomposes var {Xt} across frequencies f

• if {Xt} nonstationary, then∫ 1/2

−1/2

SX(f ) df = ∞

• {h̃j,l} ≈ bandpass over |f | ∈ [1/2j+1, 1/2j] and hence

ν2
X(τj) ≈ 2

∫ 1/2j

1/2j+1
SX(f ) df

• as L → ∞,

– {h̃j,l} → ideal bandpass filter

– cov {Wj,t,W j′,t′} → 0 for all j 	= j′

(i.e., asymptotic ‘between-scale’ decorrelation)
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Fractionally Differenced (FD) Processes: I

• will consider wavelet variance for FD processes as examples

• if {Xt} has SDF SX(·), then Yt = Xt −Xt−1 has SDF

SY (f ) = 4 sin2(πf )SX(f )

since 4 sin2(πf ) is squared gain function for first difference filter

• {Xt} called FD(δ) process if it possesses SDF given by

SX(f ) = σ2
ε [4 sin2(πf )]−δ, |f | ≤ 1/2

where σ2
ε > 0 and −∞ < δ < ∞

• if δ < 1/2, {Xt} is stationary with autocovariance sequence

sX,τ = cov {Xt,Xt+|τ |} given by

sX,0 =
σ2
εΓ(1 − 2δ)

Γ2(1 − δ)
and sX,τ = sX,τ−1

τ + δ − 1

τ − δ
, τ = 1, 2, . . .

• if δ ≥ 1/2, {Xt} is nonstationary process with dth order sta-

tionary backward differences {Yt}
∗ d = �δ + 1/2�, where �x� is integer part of x

∗ {Yt} is stationary FD(δ − d) process

• if δ < 0, FD process is antipersistent

• if δ = 0, FD process becomes white noise

• if δ > 0, FD process has ‘long memory’

• if δ = 1, FD process is random walk (sampled Brownian motion)
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Fractionally Differenced (FD) Processes: II

• at low (small) frequencies f ,

SX(f ) = σ2
ε [4 sin2(πf )]−δ ≈ σ2

ε [2πf ]−2δ,

i.e., an approximate power-law

• at large scales, thus have

ν2
X(τj) ≈ 2

∫ 1/2j

1/2j+1
SX(f ) df ≈ Cτ 2δ−1

j

• since

log (ν2
X(τj)) ≈ log (C) + (2δ − 1) log (τj),

log/log plot of ν2
X(τj) vs. τj looks approximately linear with slope

2δ − 1 for τj large enough

• Fig. 2: ν2
X(τj) & sample realizations for four FD processes
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Figure 2: LA(8) wavelet variances ν2
X(τj), j = 1, . . . , 8, for four FD(δ) processes (left-hand

column), along with one realization of length N = 256 from each processs generated by the
circulant embedding method using the same set of 2N = 512 standard Gaussian random
deviates (right-hand).
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Maximal Overlap Discrete Wavelet Transform

• let X = [X0, X1, . . . , XN−1]
T be a time series (i.e., part of {Xt})

• for j = 1, . . . , J0, form MODWT wavelet coefficients

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1,

where X−1 mod N = XN−1, X−2 mod N = XN−2, etc

(note: actually computed via an efficient ‘pyramid’ algorithm)

• let W̃j = [W̃j,0, W̃j,1, . . . , W̃j,N−1]
T

• also form vector ṼJ0 of MODWT scaling coefficients:

ṼJ0,t ≡
LJ0−1∑
l=0

g̃J0,lXt−l, t = 0, 1, . . . , N − 1;

{g̃J0,l} called scaling filter (depends just on {h̃1,l})
• Fig. 3: Haar & LA(8) scaling filters {g̃J0,l}

– ṼJ0,t is weighted average over scale 2τj

• obtain ‘scale by scale’ analysis of sample variance:

σ̂2
X ≡ 1

N

N−1∑
t=0

(
Xt −X

)2
=

1

N

 J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2

 −X
2

• if N = 2J0, then ‖ṼJ0‖2/N = X
2
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Haar LA(8)

j

Figure 3: Haar and LA(8) scaling filters {g̃J0,l} for scales indexed by J0 = 1, 2, . . . , 7.
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Unbiased Estimator of Wavelet Variance

• recall that ν2
X(τj) = var {Wj,t} = E{W 2

j,t}
• compare MODWT coefficients

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

to

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z

• W̃j,t = Wj,t if ‘mod N ’ not needed; i.e., Lj − 1 ≤ t < N

• if N − Lj ≥ 0, unbiased estimator of ν2
X(τj) is

ν̂2
X(τj) ≡

1

N − Lj + 1

N−1∑
t=Lj−1

W̃ 2
j,t =

1

Mj

N−1∑
t=Lj−1

W
2
j,t

where Mj ≡ N − Lj + 1

• statistical properties of ν̂2
X(τj) tractable, but . . .

– for L ≥ 4 and large j, filter width Lj = (2j − 1)(L− 1) + 1

approximate L− 1 times longer than for L = 2 (i.e., Haar)

– Fig. 4: effective width of {h̃j,l} is 2τj for all L

• Q: can we use profitably use W̃ 2
j,t, j = 0, . . . , Lj − 2?
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Figure 4: Haar wavelet filter {h5,l} for scale τ5 = 16 (top plot) and corresponding LA(8)
wavelet filter (bottom). The actual widths of the Haar and LA(8) filters are L5 = 32 and
L5 = 218. Their effective widths are both 32.
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Biased Estimator of Wavelet Variance

• can construct ‘biased’ estimator of ν2
X(τj):

ν̃2
X(τj) ≡

1

N
‖W̃j‖2 =

1

N

(Lj−2∑
t=0

W̃ 2
j,t +

N−1∑
t=Lj−1

W
2
j,t

)

• biased estimator offers exact analysis of σ̂2
X

• if {Xt} stationary, bias goes to 0 as N → ∞;

not true in general if {Xt} nonstationary

• Fig. 5: E{ν̃2
X(τj)} for LA(8) wavelet and N = 256

• problem: possible large mismatch betweenX0 &XN−1 (cf. Fig. 2)
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Figure 5: LA(8) wavelet variances ν2
X(τj) for four FD(δ) processes (thin curves) and corre-

sponding E{ν̃2
X(τj)} for N = 256 (circles) versus τj for j = 1, . . . , 8.
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Reflection Boundary Conditions

• construct 2nd biased estimator using idea from Fourier analysis

• extend X0, . . . , XN−1 to length 2N by ‘reflection’:

X ′
t =

{
Xt, t = 0, . . . , N − 1;

X2N−1−t, t = N, . . . , 2N − 1

• Fig. 6: examples of reflected series

• 2N series has same sample mean & variance

• let W̃′
j denote wavelet coefficients of X ′

0, . . . , X
′
2N−1

• second biased estimator of ν2
X(τj) is thus

ν̃2
X ′(τj) ≡

1

2N
‖W̃′

j‖2

• Fig. 7: E{ν̃2
X ′(τj)} for LA(8) wavelet and N = 256

• Fig. 8: root mean square errors for ν̂2
X(τj) and ν̃2

X ′(τj)
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Figure 6: Realizations of length N = 256 from four FD(δ) processes extended to length
N = 512 by tacking a time-reversed version of the original series onto the end of the series.
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Figure 7: LA(8) wavelet variances ν2
X(τj) for four FD(δ) processes (thin curves) along with

E{ν̃2
X′(τj)} for N = 256 (circles) versus τj for j = 1, . . . , 8.

19



0.5

1.0

1.5

2.0

2.5

 

0.5

1.0

1.5

2.0

2.5

 

10-1 100 101 102 

τ
10-1 100 101 102 

τ

O O
O

O

O

O O
O

O

O

O O
O

O

O

O O
O

O

O

δ = 1/4

δ = 1/2

δ = 5/6

δ = 1

Figure 8: Ratios of root mean square error (rmse) for unbiased estimator ν̂2
X(τj) to rmse for

biased estimator ν̃2
X′(τj) of LA(8) wavelet variance for N = 256 and j = 1, . . . , 5 (circles).
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Vertical Ocean Shear Measurements

• Fig. 9: plot of depth series and its first difference Yt = Xt−Xt−1

• data sampled vertically every ∆t = 0.1 meters

• Fig. 10: three wavelet variance estimates

– x’s: unbiased Haar estimates ν̂2
X(τj) up to τ12 ∆t

– o’s: unbiased LA(8) estimates ν̂2
X(τj) up to τ9 ∆t

– +’s: biased LA(8) estimates ν̃2
X ′(τj) up to τ12 ∆t

– * shows ‘remainder variance’ for biased LA(8) estimate: since

σ̂2
X ≡ 1

N

N−1∑
t=0

(
Xt −X

)2
=

1

2N

 12∑
j=1

‖W̃′
j‖2 + ‖Ṽ′

12‖2

 −X
2

remainder variance given by

1

2N
‖Ṽ′

12‖2 −X
2

• associated with averages over scale 2τ12 ∆ = 409.6 meters

(equal to total length of original series)

• accounts for 1.3% of total variance here

21



 

Xt

Yt

6

0

−6
0.25

0.0

−0.25
450 600 750 900

depth (meters)

Figure 9: N = 4096 vertical shear measurements {Xt} (top plot) and associated backward
differences {Yt} (bottom).
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Figure 10: Wavelet variances estimates for vertical shear series. The x’s indicate the unbiased
Haar estimates ν̂2

X(τj); the o’s, the unbiased LA(8) estimates ν̂2
X(τj); and the +’s, the biased

LA(8) estimates ν̃2
X′(τj). The * indicates the ‘remainder variance’ for the biased LA(8)

estimate.
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Conclusions and Future Research

• reflection boundary conditions gives viable estimator of ν2
X(τj)

– need to assess performance outside of FD processes

– need to develop large sample theory

– need to look into question of polynomial drift

• other potential uses for reflection boundary conditions

– wavelet-based bootstrapping

– alternative to tapering in spectral analysis?
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