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Overview

• thickness of Arctic sea ice is subject of ongoing scientific interest

• seminar will discuss

− role of thickness distributions

− data available to evaluate changes in distributions

− simplification based upon notion of ice types

− Haar wavelet variance and its potential role in

∗ evaluating changes

∗ providing additional insights into Arctic sea ice variability

• work in progress with Yanling Yu, Polar Science Center, APL
(future work will involve Mike Keim, QERM)
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Ice Thickness Distributions

• basic description of Arctic sea ice is distribution of its thickness

• one distribution for entire Arctic basin of less interest than ones

− localized to specific regions

− limited to certain time spans

• good physical reasons to hypothesize that distributions are

− not uniform in space

− not invariant with time

• inhomogeneities in space and time due to many factors

− thermodynamic processes control ice growth and melt

− winds and currents drive ice motion, creating pressure ridges
or areas of open water and thin ice

3



Ice Thickness Profiles
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• 750 meter portion of ice thickness profile h(l) measured by a
submarine near North Pole in April, 1991

• l is distance in meters along submarine’s transect

• measurements are ice drafts, converted to thickness (×1.12)

• entire profile extends over 50 km (one data point each meter)
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Submarine Tracks 1976–97
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• left-hand plot shows spring (April–May) cruises

• right-hand plot shows fall (Sept–Oct) cruises

• possibility of more data eventually becoming available
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Estimated Ice Thickness Distributions: I
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• above give estimates of ice thickness distributions g(h) based
on transects near the North Pole, suggesting a thinning of ice
from 1991 to 1994, but are differences statistically significant?
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Estimated Ice Thickness Distributions: II
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• 8 more estimated distributions (4 regions & 2 time periods)

• note: not well-modeled by normal (Gaussian) distribution
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Statistical Assessment of Thickness Distributions: I

• while visual differences are suggestive, little definitive is known
about spatial-temporal properties of ice thickness distributions

• need to understand if observed differences are due primarily to

1. spatial variability that is consistent from year to year

2. spatial variability that is changing significantly over time and
hence represents important climate changes or

3. sampling variations that are consistent with the amount of
available data

• standard statistical methodology for evaluating null hypothesis
that two samples of data come from same distribution assumes
independent samples
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Statistical Assessment of Thickness Distributions: II
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• independence assumption unrealistic – profiles h(l) are highly
autocorrelated

• since histograms are markedly non-Gaussian, have difficult sta-
tistical problem of assessing changes in estimated distributions
for correlated data from unknown null distribution g(h)

9



Simplification via Ice Type Distributions: I
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• can simplify problem considerably by binning data according
to physically meaningful ice types:

1. leads and new ice, for which h(l) < 0.3 m;

2. first year ice, for which 0.3 m ≤ h(l) < 2 m;

3. medium multiyear ice, for which 2 m ≤ h(l) < 5 m; and

4. ridged ice, for which h(l) ≥ 5 m

• horizontal red lines indicate binning into ice types
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Simplification via Ice Type Distributions: II

• let h
(l)
i and h

(u)
i be the lower and upper limits for the ith ice

type (with h
(l)
1 = 0 and h

(u)
4 = ∞)

• define an indicator series for ith ice type as

Ii(l) =

{
1, if h

(l)
i ≤ h(l) < h

(u)
i ; and

0, otherwise.
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Simplification via Ice Type Distributions: III
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• bottom 4 plots show indicator series (these are binary valued)
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Simplification via Ice Type Distributions: IV
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• binned data described by 4 values (constrained to sum to 1)

• ice type distributions coarser than original ice thickness distri-
butions, but former captures essence of latter
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Assessing Changes in Ice Type Distributions: I

• after binning, question of significance of changes still remains,
but can be tackled using the following ideas

• by construction, area under an estimated ice type distribution

between h
(l)
i and h

(u)
i is observed proportion p̂i of occurrences

of the ith ice type in h(l)

• proportion p̂i is estimator of corresponding theoretical quantity

pi =

∫ h
(u)
i

h
(l)
i

g(h) dh
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Assessing Changes in Ice Type Distributions: II

• observed proportion p̂i is just sample mean of ith indicator
series Ii(l):

p̂i =
1

N

N−1∑
l=0

Ii(l),

where N is # of measurements in profile (typically > 50, 000)

• corresponding sample variance for Ii(l) is given by

σ̂2
i =

1

N

N−1∑
l=0

(Ii(l) − p̂i)
2 = p̂i(1 − p̂i).
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Assessing Changes in Ice Type Distributions: III

• if Ii(l), l = 0, . . . , N − 1, were a realization of N independent
binary-valued random variables, could compute an approximate
95% confidence interval for pi based upon an estimate of the
variance of p̂i:

var{p̂i} ≈ σ̂2
i

N
=

p̂i(1 − p̂i)

N
,

• independence does not hold due to autocorrelation, so need to
determine correlation structure of indicator series Ii(l)

• can quantify correlation structure using wavelets
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Decomposing Sample Variance of ‘Time’ Series

• let X0, X1, . . . , XN−1 represent a ‘time’ series with N values
(for sea ice, ‘time’ is actually distance along a transect)

• let X denote sample mean of Xt’s: X ≡ 1
N

∑N−1
t=0 Xt

• let σ̂2
X denote sample variance of Xt’s:

σ̂2
X ≡ 1

N

N−1∑
t=0

(
Xt − X

)2

• can quantify certain properties of Xt by an analysis of variance,
i.e., by decomposing (breaking up) σ̂2

X into pieces

• analysis of variance using wavelets based upon differences be-
tween adjacent averages over certain ‘scales’
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Notion of Scale

• scale τ refers to width of an interval (e.g., chunch of a transect)

• scale-based analysis looks at averages over intervals of width τ :

Xt(τ ) ≡ 1

τ

τ−1∑
l=0

Xt−l

• localized average of Xt and its τ − 1 prior values

• Xt(1) = Xt is scale 1 ‘average’

• XN−1(N) = X is scale N average
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Wavelet Coefficients and Filters

• wavelet coefficients tell us about variations in adjacent averages

• use wavelet filter to create wavelet coefficients

• given X0, X1, . . . , XN−1, define wavelet coefficients via

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1,

where h̃j,l is a wavelet filter with Lj coefficients, and

Xt−l mod N = Xt if 0 ≤ t − l ≤ N − 1

X−1 mod N = XN−1

X−2 mod N = XN−2 etc (‘circularity’)

• index j specifies associated scale as τj ≡ 2j−1, j = 1, 2, . . .;
i.e., scales are powers of two (1, 2, 4, 8, . . . )
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Haar Wavelet Filters

• Haar wavelet filters h̃j,l for scales indexed by j = 1, . . . , 7
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Haar Wavelet Coefficients: I

• consider how W̃1,1 =
∑

l h̃1,lX1−l mod N is formed (N = 16):

.
.
..............

.......
.....

.... ................
h̃1,l

Xt

product sum ∝ X1(1) − X0(1)

• similar interpretation for W̃1,15 =
∑

l h̃1,lX15−l mod N :

.
.

..............
.........

.....
.. ................h̃1,l

Xt

product sum ∝ X15(1) − X14(1)
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Haar Wavelet Coefficients: II

• now consider form of W̃2,3 =
∑

l h̃2,lX3−l mod N :

..
..............

....
................

...
.....

....
h2,l

Xt

product sum ∝ X3(2) − X1(2)

• similar interpretation for W̃2,4, W̃2,5, . . . , W̃2,15

• note: W̃2,0, W̃2,1 and W̃2,2 aren’t proportional to differences of
adjacent averages (called ‘boundary’ coefficients)
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Haar Wavelet Coefficients: III

• W̃3,7 =
∑

l h̃3,lX7−l mod N takes the following form:

....
............

.......
.....

.... ................
h̃3,l

Xt

product sum ∝ X7(4) − X3(4)

• Haar wavelet coefficients W̃j,t for scale τj = 2j−1 proportional

to Xt(τj) − Xt−τj(τj). i.e., to change in adjacent τj averages

− change measured by simple first difference

− average is localized sample mean

− if W̃ 2
j,t small, not much variation over scale τj

− if W̃ 2
j,t large, lot of variation over scale τj
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Empirical Wavelet Variance

• define empirical wavelet variance for scale τj as

ν̃2
X(τj) ≡

1

N

N−1∑
t=0

W̃ 2
j,t

• if N = 2J , obtain analysis (decomposition) of sample variance:

σ̂2
X =

1

N

N−1∑
t=0

(
Xt − X

)2
=

J∑
j=1

ν̃2
X(τj)

(if N not a power of 2, can still obtain an analysis of variance
to a given level J0, but have component due to ‘scaling’ filter)

• interpretation: ν̃2
X(τj) is portion of σ̂2

X due to changes in av-
erages over scale τj; i.e., ‘scale by scale’ analysis of variance
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Example of Empirical Wavelet Variance

• wavelet variances for time series Xt and Yt of length N = 16,
each with zero sample mean and same sample variance

 

 

 

 

 

 

    
 

. . .
.

. . . . . . . . . .
. .

.
.

.
.

.

.
.

.

.
.

.

.

. . . .

 

 

. .

.

.

 

 

    
 

.

.
. .

Xt

Yt

ν̃2
X(τj)

ν̃2
Y (τj)

2

0

−2
2

0

−2

0.3

0.0
0.3

0.0
0 5 10 15 1 2 4 8

t τj

25



Second Example of Empirical Wavelet Variance

• top: subtidal sea level series Xt (blue line shows scale of 16)
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• bottom: empirical wavelet variances ν̃2
X(τj)
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Theoretical Wavelet Variance: I

• now assume Xt is a real-valued random variable (RV)

• let Xt, t ∈ Z denote a stochastic process, i.e., collection of RVs
indexed by ‘time’ t (here Z denotes the set of all integers)

• filter Xt to create new stochastic process:

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z,

which should be contrasted with

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1
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Theoretical Wavelet Variance: II

• if Y is any RV, let E{Y } denote its expectation

• let var {Y } denote its variance: var {Y } ≡ E{(Y − E{Y })2}
• definition of wavelet variance:

ν2
X(τj) ≡ var {Wj,t},

with conditions on Xt so that var {Wj,t} exists, is finite and
does not depend on t

• ν2
X(τj) well-defined for stationary processes, so let’s review con-

cept of stationarity
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Definition of a Stationary Process

• if U and V are two RVs, denote their covariance by

cov {U, V } = E{(U − E{U})(V − E{V })}

• stochastic process Xt called stationary if

− E{Xt} = µX for all t, i.e., constant independent of t

− cov{Xt, Xt+τ} = sX,τ , i.e., depends on lag τ , but not t

• sX,τ , τ ∈ Z, is autocovariance sequence (ACVS)

• sX,0 = cov{Xt, Xt} = var{Xt}; i.e., variance same for all t
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Example of a Stationary Process: White Noise

• simplest example of a stationary process is ‘white noise’

• process Xt said to be white noise if

− it has a constant mean E{Xt} = µX

− it has a constant variance var {Xt} = σ2
X

– cov {Xt, Xt+τ} = 0 for all t and nonzero τ ; i.e., distinct RVs
in the process are uncorrelated

• ACVS for white noise takes a very simple form:

sX,τ = cov {Xt, Xt+τ} =

{
σ2

X, τ = 0;

0, otherwise.
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Wavelet Variance for Stationary Processes

• for stationary processes, wavelet variance decomposes var {Xt}:
∞∑
j=1

ν2
X(τj) = var {Xt}

(above result similar to one for sample variance)

• ν2
X(τj) is thus contribution to var {Xt} due to scale τj

• example: for a white noise process, have

ν2
X(τj) =

var {Xt}
2j

=
var {Xt}

2τj
∝ τ−1

j ,

so largest contribution to var {Xt} is at smallest scale τ1
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Fractionally Differenced (FD) Processes: I

• as another example, consider wavelet variance for FD processes
(Granger & Joyeux, 1980; Hosking, 1981)

• FD processes determined by 2 parameters −∞ < δ < ∞ &
σ2

ε > 0 (relatively unimportant)

• if δ < 1/2, FD process Xt is stationary, and, in particular,

− reduces to white noise if δ = 0

− has ‘long range’ dependence if δ > 0; i.e., sX,τ > 0 and does
not decrease to zero rapidly

− is ‘antipersistent’ if δ < 0 (i.e., cov {Xt, Xt+1} < 0)
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Fractionally Differenced (FD) Processes: II

• at large scales, have

ν2
X(τj) ≈ Cτ2δ−1

j

• thus
log (ν2

X(τj)) ≈ log (C) + (2δ − 1) log (τj),

so a log/log plot of ν2
X(τj) vs. τj looks approximately linear

with slope 2δ − 1 for τj large enough

• for white noise, have δ = 0, ν2
X(τj) = Cτ−1

j and hence

log (ν2
X(τj)) = log (C) − log (τj),
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LA(8) Wavelet Variance for 2 FD Processes
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• left-hand column: ν2
X(τj) versus τj

• right-hand: realization of length N = 256 from each FD process

• note: slope on log/log plot would be −1 for uncorrelated data
(white noise)
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Haar Wavelet Analysis of Ice Type Series: I

• let Wi;j,l denote Haar wavelet coefficient for ith ice type and

scale τj = 2j−1 meters at location along transect indexed by l

• coefficient is proportional to difference of adjacent sample means:

Wi;j,l ∝
1

τj

τj−1∑
m=0

Ii(l − m) − 1

τj

τj−1∑
n=0

Ii(l − τj − n),

• because Ii(l) is binary-valued, Wi;j,l has simple and intuitively
appealing interpretation: it is proportional to differences in
percentage of ith ice type between adjacent parts of the ice
thickness profile, with each part being of scale (length) τj.

• if W 2
i;j,l is small, ice type percentage is stable, i.e., not varying

much between adjacent parts of scale τj
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Haar Wavelet Analysis of Ice Type Series: II
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Haar Wavelet Analysis of Ice Type Series: III

• wavelet variance curves are basically unimodal

• location of peak gives indication of ‘characteristic scale’
(e.g., ≈ 256 m and 32 m for types 1 and 4)

• conjecture: can use characteristic scale and rate of decay of
curve as τj gets large to assess variability in p̂i via

var{p̂i} ≈ p̂i(1 − p̂i)

N
−β
e

• Ne ∝ N is ‘effective sample size,’ with constant of proportion-
ality being related to the characteristic scale

• rate at which var{p̂i} decreases to zero as N increases is de-
termined by β, which is the slope of log(ν̂2

i (τj)) versus log(τj)
over large τ
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Future Work

• work out statistical theory for testing null hypothesis of con-
stant ice type distribution

• investigate relationship between characteristic scales and phys-
ical processes

• look at spatial and temporal variations in distributions and
characteristics scales

• thanks for the invitation to speak!
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