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Overview of Talk

• review of wavelets

– wavelet filters

– wavelet coefficients and their interpretation

• wavelet variance decomposition of sample variance

• theoretical wavelet variance for stochastic processes

– stationary processes

– nonstationary processes with stationary differences

• sampling theory for Gaussian processes with an example

• sampling theory for non-Gaussian processes with an example

• use on time series with time-varying statistical properties

• summary
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Wavelet Filters & Coefficients: I

• let {Xt : t = 0, . . . , N − 1} be a time series

(e.g., Xt is temperature at noon on tth day of year)

• filter {Xt} to obtain wavelet coefficients:

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t = 0, 1, . . . , N − 1;

here Xt = Xt mod N if t < 0 (assumes ‘circularity’)

• {h̃j,l} is wavelet filter for scale τj = 2j−1, j = 1, 2, . . .

– ‘scale’ refers to effective half-width of {h̃j,l};
i.e., W̃j,t effectively determined by 2τj values in {Xt}

– {h̃j,l} ‘stretched out’ version of j = 1 filter {h̃1,l}
– actual width of {h̃1,l} is L = L1

– actual width of {h̃j,l} is Lj = (2j − 1)(L− 1) + 1

– Daubechies filters {h̃1,l} have special properties

∗
∑L−1

l=0 h̃1,l = 0

∗
∑L−1

l=0 h̃2
1,l = 1/2

∗
∑L−1

l=0 h̃1,lh̃1,l+2k = 0 for nonzero integers k
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Wavelet Filters & Coefficients: II

• Fig. 1: {h̃j,l} for Haar wavelet filter (L = 2)

• note form of Haar wavelet coefficients for scale τj:

W̃j,t ∝ Xt(τj)−Xt−τj(τj),

where

Xt(τj) ≡
1

τj

τj−1∑
l=0

Xt−l

• W̃j,t ∝ change in adjacent averages of τj values

– change measured by simple first difference

– average is localized sample mean

– if W̃ 2
j,t small, not much variation over scale τj

– if W̃ 2
j,t large, lot of variation over scale τj

4



Haar LA(8)

j

Figure 1: Haar and LA(8) wavelet filters {h̃j,l} for scales indexed by j = 1, 2, . . . , 7.
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Wavelet Filters & Coefficients: III

• Haar is L = 2 member of Daubechies wavelet filters

(L even & typically ranges from 2 up to 20)

• Fig. 1: {h̃j,l} for LA(8) wavelet filter (L = 8);

here ‘LA’ stands for ‘least asymmetric’

• filtering {Xt} with {h̃j,l} yields LA(8) wavelet coefficients W̃j,t

• W̃j,t ∝ change between average over scale τj and its surroundings

– change measured by L/2 = 4 first differences

– average is localized weighted average

• pattern holds for all Daubechies wavelet filters:

W̃j,t ∝ difference between localized weighted average and its

surroundings

{Xt} −→ {aj,l} −→ {1,−1} −→ · · · −→ {1,−1}︸ ︷︷ ︸
L/2 of these

−→ {W̃j,t},

where {aj,l} produces localized weighted averages
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Empirical Wavelet Variance

• collect W̃j,t into W̃j for levels j = 1, 2, . . . , J0

• also compute vector ṼJ0 of scaling coefficients:

ṼJ0,t ≡
LJ0−1∑
l=0

g̃J0,lXt−l, t = 0, 1, . . . , N − 1;

{g̃J0,l} called scaling filter (depends just on {h̃1,l})
• Fig. 2: Haar & LA(8) scaling filters {g̃J0,l}

– ṼJ0,t is weighted average over scale 2τj

• obtain analysis of sample variance:

σ̂2
X ≡

1

N

N−1∑
t=0

(
Xt −X

)2
=

1

N


 J0∑

j=1

‖W̃j‖2 + ‖ṼJ0‖2

−X

2

(if N = 2J0, can argue that ‖ṼJ0‖2/N = X
2
).

• 1
N‖W̃j‖2 portion of σ̂2

X due to changes in averages over scale τj;

i.e., ‘scale by scale’ analysis of variance

• cf. ‘frequency by frequency’ analysis of variance:

σ̂2
X =

1

N
‖F‖2 −X

2
with Fk ≡

1√
N

N−1∑
t=0

Xte
−i2πtk/N

• scale τj related to frequency interval [1/2j+1, 1/2j]

• Fig. 3: example of empirical wavelet variance
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Haar LA(8)

j

Figure 2: Haar and LA(8) scaling filters {g̃J0,l} for scales indexed by J0 = 1, 2, . . . , 7.
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Figure 3: Time series of subtidal sea levels (top plot), along with associated empirical wavelet

variances ‖W̃j‖2/N versus scales τj = 2j−1 for j = 1, . . . , 8 (middle) and periodogram versus
frequency (bottom).
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Theoretical Wavelet Variance

• now assume Xt is real-valued random variable

• {Xt : t ∈ Z} is stochastic process (Z is set of all integers)

• filter {Xt} to create new stochastic process:

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z,

which should be contrasted with

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t = 0, 1, . . . , N − 1

where Xt = Xt mod N when t < 0

• definition of time dependent wavelet variance

(also called wavelet spectrum):

ν2
X,t(τj) ≡ var {Wj,t},

with conditions on {Xt} so that var {Wj,t} exists and is finite

• ν2
X,t(τj) depends on τj and t

• will focus time independent wavelet variance

ν2
X(τj) ≡ var {Wj,t}

(can adapt theory to handle time varying situation)
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Rationale for Wavelet Variance

• decomposes variance on scale by scale basis

• useful substitute/complement for spectral density function (SDF)

• useful substitute for process/sample variance

• well-defined for certain nonstationary processes
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Variance Decomposition

• if {Xt} stationary process with SDF, then∫ 1/2

−1/2

SX(f ) df = var {Xt};

i.e., SDF decomposes var {Xt} across frequencies f

– have analogous result for sample variance

– involves uncountably infinite number of f ’s

– SX(f ) ∆f ≈ contribution to var {Xt} due to f ’s in interval

of length ∆f centered at f

• wavelet variance yields analogous decomposition:

∞∑
j=1

ν2
X(τj) = var {Xt}

i.e., decomposes var {Xt} across scales τj

– have analogous result for sample variance

– involves countably infinite number of τj’s

– ν2
X(τj) contribution to var {Xt} due to scale τj

– νX(τj) has same units as Xt
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SDF Substitute/Complement: I

• because {h̃j,l} ≈ bandpass over [1/2j+1, 1/2j],

ν2
X(τj) ≈ 2

∫ 1/2j

1/2j+1
SX(f ) df (1)

• if SX(·) ‘featureless’, {ν2
X(τj)} as informative as SX(·)

• {ν2
X(τj)} more succinct: one value per ‘octave band’

• example: SX(f ) ∝ |f |α, i.e., pure power law process

– can deduce α from slope of log SX(f ) vs. log f

– (1) implies ν2
X(τj) ∝ τ−α−1

j approximately

– can deduce α from slope of log ν2
X(τj) vs. log τj

– no real loss in using ν2
X(τj) in place of SX(·)
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SDF Substitute/Complement: II

• ν2
X(τj) easier to estimate than SDF

• basic estimator of SDF is periodogram: given X0, . . . , XN−1,

Ŝ
(p)
X (fk) ≡

1

N

∣∣∣∣∣
N−1∑
t=0

(Xt −X)e−i2πfkt

∣∣∣∣∣
2

, fk ≡
k

N

– inconsistent because var{Ŝ(p)
X (fk)} ≈ S2

X(fk)

(i.e., does not decrease to 0 as N →∞)

– need smoothers etc. to get consistency

– can be badly biased

• basic estimator of ν2
X(τj) is

ν̃2
X(τj) ≡

1

N

N−1∑
t=0

W̃ 2
j,t

– biased since W̃j,t, t = 0, . . . , Lj−1, influenced by circularity

– unbiased if these Lj terms are dropped

– estimator so constructed is consistent
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Substitute for Variance: I

• can be difficult to estimate process variance for stationary {Xt}
• argument: ν2

X(τj) easier to estimate

• to understand why, suppose {Xt} has

– known mean µX = E{Xt}
– unknown variance σ2

X

• can estimate σ2
X using

σ̃2
X ≡

1

N

N−1∑
t=0

(Xt − µX)2

• estimator above is unbiased: E{σ̃2
X} = σ2

X

• now suppose µX is unknown

• can estimate σ2
X using

σ̂2
X ≡

1

N

N−1∑
t=0

(Xt −X)2, where X ≡ 1

N

N−1∑
t=0

Xt
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Substitute for Variance: II

• can argue that E{σ̂2
X} = σ2

X − var {X}
• implies 0 ≤ E{σ̂2

X} ≤ σ2
X because var {X} ≥ 0

• E{σ̂2
X} → σ2

X as N →∞ if SDF exists . . . but

– for any small ε > 0 (say, 0.00 · · · 01) and

– for any sample size N (say, N = 101010
)

there exists a (nonpathological!) {Xt} such that

E{σ̂2
X} < εσ2

X

for chosen N ; i.e., σ̂2
X badly biased even for very large N
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Substitute for Variance: III

• consider fractional Gaussian noise (FGN) with parameter H

(called Hurst coefficient)

• for H = 1/2, FGN is white noise (i.e., uncorrelated)

• 1/2 < H < 1 is stationary ‘long memory’ process

(i.e., has slowly decaying autocovariance sequence)

• can argue that var {X} = σ2
X/N 2−2H

– H = 1/2: var {X} = σ2
X/N (‘classic’ rate of decay)

– H = 1− δ/2, 0 < δ < 1: var {X} = σ2
X/Nδ;

i.e., slower rate of decay than classic

• for given 0 < ε < 1 and N > 1, have

E{σ̂2
X} < εσ2

X if we pick H > 1− log(1− ε)

2 log(N)

• Fig. 4: realization of FGN, σ2
X = 1, H = 0.9 & N = 1000

– using µX = 0, obtain ŝ′0
.
= 0.99

– using X
.
= 0.53, obtain σ̂2

X
.
= 0.71; note that E{σ̂2

X}
.
= 0.75

– need N ≥ 1010 so that sX,0 − E{σ̂2
X} ≤ 0.01;

i.e., for the bias to be 1% or less of true σ2
X

• conclusion: σ̂2
X can be badly biased if µX unknown

(can patch up by estimating H , but need model)
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Figure 4: Realization of a fractional Gaussian noise (FGN) process with Hurst coefficient
H = 0.9. The sample mean of approximately 0.53 and the true mean of zero are indicated
by the thin horizontal lines (taken from Figure 300, Percival and Walden, 2000, copyright
Cambridge University Press).
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Substitute for Variance: IV

• Q: why is wavelet variance useful when σ̂2
X is not?

• replaces ‘global’ variability with variability over scales

• if {Xt} stationary with mean µX , then

E{Wj,t} =

Lj−1∑
l=0

h̃j,lE{Xt−l} = µX

Lj−1∑
l=0

h̃j,l = 0

because always have
∑

l h̃j,l = 0

• E{Wj,t} known, so estimator of var {Wj,t} = ν2
X(τj) unbiased
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Generalization to Nonstationary Processes

• if L is properly chosen, ν2
X(τj) well-defined for processes with

stationary backward differences

• let B be such that BXt ≡ Xt−1 ⇒ BkXt = Xt−k

• Xt has dth order stationary backward differences if

Yt ≡ (1−B)dXt =

d∑
k=0

(
d

k

)
(−1)kXt−k

forms a stationary process (d nonnegative integer)

{Xt} −→ {1,−1} −→ · · · −→ {1,−1}︸ ︷︷ ︸
d of these

−→ {Yt}

• if {Xt} stationary, {Yt} is also with

SY (f ) = [4 sin2(πf )]dSX(f ) ≡ Dd(f )SX(f )

• if {Xt} nonstationary but dth order differences are, can define

SDF for {Xt} via

SX(f ) ≡ SY (f )

[4 sin2(πf )]d
=

SY (f )

Dd(f )

(Yaglom, 1958)

• attaches meaning to, e.g., SX(f ) ∝ |f |−5/3

• Fig. 5: examples
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Xt (1−B)Xt (1−B)2Xt

(a)

(b)

(c)

(d)

0

0

0

0

0 256 0 256 0 256
t t t

Figure 5: Simulated realizations of nonstationary processes {Xt} with stationary backward
differences of various orders (first column) along with their first backward differences {(1−
B)Xt} (second column) and second backward differences {(1−B)2Xt} (final column). From
top to bottom, the processes are (a) a random walk; (b) a modified random walk, formed
using a white noise sequence with mean µε = −0.2; (c) a ‘random run’ (i.e., cumulative sums
of a random walk); and (d) a process formed by summing the line given by −0.05t and a
simulation of a stationary FD process with δ = 0.45 (taken from Figure 289, Percival and
Walden, 2000, copyright Cambridge University Press).
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Wavelet Variance for Processes with

Stationary Backward Differences: I

• suppose {Xt} has dth order stationary differences

• recall that

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z

• claim: if L ≥ 2d, {Wj,t} stationary with SDF

Sj(f ) = H̃(D)
j (f )SX(f )

where H̃(D)
j (·) is squared gain function for {h̃j,l}

• proof: {h̃j,l} ⇔ L
2 first differences & then {aj,l} so

{Xt} −→ {1,−1} −→ · · · −→ {1,−1}︸ ︷︷ ︸
L/2 of these

−→ {Yt}

is stationary with SDF SY (f ) = Dd(f )SX(f );

{Yt} −→ {1,−1} −→ · · · −→ {1,−1}︸ ︷︷ ︸
L/2− d of these

−→ {aj,l} −→ {Wj,t}
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Wavelet Variance for Processes with

Stationary Backward Differences: II

• with µY ≡ E{Yt}, have

– E{Wj,t} = 0 if either

∗ L > 2d or

∗ L = 2d & µY = 0

– E{Wj,t} �= 0 if L = 2d & µY �= 0

• conclusions: ν2
X(τj) well-defined for {Xt} that is

– stationary: any L will do & E{Wj,t} = 0

– nonstationary with dth order stationary backward differences:

need L ≥ 2d, but might need L > 2d to get E{Wj,t} = 0

• have
∞∑
j=1

ν2
X(τj) =

{
var {Xt} <∞ if {Xt} stationary;

∞ if {Xt} nonstationary
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Unbiased Estimator of Wavelet Variance

• suppose have realization of X0, X1, . . . , XN−1,

where {Xt} has dth order stationary differences

• want to estimate ν2
X(τj) for wavelet filter such that L ≥ 2d &

E{Wj,t} = 0:

ν2
X(τj) = var {Wj,t} = E{W 2

j,t}

• can base estimator on squares of

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

• recall that

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z,

so W̃j,t = Wj,t if ‘mod N ’ not needed; i.e., Lj − 1 ≤ t < N

• if N − Lj ≥ 0, unbiased estimator of ν2
X(τj) is

ν̂2
X(τj) ≡

1

N − Lj + 1

N−1∑
t=Lj−1

W̃ 2
j,t =

1

Mj

N−1∑
t=Lj−1

W
2
j,t

where Mj ≡ N − Lj + 1
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Statistical Properties of ν̂2
X(τj) (Gaussian)

• suppose {Wj,t} Gaussian with mean zero & SDF Sj(·)
(note: filtering tends to yield normality)

• suppose square integrability condition holds:

Aj ≡
∫ 1/2

−1/2

S2
j (f ) df <∞ & S2

j (f ) > 0 almost everywhere

• can show ν̂2
X(τj) asymptotically normal with mean ν2

X(τj) &

large sample variance 2Aj/Mj

• meaning of square integrability condition:

– let sj,τ = cov {Wj,t,W j,t+τ}
– if

∑
τ s2

j,τ <∞, then {sj,τ} ←→ Sj(·), so

∞∑
τ=−∞

s2
j,τ =

∫ 1/2

−1/2

S2
j (f ) df = Aj

– Aj finite if autocovariance damps quickly to 0

– if Aj infinite, usually because Sj(f ) → ∞ as f → 0: can

correct by increasing L

• conclusion: square integrability easy to satisfy

• Monte Carlo studies: large sample theory good if Mj ≥ 128
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Estimation of Aj

• in practical applications, need to estimate

Aj ≡
∫ 1/2

−1/2

S2
j (f ) df

• Sj(·) is SDF of {Wj,t}, so estimate via periodogram:

Ŝ
(p)
j (f ) ≡ 1

Mj

∣∣∣∣∣∣
N−1∑

t=Lj−1

W̃j,te
−i2πft

∣∣∣∣∣∣
2

• statistical theory says: for 0 < |f | < 1/2 & large N

2Ŝ
(p)
j (f )

Sj(f )

d
= χ2

2,

yielding (for large Mj) ≈ unbiased estimator:

Âj ≡
1

2

∫ 1/2

−1/2

[Ŝ
(p)
j (f )]2 df =

(
ŝ

(p)
j,0

)2

2
+

Mj−1∑
τ=1

(
ŝ

(p)
j,τ

)2

,

where {ŝ(p)
j,τ} ←→ Ŝ

(p)
j (·):

ŝ
(p)
j,τ ≡

1

Mj

N−1−|τ |∑
t=Lj−1

W̃j,tW̃j,t+|τ |, 0 ≤ |τ | ≤Mj − 1

• Monte Carlo results: Âj reasonably good for Mj ≥ 128
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Confidence Intervals for ν2
X(τj): I

• for finite Mj, Gaussian-based CI problematic:

lower limit of CI can very well be negative

• can avoid by basing CIs on assumption

ν̂2
X(τj) ≡

1

Mj

N−1∑
t=Lj−1

W̃ 2
j,t

d
= aχ2

η

where η is equivalent degrees of freedom (EDOF)

• moment matching yields

η =
2
(
E{ν̂2

X(τj)}
)2

var {ν̂2
X(τj)}
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Three Ways to Set η

• use large sample theory with appropriate estimates:

η1 ≡
Mjν̂

4
X(τj)

Âj

• assume nominal SDF for {Xt}: SX(f ) = hC(f )

– function C(·) known, but level h unknown

– in practice, C(·) often deduced from data (!?)

– though questionable, get acceptable CIs using

η2 =
2
(∑�(Mj−1)/2�

k=1 Cj(fk)
)2

∑�(Mj−1)/2�
k=1 C2

j (fk)

• assume Sj(·) band-pass white noise:

Sj(f ) =

{
h, 1/2j+1 < |f | ≤ 1/2j

0, otherwise,

yielding simple (but competitive!) approach:

η3 = max{Mj/2j, 1}

• Figs. 6 & 7: examples for vertical shear in the ocean
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Figure 6: Vertical shear measurements and associated backward differences {X(1)
t } (taken

from Figure 328, Percival and Walden, 2000, copyright Cambridge University Press).
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Figure 7: 95% confidence intervals for the D(6) wavelet variance for the vertical ocean
shear series. The intervals are based upon χ2 approximations to the distribution of the
unbiased wavelet variance estimator with EDOFs determined by, from left to right, η̂1, η2

using a nominal model for SX(·) and η3 (taken from Figure 333, Percival and Walden, 2000,
copyright Cambridge University Press).
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Statistical Properties of ν̂2
X(τj) (Non-Gaussian)

• assume {Wj,t} strictly stationary process satisfying

– E{Wj,t} = 0

– E{|Wj,t|4+2δ} <∞ for some δ > 0

– mixing condition αW j ,n
= O(1/nχ), where

αW j ,n
≡ sup

A∈M0
−∞, B∈M∞n

|P(A ∩B)−P(A)P(B)|

and

∗ Mn
m(Wj) is σ-algebra for Wj,m, . . . ,W j,n

∗ χ > (2 + δ)/δ

• let Zj,t ≡ W
2
j,t have SDF SZj

(·) such that 0 < SZj
(0) <∞

• ν̂2
X(τj) asymptotically normal with mean ν2

X(τj) & large sample

variance SZj
(0)/Mj

• can estimate SZj
(0) using standard SDF estimators

– multitaper SDF estimator with K = 5 tapers

– autoregressive SDF estimator (moderate order p)

• Fig. 8: surface albedo of spring pack ice in Beaufort Sea
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Figure 8: (a) surface albedo of pack ice in the Beaufort Sea (sampling interval between mea-
surements is 25 meters, and there are 8428 measurements in all); (b) estimated LA(8) wavelet
variance (thick solid curve), along with upper and lower 90% confidence intervals based upon
Gaussian (thin dotted curves) and non-Gaussian theory (tbin solid curve); (c) ratio of esti-
mated non-Gaussian large sample standard deviations to estimated Gaussian large sample
standard deviations (adapted from Figure 3, A. Serroukh, A. T. Walden and D. B. Percival,
‘Statistical Properties and Uses of the Wavelet Variance Estimator for the Scale Analysis of
Time Series,’ Journal of the American Statistical Association, 95, pp. 184–96).
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Wavelet Variance Analysis of Time Series

with Time-Varying Statistical Properties

• each wavelet coefficient W̃j,t formed using portion of {Xt}
• suppose Xt associated with actual time t0 + t

(t0 is actual time of first observation X0)

• suppose {h̃j,l} is Haar or ‘least asymmetric’ Daubechies wavelet

• can associate W̃j,t with actual time interval of form

[t0 + t′ − τj, t0 + t′ + τj]

• can thus form ‘localized’ wavelet variance analysis (implicitly

assumes stationarity or stationary increments locally)

• Fig. 9: annual minima of Nile River

• Figs. 10, 11 & 12: subtidal sea level fluctuations
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Figure 9: Nile River yearly minima (top plot), along with estimated Haar wavelet variance
before and after year 715.5 (x’s and o’s, respectively) and 95% confidence intervals (thin and
thick lines, respectively) based upon a chi-square approximation with EDOFs determined
by η3 (taken from Figures 192 and 327, Percival and Walden, 2000, copyright Cambridge
University Press).
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Figure 10: LA(8) MODWT multiresolution analysis for Crescent City subtidal variations
measured in centimeters (taken from Figure 186, Percival and Walden, 2000, copyright Cam-
bridge University Press).
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Figure 11: Estimated time-dependent LA(8) wavelet variances for physical scale τ2 ∆t =
1 day for the Crescent City subtidal sea level variations, along with a representative 95%
confidence interval based upon a hypothetical wavelet variance estimate of 1/2 and a chi-
square distribution with ν = 15.25 (taken from Figure 324, Percival and Walden, 2000,
copyright Cambridge University Press).
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Figure 12: Estimated LA(8) wavelet variances for physical scales τj ∆t = 2j−2 days,
j = 2, . . . , 7, grouped by calendar month for the subtidal sea level variations (taken from
Figure 326, Percival and Walden, 2000, copyright Cambridge University Press).
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Summary

• wavelet variance gives scale-based analysis of variance

(natural match for many geophysical processes)

• statistical theory worked out for

– Gaussian processes with stationary backward differences

– non-Gaussian processes satisfying a mixing condition

• applications include analysis of

– genome sequences

– frequency fluctuations in atomic clocks

– changes in variance of soil properties

– canopy gaps in forests

– accumulation of snow fields in polar regions

– turbulence in atmosphere and ocean

– regular and semiregular variables stars
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