Assessing Arctic Sea Ice Thickness using Wavelets

Don Percival

Applied Physics Laboratory University of Washington, Seattle

overheads for talk available at

http://faculty.washington.edu/dbp/talks.html

Overview

- thickness of Arctic sea ice is subject of ongoing scientific interest
- seminar will discuss
 - role of thickness distributions
 - data available to evaluate changes in distributions
 - simplification based upon notion of ice types
 - Haar wavelet variance and its potential role in
 - * evaluating changes
 - * providing additional insights into Arctic sea ice variability
- work in progress with Yanling Yu, Polar Science Center, APL (future work will involve Mike Keim, QERM)

Ice Thickness Distributions

- basic description of Arctic sea ice is distribution of its thickness
- one distribution for entire Arctic basin of less interest than ones
 - localized to specific regions
 - limited to certain time spans
- good physical reasons to hypothesize that distributions are
 - not uniform in space
 - not invariant with time
- inhomogeneities in space and time due to many factors
 - thermodynamic processes control ice growth and melt
 - winds and currents drive ice motion, creating pressure ridges or areas of open water and thin ice

Ice Thickness Profiles

- 750 meter portion of ice thickness profile h(l) measured by a submarine near North Pole in April, 1991
- l is distance in meters along submarine's transect
- measurements are ice drafts, converted to thickness $(\times 1.12)$
- entire profile extends over 50 km (one data point each meter)

Submarine Tracks 1976–97

- left-hand plot shows spring (April–May) cruises
- right-hand plot shows fall (Sept–Oct) cruises
- possibility of more data eventually becoming available

Estimated Ice Thickness Distributions: I

• above give estimates of ice thickness distributions g(h) based on transects near the North Pole, suggesting a thinning of ice from 1991 to 1994, but are differences statistically significant?

Estimated Ice Thickness Distributions: II

- 8 more estimated distributions (4 regions & 2 time periods)
- note: not well-modeled by normal (Gaussian) distribution

Statistical Assessment of Thickness Distributions: I

- while visual differences are suggestive, little definitive is known about spatial-temporal properties of ice thickness distributions
- need to understand if observed differences are due primarily to
 - 1. spatial variability that is consistent from year to year
 - 2. spatial variability that is changing significantly over time and hence represents important climate changes or
 - 3. sampling variations that are consistent with the amount of available data
- standard statistical methodology for evaluating null hypothesis that two samples of data come from same distribution assumes independent samples

Statistical Assessment of Thickness Distributions: II

- \bullet independence assumption unrealistic profiles h(l) are highly autocorrelated
- since histograms are markedly non-Gaussian, have difficult statistical problem of assessing changes in estimated distributions for correlated data from unknown null distribution g(h)

Simplification via Ice Type Distributions: I

- can simplify problem considerably by binning data according to physically meaningful ice types:
 - 1. leads and new ice, for which h(l) < 0.3 m;
 - 2. first year ice, for which 0.3 m $\leq h(l) < 2$ m;
 - 3. medium multiyear ice, for which 2 m $\leq h(l) < 5$ m; and
 - 4. ridged ice, for which $h(l) \ge 5$ m
- horizontal red lines indicate binning into ice types

Simplification via Ice Type Distributions: II

- let $h_i^{(l)}$ and $h_i^{(u)}$ be the lower and upper limits for the *i*th ice type (with $h_1^{(l)} = 0$ and $h_4^{(u)} = \infty$)
- define an indicator series for ith ice type as

$$I_i(l) = \begin{cases} 1, \text{ if } h_i^{(l)} \le h(l) < h_i^{(u)}; \text{ and} \\ 0, \text{ otherwise.} \end{cases}$$

Simplification via Ice Type Distributions: III

• bottom 4 plots show indicator series (these are binary valued)

Simplification via Ice Type Distributions: IV

- binned data described by 4 values (constrained to sum to 1)
- ice type distributions coarser than original ice thickness distributions, but former captures essence of latter

Assessing Changes in Ice Type Distributions: I

- after binning, question of significance of changes still remains, but can be tackled using the following ideas
- by construction, area under an estimated ice type distribution between $h_i^{(l)}$ and $h_i^{(u)}$ is observed proportion \hat{p}_i of occurrences of the *i*th ice type in h(l)
- proportion \hat{p}_i is estimator of corresponding theoretical quantity

$$p_i = \int_{h_i^{(l)}}^{h_i^{(u)}} g(h) \, dh$$

Assessing Changes in Ice Type Distributions: II

• observed proportion \hat{p}_i is just sample mean of *i*th indicator series $I_i(l)$:

$$\hat{p}_i = \frac{1}{N} \sum_{l=0}^{N-1} I_i(l),$$

where N is # of measurements in profile (typically > 50,000) • corresponding sample variance for $I_i(l)$ is given by

$$\hat{\sigma}_i^2 = \frac{1}{N} \sum_{l=0}^{N-1} (I_i(l) - \hat{p}_i)^2 = \hat{p}_i(1 - \hat{p}_i).$$

Assessing Changes in Ice Type Distributions: III

• if $I_i(l)$, l = 0, ..., N - 1, were a realization of N independent binary-valued random variables, could compute an approximate 95% confidence interval for p_i based upon an estimate of the variance of \hat{p}_i :

$$\operatorname{var}\{\hat{p}_i\} \approx \frac{\hat{\sigma}_i^2}{N} = \frac{\hat{p}_i(1-\hat{p}_i)}{N},$$

- independence does not hold due to autocorrelation, so need to determine correlation structure of indicator series $I_i(l)$
- can quantify correlation structure using wavelets

Decomposing Sample Variance of 'Time' Series

- let $X_0, X_1, \ldots, X_{N-1}$ represent a 'time' series with N values (for sea ice, 'time' is actually distance along a transect)
- let \overline{X} denote sample mean of X_t 's: $\overline{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$
- let $\hat{\sigma}_X^2$ denote sample variance of X_t 's:

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2$$

- can quantify certain properties of X_t by an analysis of variance, i.e., by decomposing (breaking up) $\hat{\sigma}_X^2$ into pieces
- analysis of variance using wavelets based upon differences between adjacent averages over certain 'scales'

Notion of Scale

- scale τ refers to width of an interval (e.g., chunch of a transect)
- scale-based analysis looks at averages over intervals of width τ :

$$\overline{X}_t(\tau) \equiv \frac{1}{\tau} \sum_{l=0}^{\tau-1} X_{t-l}$$

• localized average of X_t and its $\tau - 1$ prior values

•
$$\overline{X}_t(1) = X_t$$
 is scale 1 'average'

•
$$\overline{X}_{N-1}(N) = \overline{X}$$
 is scale N average

Wavelet Coefficients and Filters

- wavelet coefficients tell us about variations in adjacent averages
- use wavelet filter to create wavelet coefficients
- given $X_0, X_1, \ldots, X_{N-1}$, define wavelet coefficients via $\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \widetilde{h}_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \ldots, N-1,$ where $\widetilde{h}_{j,l}$ is a wavelet filter with L_j coefficients, and $X_{t-l \mod N} = X_t$ if $0 \le t-l \le N-1$ $X_{-1 \mod N} = X_{N-1}$

$$X_{-2 \mod N} = X_{N-2}$$
 etc ('circularity')

• index j specifies associated scale as $\tau_j \equiv 2^{j-1}, j = 1, 2, \ldots$; i.e., scales are powers of two $(1, 2, 4, 8, \ldots)$

Haar Wavelet Filters

• Haar wavelet filters $\tilde{h}_{j,l}$ for scales indexed by $j = 1, \ldots, 7$

positive & 1 negative coefficient
positive & 2 negative coefficients
4 & 4

Haar Wavelet Coefficients: I

• consider how $\widetilde{W}_{1,1} = \sum_l \widetilde{h}_{1,l} X_{1-l \mod N}$ is formed (N = 16):

• similar interpretation for $\widetilde{W}_{1,15} = \sum_{l} \widetilde{h}_{1,l} X_{15-l \mod N}$:

Haar Wavelet Coefficients: II

• now consider form of $\widetilde{W}_{2,3} = \sum_l \widetilde{h}_{2,l} X_{3-l \mod N}$:

- similar interpretation for $\widetilde{W}_{2,4}, \widetilde{W}_{2,5}, \ldots, \widetilde{W}_{2,15}$
- note: $W_{2,0}, W_{2,1}$ and $W_{2,2}$ aren't proportional to differences of adjacent averages (called 'boundary' coefficients)

Haar Wavelet Coefficients: III

•
$$\widetilde{W}_{3,7} = \sum_{l} \widetilde{h}_{3,l} X_{7-l \mod N}$$
 takes the following form:

$$\tilde{h}_{3,l} \qquad \qquad \text{product} \qquad \text{sum} \propto \overline{X}_7(4) - \overline{X}_3(4)$$

- Haar wavelet coefficients $\widetilde{W}_{j,t}$ for scale $\tau_j = 2^{j-1}$ proportional to $\overline{X}_t(\tau_j) \overline{X}_{t-\tau_j}(\tau_j)$. i.e., to change in adjacent τ_j averages
 - change measured by simple first difference
 - average is localized sample mean
 - if $\widetilde{W}_{j,t}^2$ small, not much variation over scale τ_j - if $\widetilde{W}_{j,t}^2$ large, lot of variation over scale τ_j

Empirical Wavelet Variance

• define empirical wavelet variance for scale τ_j as

$$\tilde{\nu}_X^2(\tau_j) \equiv \frac{1}{N} \sum_{t=0}^{N-1} \widetilde{W}_{j,t}^2$$

• if $N = 2^J$, obtain analysis (decomposition) of sample variance:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \sum_{j=1}^J \tilde{\nu}_X^2(\tau_j)$$

(if N not a power of 2, can still obtain an analysis of variance to a given level J_0 , but have component due to 'scaling' filter)

• interpretation: $\tilde{\nu}_X^2(\tau_j)$ is portion of $\hat{\sigma}_X^2$ due to changes in averages over scale τ_j ; i.e., 'scale by scale' analysis of variance

Example of Empirical Wavelet Variance

• wavelet variances for time series X_t and Y_t of length N = 16, each with zero sample mean and same sample variance

Second Example of Empirical Wavelet Variance

• top: subtidal sea level series X_t (blue line shows scale of 16)

• bottom: empirical wavelet variances $\tilde{\nu}_X^2(\tau_j)$

Theoretical Wavelet Variance: I

- now assume X_t is a real-valued random variable (RV)
- let $X_t, t \in \mathbb{Z}$ denote a stochastic process, i.e., collection of RVs indexed by 'time' t (here \mathbb{Z} denotes the set of all integers)
- filter X_t to create new stochastic process:

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j - 1} \tilde{h}_{j,l} X_{t-l}, \quad t \in \mathbb{Z},$$

which should be contrasted with

$$\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \widetilde{h}_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \dots, N-1$$

Theoretical Wavelet Variance: II

- if Y is any RV, let $E\{Y\}$ denote its expectation
- let var {Y} denote its variance: var {Y} $\equiv E\{(Y E\{Y\})^2\}$
- definition of wavelet variance:

$$\nu_X^2(\tau_j) \equiv \operatorname{var} \{ \overline{W}_{j,t} \},\$$

with conditions on X_t so that var $\{\overline{W}_{j,t}\}$ exists, is finite and does not depend on t

• $\nu_X^2(\tau_j)$ well-defined for stationary processes, so let's review concept of stationarity

Definition of a Stationary Process

• if U and V are two RVs, denote their covariance by $\operatorname{cov} \{U, V\} = E\{(U - E\{U\})(V - E\{V\})\}$

• stochastic process X_t called stationary if

 $-E\{X_t\} = \mu_X \text{ for all } t, \text{ i.e., constant independent of } t$ $-\cos\{X_t, X_{t+\tau}\} = s_{X,\tau}, \text{ i.e., depends on lag } \tau, \text{ but not } t$

• $s_{X,\tau}, \tau \in \mathbb{Z}$, is autocovariance sequence (ACVS)

• $s_{X,0} = \operatorname{cov}\{X_t, X_t\} = \operatorname{var}\{X_t\}$; i.e., variance same for all t

Example of a Stationary Process: White Noise

- simplest example of a stationary process is 'white noise'
- process X_t said to be white noise if
 - it has a constant mean $E\{X_t\} = \mu_X$
 - it has a constant variance var $\{X_t\} = \sigma_X^2$
 - $-\cos \{X_t, X_{t+\tau}\} = 0$ for all t and nonzero τ ; i.e., distinct RVs in the process are uncorrelated
- ACVS for white noise takes a very simple form:

$$s_{X,\tau} = \operatorname{cov} \{X_t, X_{t+\tau}\} = \begin{cases} \sigma_X^2, & \tau = 0; \\ 0, & \text{otherwise} \end{cases}$$

Wavelet Variance for Stationary Processes

• for stationary processes, wavelet variance decomposes var $\{X_t\}$:

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \operatorname{var} \{X_t\}$$

(above result similar to one for sample variance)

- $\nu_X^2(\tau_j)$ is thus contribution to var $\{X_t\}$ due to scale τ_j
- example: for a white noise process, have

$$\nu_X^2(\tau_j) = \frac{\operatorname{var} \{X_t\}}{2^j} = \frac{\operatorname{var} \{X_t\}}{2\tau_j} \propto \tau_j^{-1},$$

so largest contribution to var $\{X_t\}$ is at smallest scale τ_1

Fractionally Differenced (FD) Processes: I

- as another example, consider wavelet variance for FD processes (Granger & Joyeux, 1980; Hosking, 1981)
- FD processes determined by 2 parameters $-\infty < \delta < \infty$ & $\sigma_{\epsilon}^2 > 0$ (relatively unimportant)
- if $\delta < 1/2$, FD process X_t is stationary, and, in particular,
 - reduces to white noise if $\delta = 0$
 - has 'long range' dependence if $\delta>0;$ i.e., $s_{X,\tau}>0$ and does not decrease to zero rapidly
 - is 'antipersistent' if $\delta < 0$ (i.e., $\operatorname{cov} \{X_t, X_{t+1}\} < 0$)

Fractionally Differenced (FD) Processes: II

• at large scales, have

$$\nu_X^2(\tau_j) \approx C \tau_j^{2\delta - 1}$$

• thus

$$\log\left(\nu_X^2(\tau_j)\right) \approx \log\left(C\right) + (2\delta - 1)\log\left(\tau_j\right),$$

so a log/log plot of $\nu_X^2(\tau_j)$ vs. τ_j looks approximately linear with slope $2\delta - 1$ for τ_j large enough

• for white noise, have $\delta = 0$, $\nu_X^2(\tau_j) = C\tau_j^{-1}$ and hence

$$\log\left(\nu_X^2(\tau_j)\right) = \log\left(C\right) - \log\left(\tau_j\right),$$

LA(8) Wavelet Variance for 2 FD Processes

- left-hand column: $\nu_X^2(\tau_j)$ versus τ_j
- right-hand: realization of length N = 256 from each FD process
- note: slope on log/log plot would be -1 for uncorrelated data (white noise)

Haar Wavelet Analysis of Ice Type Series: I

- let $W_{i;j,l}$ denote Haar wavelet coefficient for *i*th ice type and scale $\tau_j = 2^{j-1}$ meters at location along transect indexed by l
- coefficient is proportional to difference of adjacent sample means:

$$W_{i;j,l} \propto \frac{1}{\tau_j} \sum_{m=0}^{\tau_j - 1} I_i(l-m) - \frac{1}{\tau_j} \sum_{n=0}^{\tau_j - 1} I_i(l-\tau_j - n),$$

- because $I_i(l)$ is binary-valued, $W_{i;j,l}$ has simple and intuitively appealing interpretation: it is proportional to *differences* in percentage of *i*th ice type between adjacent parts of the ice thickness profile, with each part being of scale (length) τ_j .
- if $W_{i;j,l}^2$ is small, ice type percentage is stable, i.e., not varying much between adjacent parts of scale τ_j

Haar Wavelet Analysis of Ice Type Series: II

• estimated wavelet variances based upon averaging available $W_{i;j,l}^2$ • red line has slope of -1 (appropriate for white noise)

Haar Wavelet Analysis of Ice Type Series: III

- wavelet variance curves are basically unimodal
- location of peak gives indication of 'characteristic scale' (e.g., ≈ 256 m and 32 m for types 1 and 4)
- conjecture: can use characteristic scale and rate of decay of curve as τ_i gets large to assess variability in \hat{p}_i via

$$\operatorname{var}\{\hat{p}_i\} \approx \frac{\hat{p}_i(1-\hat{p}_i)}{N_e^{-\beta}}$$

- $N_e \propto N$ is 'effective sample size,' with constant of proportionality being related to the characteristic scale
- rate at which $\operatorname{var}\{\hat{p}_i\}$ decreases to zero as N increases is determined by β , which is the slope of $\log(\hat{\nu}_i^2(\tau_j))$ versus $\log(\tau_j)$ over large τ

Future Work

- work out statistical theory for testing null hypothesis of constant ice type distribution
- investigate relationship between characteristic scales and physical processes
- look at spatial and temporal variations in distributions and characteristics scales
- thanks for the invitation to speak!