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of tsunamis and other destructive events on human developments and because many physical and biological
processes within coastal ecosystems are very sensitive to these fluctuations. We analyze a time series of
subtidal fluctuations at Crescent City, California, during 1980–91 using the maximal overlap discrete wavelet
transform (MODWT). Our analysis shows that these fluctuations have seasonally dependent variability over
scales of 32 day and less. We show how this nonstationary behavior can be succinctly characterized in terms
of the MODWT, and we indicate how this characterization can be used to improve forecasting schemes for
inundation during tsunamis and storm surges. Because the standard tools in time series analysis are best
suited for stationary processes and because our case study demonstrates that MODWT analysis is useful for
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1. INTRODUCTION

Sea level fluctuations strongly influence the impacts that the ocean has on both human activities and coastal
ecosystems within the coastal zone. For example, these fluctuations help determine the levels of inundation
caused by tsunamis, storm surges and high waves. Many physical and biological processes are very sensitive
to short- and long-term fluctuations in sea level. The effects of sea level fluctuations depend on their
amplitudes, their duration of time and when they occur during the year. In general, sea level fluctuations
are due to the astronomical tides, runoff from rivers, and the response of the coastal ocean to meteorological
forcing. On longer time scales, they respond to varying ocean currents, the seasonal heating and cooling
of the adjacent ocean, and interannual phenomena such as the El Niño/Southern Oscillation cycle in the
Equatorial Pacific Ocean and variations in the Pacific–North American pattern in the atmosphere.

The astronomical tides usually dominate sea level fluctuations at the coast. These tides are highly pre-
dictable because they are well-modeled as stationary harmonic processes with precise frequencies, especially
near one and two cycles per day (Pugh, 1987). In contrast, subtidal fluctuations occur over a very broad
range of longer time scales and are highly non-stationary. While the amplitudes of subtidal fluctuations are
often less than those of tides, they can be large enough to influence the impacts of tsunamis and other coastal
hazards. The subtidal fluctuations are also of scientific interest because they provide considerable insight
into the ways in which the coastal ocean responds to atmospheric forcing and currents. Background material
on these fluctuations can be found in, e.g., Pattullo et al. (1955), Roden (1960), Chelton and Davis (1982),
Halliwell and Allen (1984), Denbo and Allen (1987), Enfield (1987), Spillane et al. (1987), Strub et al. (1987a,
b), Strub and James (1988), Hickey (1989) and Roden (1989).

In this paper, we demonstrate that wavelet analysis based on the maximal overlap discrete wavelet
transform (MODWT) is an effective technique for quantifying the nonstationary characteristics of subtidal
sea level fluctuations as measured by the tide gauge at Crescent City, California. This site is of particular
interest because Crescent City has a well-documented history of tsunami inundation in which the maximum
heights depend strongly of the heights of subtidal sea level (Petrauskas and Borgman, 1971; Lander and
Lockridge, 1989; Mofjeld et al., 1997a). The ocean near Crescent City is also subject to the highest seasonal
wind forcing along the U.S. West Coast (Strub et al., 1987b). The period of interest is 1980–1991, which
includes the major 1982–83 El Niño/Southern Oscillation event and several other interannual events. The
primary scientific purpose of this paper is to characterize the subtidal sea level fluctuations at Crescent City
as they relate to coastal hazards. These characterizations can then be used to improve maps and forecasts
of coastal inundation (Mofjeld et al., 1997a, b).

The MODWT of a time series leads to two types of analyses. The first is an additive decomposi-
tion known as multiresolution analysis, which breaks up the series into a number of “details” and a single
“smooth.” Each detail is a time series describing variations at a particular time scale, while the smooth
describes the low frequency variations. We use the details from the Crescent City series to study its temporal
behavior at the synoptic (1–10 days) and intraseasonal scales and use the smooth to study its seasonal and
longer scale fluctuations. Stacked plots of the details and smooth provide an effective means of exploring
the relationships between sea level fluctuations at different time scales.

The second type of analysis decomposes the sample variance of the time series both across different
scales and over time. The decomposition across time is facilitated by our use of a compactly supported
“least asymmetric” (LA) wavelet filter due to Daubechies (1992), which helps align events in the analysis
with events in the original series. Because time-dependent events at various scales are properly localized,
MODWT analysis of variance is particularly useful for time series with nonstationary characteristics, such as
exhibited by the subtidal fluctuations at Crescent City. For these fluctuations, MODWT analysis of variance
suggests a simple model for annual cycles of scale-dependent variations in variance that can be useful in
operational forecasting.

Following this introduction, we devote two sections to summarizing wavelet methodology. Section 2
describes the orthonormal discrete wavelet transform (DWT). This section provides essential background for
the MODWT (Section 3), which is used to analyze the subtidal sea level series at Crescent City. Section 4
presents the results for the MODWT analysis, while Section 5 interprets and discusses the implications
of these results and the advantages of the MODWT approach over more traditional methods. Section 6
summarizes the conclusions of the paper. We have also included appendices containing pseudo-code and
proofs of the basic properties of the MODWT. Enough detail is provided so that practitioners can apply
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MODWT analysis in other problem areas.

2. THE DISCRETE WAVELET TRANSFORM

In this section we summarize the discrete wavelet transform (DWT) and DWT-based multiresolution and
variance analyses. Let X be a column vector containing a sequence X0, X1, . . . , XN−1 of N observations
of a real-valued time series. We assume that the observation Xt was collected at time t∆t, where ∆t is the
time interval between adjacent observations (for example, ∆t = 1/2 day for the subtidal sea level series at
Crescent City). In this section we also assume that the sample size N is an integer multiple of 2J , where J
is a positive integer.

The DWT of level J is an orthonormal transform of X defined by W = WX, where W is a column
vector of length N , and W is an N × N real-valued matrix satisfying WTW = I. The vector W contains
the transform coefficients, and its first N −N/2J elements and last N/2J elements are called, respectively,
wavelet and scaling coefficients. Explicit construction of W is outlined in Section 2.1. Qualitatively, if we
let τj ≡ 2j−1, each wavelet coefficient is associated with changes on a particular scale τj ∆t at a localized
set of times; i.e., a wavelet coefficient tells us how much a weighted average changes from a particular time
period of effective length τj ∆t to the next. There are exactly N/2j wavelet coefficients associated with scale
τj ∆t, where j = 1, . . . , J . The N/2J scaling coefficients are associated with variations on scales τJ+1 ∆t
and higher; i.e., a scaling coefficient is a weighted average with bandwidth τJ+1 ∆t over a particular time
period of effective length τJ+1 ∆t. Background material on wavelets supporting this qualitative description
and supplementing the mathematical development in the next three subsections can be found in, e.g., Mal-
lat (1989), Daubechies (1992), Press et al. (1992), Meyer (1993), Strang (1993), Newland (1993), Nason and
Silverman (1994), Percival and Guttorp (1994), Percival (1995), McCoy and Walden (1996) and Lindsay et
al. (1996).

2.1 Construction of the DWT

The DWT matrix W is constructed based entirely upon a wavelet filter h1,0, . . . , h1,L1−1 of even length L1

(Mallat, 1989; Daubechies, 1992, Ch. 6). For convenience we assume L1 ≤ N . By definition, this filter sums
to zero, has unit norm and is orthogonal to its even shifts:

L1−1−2l∑
n=0

h1,nh1,n+2l =

{
1, l = 0;
0, l = 1, 2, . . . , (L1 − 2)/2.

(1)

The filter h1,n is associated with the scale ∆t = τ1 ∆t and is approximately a highpass filter with a pass-band
given by the interval of frequencies [1/(4 ∆t), 1/(2 ∆t)]. To define the wavelet filter hj,n for higher scales
τj ∆t, let

H1,k ≡
N−1∑
n=0

h1,ne
−i2πnk/N , k = 0, . . . , N − 1,

be the discrete Fourier transform (DFT) of the wavelet filter padded with N − L1 zeros. Let g1,n be the
corresponding scaling filter, which is defined as

g1,n ≡ (−1)n+1h1,L1−1−n, n = 0, . . . , L1 − 1. (2)

Let G1,k denote the DFT of the zero-padded scaling filter. The higher order wavelet filters are defined as

hj,n ≡ 1

N

N−1∑
k=0

Hj,ke
i2πnk/N , where Hj,k ≡ H1,2j−1k mod N

j−2∏
l=0

G1,2lk mod N . (3)

Elements hj,Lj , hj,Lj+1, . . . , hj,N−1 of this real-valued filter will be equal to zero when Lj ≡ (2j−1)(L1−1)+
1 < N . The filter hj,n is approximately a bandpass filter with a pass-band given by [1/(2j+1∆t), 1/(2j∆t)].
Finally, we define the Jth order scaling filter as

gJ,n ≡ 1

N

N−1∑
k=0

GJ,ke
i2πnk/N , where GJ,k ≡

J−1∏
l=0

G1,2lk mod N . (4)
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The filter gJ,n is approximately a lowpass filter with pass-band [0, 1/(2J+1∆t)].

The first N − N/2J rows of the matrix W contain shifted versions of the wavelet filters hj,m, j =
1, 2, . . . , J . To be explicit, let the column vector

hj ≡ [hj,0, hj,N−1, hj,N−2, . . . , hj,2, hj,1 ]
T

(5)

contain the elements of the filter hj,n. Let T be the N ×N matrix that circularly shifts hj by one unit:

T hj = [hj,1, hj,0, hj,N−1, . . . , hj,3, hj,2 ]
T
.

Let T 2hj ≡ T T hj and so forth. With j = 1, . . . , J , the matrix WT has N/2j columns associated with

scale τj ∆t, namely, T 2jk−1hj , k = 1, . . . , N/2j , where k is a location index. The first M/2 columns in WT

are T 2k−1h1, k = 1, . . . , N/2; the next N/4 columns are the circularly shifted versions of h2; and so forth,

until we come to columns containing circularly shifted versions of hJ , namely, T 2Jk−1hJ , k = 1, . . . , N/2J .
The N/2j wavelet coefficients associated with scale τj ∆t can be interpreted as circularly filtering X using
the filter hj and then subsampling every 2jth value of the filter output (this is called downsampling in the
engineering literature). Likewise, the last N/2J columns of WT contain shifted versions of the Jth order

scaling filter gJ,n, namely, T 2Jk−1gJ , k = 1, . . . , N/2J , where

gJ ≡ [ gJ,0, gJ,N−1, gJ,N−2, . . . , gJ,2, gJ,1 ]
T
. (6)

Again, the N/2J scaling coefficients can be interpreted as taking every 2Jth value obtained by circu-
larly filtering X with gJ . A proof that W so constructed is orthonormal is given in e.g., Mallat (1989),
Daubechies (1992) and Newland (1993).

2.2 Multiresolution Analysis via the DWT

Because the DWT matrix W is orthonormal by construction, we can reconstruct (synthesize) our time
series from its wavelet coefficients W using X = WTW. The idea behind multiresolution analysis is to
express WTW as the sum of several new series, each of which is related to variations in X at a certain
scale. To do so, we decompose the vector W into J + 1 subvectors, namely, Wj , j = 1, . . . , J , and
VJ . The subvector Wj contains all of the wavelet coefficients for scale τj and hence is a column vector
with N/2j elements; the subvector VJ contains the N/2J scaling coefficients. We can then write W =

[WT
1 WT

2 · · · WT
J VT

J ]
T
. Next we partition the columns of WT commensurate with the partitioning

of W to obtain

WT = [W1 W2 · · · WJ VJ ] ,

where Wj is an N ×N/2j matrix, while VJ is an N ×N/2J matrix. Note that Wj = WT
j X and VJ = VT

J X.
We can now write

X = WTW =

J∑
j=1

WjWj + VJVJ ≡
J∑

j=1

Dj + SJ (7)

where Dj ≡ WjWj for j = 1, . . . , J is an N dimensional column vector whose elements are associated with
changes at the scale τj , and SJ ≡ VJVJ is a similar vector with elements associated with variations at scales
τJ+1 and higher; i.e., Dj = WjWT

j X is the portion of the synthesis X = WTW attributable to changes

over the scale τj ∆t, while SJ = VJVT
J X is the portion attributable to variations at scales τJ+1 and higher.

We refer to Dj and SJ as, respectively, the jth order detail and the Jth order smooth for X, and the above
decomposition defines a Jth order multiresolution analysis of X.
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2.3 Analysis of Variance via the DWT

Orthonormality of W implies that

‖W‖2 = ‖X‖2 ≡
N−1∑
t=0

X2
t .

Decomposing W into subvectors Wj and VJ yields

‖X‖2 =

J∑
j=1

‖Wj‖2 + ‖VJ‖2, (8)

so ‖Wj‖2 represents the contribution to the squared norm of X due to changes at scale τj , while ‖VJ‖2

represents the contribution due to variations at scales τJ+1 and higher. We can also write

σ̂2
X ≡ 1

N

N−1∑
t=0

(
Xt −X

)2
=

1

N
‖W‖2 −X

2
=

1

N

J∑
j=1

‖Wj‖2 +
1

N
‖VJ‖2 −X

2
,

where σ̂2
X is the sample variance of X, and X = 1

N

∑
Xt is its sample mean. Hence ‖Wj‖2/N is the

contribution to the sample variance of X due to changes at scale τj . Furthermore, the orthonormality of W
implies that ‖Dj‖2 = ‖Wj‖2 and ‖SJ‖2 = ‖VJ‖2. Hence we have

σ̂2
X =

1

N

J∑
j=1

‖Dj‖2 +
1

N
‖SJ‖2 −X

2
,

where ‖Dj‖2/N can be interpreted to be the sample variance of the N elements of Dj , while 1
N ‖SJ‖2 −X

2

is the sample variance of the N elements of SJ (the results of McCoy and Walden, 1996, can be used to
deduce that the sample mean of the N elements of SJ is equal to X).

3. THE MAXIMAL OVERLAP DISCRETE WAVELET TRANSFORM

Here we describe a modified version of the discrete wavelet transform called the maximal overlap DWT
(MODWT). The name comes from the literature on the Allan variance (a well-known measure of the per-
formance of atomic clocks), in conjunction with which the MODWT based upon the Haar wavelet filter
has been used for over two decades (see Greenhall, 1991, and Percival and Guttorp, 1994). Essentially the
same transform has been discussed in the wavelet literature in the context of infinite sequences under the
name “undecimated DWT” (Shensa, 1992), and in the context of “power of two” sequences under the names
“stationary DWT” (Nason and Silverman, 1995), “translation invariant DWT” (Coifman and Donoho, 1995;
Liang and Parks, 1996) and “time invariant DWT” (Pesquet et al., 1996). The MODWT of level J for a

time series X is a highly redundant nonorthogonal transform yielding the column vectors W̃1, W̃2, . . . ,

W̃J and ṼJ , each with dimension N . The vector W̃j contains the MODWT wavelet coefficients associated

with changes in X on a scale of τj ∆t, while ṼJ contains the MODWT scaling coefficients associated with
variations at scales τJ+1 ∆t and higher.

There are four important properties that distinguish the MODWT from the DWT:

[1] While the DWT of level J restricts the sample size to an integer multiple of 2J , the MODWT of level J is
well defined for any sample size N (for convenience, however, we again assume that N is at least as large
as the length L1 of the wavelet filter). When N is an integer multiple of 2J , the DWT can be computed
using O(N) multiplications, whereas the corresponding MODWT requires O(N log2 N) multiplications.
There is thus a computational price to pay for using the MODWT, but its computational burden is the
same as the widely used fast Fourier transform algorithm and hence is usually quite acceptable.

[2] As is true for the DWT, the MODWT can be used to form a multiresolution analysis. In contrast to the
usual DWT, both the MODWT wavelet and scaling coefficients and multiresolution analysis are shift
invariant in the sense that circularly shifting the time series by any amount will circularly shift by a
corresponding amount the MODWT wavelet and scaling coefficients, details and smooths.
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[3] In contrast to the DWT details and smooths, the MODWT details and smooths are associated with
zero phase filters, thus making it possible to meaningfully line up features in a multiresolution analysis
with the original time series. The importance of this property is illustrated in Section 5.3.

[4] As is true for the DWT, the MODWT can be used to form an analysis of variance based upon the wavelet
and scaling coefficients. Under a stationarity assumption on the wavelet coefficients, the MODWT
yields an estimator of the variance of the wavelet coefficients that is statistically more efficient than the
corresponding estimator based on the DWT.

Property [2] is discussed in all the papers referenced above, while property [4] is discussed in Percival (1995)
and Lindsay et al. (1996). Properties [1] and [3] are discussed in the subsections below. Section 3.1 discusses

explicit construction of the W̃j ’s and ṼJ , while Sections 3.2 and 3.3 discuss how to form, respectively, a
multiresolution analysis and an analysis of variance based upon the MODWT. Appendix 1 gives pseudo-code
for computing the MODWT, while Appendix 2 contains proofs of two key properties of the MODWT.

3.1 Construction of the MODWT

The MODWT wavelet and scaling vectors are constructed using the rescaled filter vectors h̃j ≡ hj/2
j/2,

j = 1, . . . , J , and g̃J ≡ gJ/2
J/2, where hj and gJ are defined in Equations (5) and (6). The elements W̃j,k

of W̃j are given by XTT kh̃j , k = 0, . . . , N −1, while the elements ṼJ,k of ṼJ are given by XTT kg̃J . The N
wavelet and scaling coefficients for the MODWT can thus be interpreted as circularly filtering X using the
filters h̃j and g̃J with no subsampling. In fact, a comparison of the definitions of the DWT and MODWT
shows that, if N were an integer multiple of 2J so that we could use the DWT, we can recover the DWT
from the MODWT by subsampling and rescaling the latter: the elements Wj,k and VJ,k of Wj and VJ are

equal to, respectively, 2j/2W̃j,2j(k+1)−1, k = 0, . . . , N/2j − 1, and 2J/2ṼJ,2J (k+1)−1, k = 0, . . . , N/2J − 1.

3.2 Multiresolution Analysis via the MODWT

Consider the circular filter of length N whose DFT is given by the complex conjugate of Hj,k/2
j/2. Because

1

2j/2

N−1∑
n=0

hj,ne
i2πnk/N =

1

2j/2

N−1∑
n=0

hj,N−n mod Ne−i2πnk/N ,

it follows that the filter vector corresponding to the complex conjugate of Hj,k/2
j/2 is given by

h̃∗
j ≡ [hj,0, hj,1, hj,2, . . . , hj,N−2, hj,N−1 ]

T
/2j/2.

Similarly, the filter vector corresponding to the complex conjugate of GJ,k/2
J is given by

g̃∗
J ≡ [ gJ,0, gJ,1, gJ,2, . . . , gJ,N−2, gJ,N−1 ]

T
/2J/2.

The elements of the jth order maximal-overlap detail D̃j are defined to be W̃T
j T kh̃∗

j , k = 0, . . . , N − 1;

likewise, the elements of the Jth order maximal-overlap smooth S̃J are defined to be ṼT
J T kg̃∗

J , k = 0, . . . ,
N − 1. With these definitions, it is shown in Appendix 2 that

X =

J∑
j=1

D̃j + S̃J , (9)

which constitutes a MODWT multiresolution analysis analogous to Equation (7) for the DWT. Appendix 1

describes how to compute D̃j and S̃J efficiently.

Since D̃j is obtained by circularly filtering X with hj to yield W̃j and then circularly filtering W̃j

with h∗
j , we can equivalently obtain D̃j by circularly filtering X with a single filter whose DFT is given

by |Hj,k|2/2j . Because this DFT is real-valued and nonnegative, the equivalent filter is said to have zero
phase (see, e.g, Hamming, 1989, p. 252). The zero phase property is important because it allows us to
meaningfully line up events in the details and smooth with events in the original time series. By contrast,
the DWT details and smooth are not produced by zero phase filters, which we demonstrate in Section 5.3
can lead to misalignment of events with respect to the original time series X. A similar argument allows us
to claim that S̃J is the output from a zero phase filter with DFT given by |GJ,k|2/2J .
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3.3 Analysis of Variance via the MODWT

As shown in Appendix 2, we can write

‖X‖2 =

J∑
j=1

‖W̃j‖2 + ‖ṼJ‖2 (10)

(cf. Equation (8) for the DWT). The above is the basic result needed to define a MODWT-based analysis
of variance, allowing us to partition the sample variance of the series on a scale by scale basis. Examples of
the use of the MODWT for the analysis of variance of time series are given in Percival and Guttorp (1994),
Percival (1995) and Lindsay et al. (1996).

It is important to point out that, whereas we have the relationship ‖Wj‖2 = ‖Dj‖2 for the usual DWT,

we do not in general have equality between ‖W̃j‖2 and ‖D̃j‖2. Hence we cannot use the MODWT details
and smooth for analysis of variance, which is unfortunate because their zero phase properties would allow us
to meaningfully partition ‖D̃j‖2 with respect to time. Daubechies (1992, Theorem 8.1.4) demonstrates that
wavelet and scaling filters of finite length L1 cannot have zero phase exactly; however, Daubechies (1992,
Section 8.1.1) derives a class of “least asymmetric” (LA) wavelets that are close approximations to zero

phase filters if the filter outputs W̃j and ṼJ are circularly shifted appropriately. We refer to members of
this class as LA(L1) wavelets, where L1 = 8, 10, . . . , 18 or 20 identifies a particular wavelet by its number

of nonzero coefficients. Circular shifting yields T ν
(H)
j W̃j and T ν

(G)

J ṼJ , where the shifts ν
(H)
j and ν

(G)
J are

given in Appendix 3. Since ‖T ν
(H)
j W̃j‖2 = ‖W̃j‖2 and since T ν

(H)
j W̃j is an approximation to a zero phase

filtering of X, the portion ‖T ν
(H)
j W̃j‖2 of the analysis of variance associated with scale τj can be further

decomposed across the time. An example of this procedure is given in the next section.

4. ANALYSIS OF CRESCENT CITY SUBTIDAL SEA LEVELS

In this section we use MODWT multiresolution analysis and analysis of variance to study a time series
of subtidal sea level fluctuations for Crescent City, which is located at latitude 41◦ 45′ N and longitude
124◦ 11′ W on the open coast of Northern California. Inside its harbor, a permanent tide gauge is maintained
by the National Ocean Service (NOS). The gauge measures water levels every 6 minutes within a stilling well
that consists of a vertical tube with small openings near the bottom. These openings admit the tides and
lower frequency fluctuations into the well but suppress the higher frequency fluctuations due to wind waves
and swell. Periodic leveling surveys ensure that the reference level of the gauge remains constant relative
to the surrounding land. The time series used in this paper was collected from January 1980 to December
1991 and was reduced to hourly data by subsampling. The hourly data contain a two-week gap in summer
1990 (filled with predicted tides and a local mean) and a few shorter gaps (filled by interpolation). Subtidal
fluctuations were extracted from the hourly data by low-pass filtering to remove astronomical tides at diurnal
and higher frequencies (we used a Kaiser filter with a half-power (3 dB down) point at a period of 1.82 days
and with < 1% power attenuation at periods > 2.68 days – see Hamming, 1989, for details). The filtered
series was then resampling every 1/2 day, yielding a Nyquist frequency of one cycle per day. The resulting
time series X is plotted at the bottom of Figure 1.

Previous studies of subtidal sea level fluctuations at Crescent City are given in Roden (1960), Denbo
and Allen (1987), Spillane et al. (1987) and Strub et al. (1987b). These studies indicate that the subtidal
fluctuations are predominantly forced by the atmosphere, especially atmospheric pressure and wind stress. It
is known from previous analyses that sea level fluctuations with periods of 50–70 days propagate northward
along the West Coast from tropical sources (Spillane et al., 1987; Enfield, 1987). It should be noted that
previous analyses of subtidal fluctuations along the West Coast have typically used data adjusted for local
atmospheric pressure. This is because adjusted sea level is the quantity that is most directly related to
the pressure forcing of currents on the continental shelf. In the present work, we use unadjusted sea level
because it is the relevant quantity for studying the effects of subtidal fluctuations on coastal hazards such
as tsunamis and storm surges.
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4.1 MODWT Multiresolution Analysis

Figure 1 shows the MODWT multiresolution analysis of order J = 7 based upon the LA(8) wavelet filter

(see (15) in Appendix 3). It consists of the smooth S̃7 (top of Figure 1) corresponding to variations on

a scale of 64 days and greater and the seven detail series D̃1, D̃2, . . . , D̃7 (middle of Figure 1) associated

with changes on scales of 1/2, 1, . . . , 32 days, respectively. The smooth S̃7 contains the annual variations
in subtidal fluctuations at Crescent City (in fact our choice of J = 7 forces the smooth to contain these
variations – going with a much larger J would break up the annual variations, while a much smaller J would
add some scales to the smooth that, as we shall see, have a seasonally dependent variance). Although there

is considerable variability from year to year in how S̃7 varies during each year, the qualitative features of
S̃7 agree well with results from previous studies. For example, the highest portions of the annual variations
usually occur in winter and can be attributed to low atmospheric pressure and northward winds (Chelton
and Davis, 1982; Halliwell and Allen, 1984; Spillane et al., 1987; Strub et al., 1987b; Roden, 1989). There
is also a secondary maximum during summer due to seasonal warming of the upper ocean (Pattullo et al.,
1955), superimposed on low summer subtidal fluctuations due to high atmospheric pressure and southward
winds. The lowest portions of the annual variations at Crescent City usually happen in March or April and
follow immediately after an often rapid (i.e., within a few days) spring transition in the atmosphere over
the eastern North Pacific Ocean (Strub et al., 1987a; Strub and James, 1988), a fact that can be verified by

locating the low points on S̃7 and comparing these times to records of atmospheric pressure.
The seven detail series D̃j also pick out a number of interesting features, including fluctuations that are

transient in nature and limited to a few scales. As one example, Figure 2 focuses in on the 1985–6 portion
of D̃2, D̃3 and S̃7 in Figure 1 and shows that there was a brief lull in subtidal variability during December
1985 at short scales. An examination of the weather conditions during this period shows that the lull was
due to the northward deflection of storms away from the Crescent City region by a high pressure ridge in
the atmosphere that extended seaward from the western United States. Such ridges typically have slowly
varying patterns of atmospheric pressure and winds. However, this particular ridge did not persist long
enough to reverse the upward trend in seasonal water levels seen in the smooth S̃7, even though both its
high atmospheric pressure and light winds should tend to lower sea level at the coast. The main influence of
the high pressure ridge appears to be a decrease in the variability at scales of 1 and 2 days. The tendency of
having low variability at short scales when S̃7 is low (and the converse of high variability when S̃7 is high) can
be seen throughout the multiresolution analysis in Figure 1. One reason for this behavior is the association
between subtidal fluctuations and large-scale patterns in the atmosphere over the North Pacific Ocean in
which the location and intensity of seasonal variations in major atmospheric features, like the Aleutian Low
and the Polar Front, control the atmospheric variability at shorter scales (Palmén and Newton, 1969; Kushnir
and Wallace, 1989; and Roden, 1989). Features such as the one illustrated in Figure 2 are often very difficult
to spot in the original time series, but MODWT multiresolution analysis provides an investigator with tools
to easily identify short scale events in subtidal fluctuations and relate them to fluctuations at longer scales
and to external covariates.

The multiresolution analysis shows that particularly high events in subtidal fluctuations occur when
events in details D̃2 to D̃7 coincide in time with high values in S̃7 (note that D̃1 is relatively unimportant).
If these high events occur during late December or early January, there is especially high risk of coastal
flooding because they then coincide with high astronomical tides around the time of the winter solstice.
Conversely, persistent (longer scale) events of high atmospheric pressure and/or southward winds tend to
lower sea level and suppress the occurrence of short scale events of high sea level.

4.2 MODWT Analysis of Variance

The multiresolution analysis in Figure 1 indicates that there is a seasonal dependence in the variance of the
details series. For example, note that the fluctuations in D̃2 tend to be larger near the beginning of each year,
indicating increased variability in winter as compared to summer. As noted in Section 3.3, it is problematic
to quantify the scale-dependent variance properties of X from a MODWT multiresolution analysis because

‖X‖2 �=
7∑

j=1

‖D̃j‖2 + ‖S̃7‖2.
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To analyze the variance across time, we instead must examine the circularly shifted MODWT wavelet and

scaling coefficients T ν
(H)
j W̃j and T ν

(G)
7 Ṽ7, for which we have the decomposition

‖X‖2 =

7∑
j=1

‖T ν
(H)
j W̃j‖2 + ‖T ν

(G)
7 Ṽ7‖2.

Figure 3 decomposes ‖T ν
(H)
j W̃j‖2 across time by plotting the running average of 61 squared elements

of T ν
(H)
j W̃j versus time for j = 2, . . . 7 (the j = 1 component is relatively unimportant and is not shown

henceforth). Since the sampling rate is twice per day, the running averages span approximately a month

of data. The dashed horizontal lines indicate ‖T ν
(H)
j W̃j‖2/N , i.e., the contribution to the sample variance

of X due to variations on the jth scale. The largest contributions are due to 4–16 day scales (i.e., j = 4,
5 and 6). This variability is associated with shifts in the weather patterns over the North Pacific Ocean
occurring over the same scales. Figure 3 also shows that, while there is a clear increase in variability during
most winters at scales ranging from 2 to 32 days, there are also some winters – particularly at the longer
scales – for which the increase in variability is relatively small. For example, the relatively low variance at
nearly every scale during the winters 1985, 1989 and 1990 can be attributed to weak storm activity in those
years, in contrast to the high variance during the winters 1983 and 1987. These interannual variations in the
strength of the winter variance coincide in time with El Niño/Southern Oscillation events in the Equatorial
Pacific Ocean, which are known to influence seasonal sea level along the West Coast. Specifically, La Niña
conditions (stronger than normal westward winds and colder than normal surface temperatures along the
Equator) prevailed when the winter sea level variances were low at Crescent City; whereas El Niño conditions
(occurences of eastward winds and warmer than normal surface temperatures along the Equator) prevailed
when the winter variances were high.

Another look at the time and scale dependent variability is shown in Figure 4 using rotated cumulative
variance plots for scales of a day (bottom plot, j = 2) and 32 days (top, j = 7), which are defined by
Cj,t − tCj,N−1/(N − 1), where

Cj,t ≡
1

N

t∑
u=0

W̃ 2

j,u−ν
(H)
j

mod N
, t = 0, . . . , N − 1.

These plots show what can be thought of as deviations from the expected accumulation of sample variance
across time for a stationary process. The linear appearance of the bottom plot during the summer months
indicates that the variability at mid-summer at a scale of a day is relatively stable and predictable from year
to year. The point at which the stable summer pattern shifts into the more erratic winter pattern can change
from one year to the next by up to a month; moreover, the shift appears to be fairly abrupt in some years
(e.g., 1983) and diffuse in others (e.g., 1988). By contrast the top plot shows that the seasonal dependence at
a scale of 32 days is much more erratic. For example, the accumulation of variance increases quite markedly
around the beginning of 1980, 1982, 1983 and 1986, but is then quite constant over a 22 month span from
March 1989 to January 1991.

Figure 3 suggests that a reasonable way to summarize the annual variability in the scale dependent
variance is by averaging – across all 12 years – all the squared circularly shifted MODWT wavelet coefficients
that fall in a given calendar month. The results of this averaging are shown in Figure 5. Under the simplifying
assumptions that the wavelet coefficients over each month can be regarded as one portion of a realization
of a stationary process and that the coefficients from one year to the next are independent of each other,
the methodology described in Percival (1995) can be used to develop approximate 95% confidence intervals
for the underlying true variances. On a logarithmic scale, the widths of these intervals are a function of
scale, but do not depend on the variance estimates themselves. These widths are indicated by the vertical
portions of the crisscrosses near the bottom of Figure 5. Shifting the crisscross for a particular scale so
that its center falls on one of the 12 monthly variances for that scale yields an approximate 95% confidence
interval. Note that the temporal patterns of variance are very similar for all 6 scales. The average variances
are generally highest during the winter weather regime (November to March) and lowest in July and August,

approximately 3 to 4 months after the lowest seasonal sea level of the year (cf. S̃7 in Figure 1). The average
winter variances are approximately 5 to 20 times the summer variances.
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5. DISCUSSION

5.1 Implications for Inundation Forecasting

The MODWT analyses of subtidal sea level fluctuations have a number of important implications for the
forecasting of coastal inundation near Crescent City and in other coastal regions with similar sea level char-
acteristics. The results show that high subtidal sea level is most likely during the winter regime (November–
March) due to the superposition of high seasonal and shorter scale events. The fact that the greatest sea
level variance occurs at 4–16 day scales indicates that an overall sea level forecast based on the predicted
tides, plus an average of subtidal sea level over the past few days, should provide a useful forecast of the sea
level upon which an imminent tsunami or storm surge might occur. The average also includes deviations
from the average seasonal cycle due to interannual variations, such as those caused by El Niño/Southern
Oscillation events. The forecasts can be improved by taking into account the sea level response to weather
that is forecast for the coastal region (of concern are shifts in the weather patterns that will change both sea
level on the 4–16 day scales and the intensity of shorter scale events).

5.2 Modeling Subtidal Fluctuations

The results of Section 4 can be used to formulate a complete model for the Crescent City subtidal fluctuations
X. Such a model must account for the time-dependent features in X indicated by our wavelet analysis. For
instance, the low variance during the summer implies that sea levels should be more predictable then than
during the winter. While a full discussion of a complete model is outside the focus of the present paper,
the key ideas are as follows. First, note that the regular shape of the variance curves in Figure 3 suggests
an approach to modeling the annual cycle of monthly average variance in which logE{W̃ 2

j,t} is assumed to
be a sum of sinusoids (e.g., with annual and semiannual terms) and a constant. Second, since the DWT
coefficients W for X can be obtained by rescaling and subsampling the MODWT coefficients (see Section
3.1), we can express a model for X in terms of its DWT by making the simplifying assumptions that the
elements of W1, . . . , W7 are uncorrelated Gaussian random variables (rv’s) with zero means and variances

dictated by appropriately rescaling the model for logE{W̃ 2
j,t} (as discussed in Percival, 1995, the assumption

of uncorrelatedness for the DWT coefficients is reasonable for broadband time series, but a similar statement
does not hold for the MODWT coefficients – this is the main reason for expressing the model in terms of
the DWT). Additionally, we assume that the elements of V7 are Gaussian rv’s that are uncorrelated with
both each other and the elements of Wj and that have a time dependent mean (estimated using standard
Fourier techniques) and a constant variance.

Now suppose that X is partitioned into two subvectors, namely, X = [XT
p XT

f ]
T
, where Xp contains M

available measured values, while Xf contains N−M unavailable future values we want to predict. As before,
let W be the DWT of X, and replace all coefficients in W that involve elements in Xf by their expected
values. The desired predicted values for Xf are obtained by taking the inverse DWT of the modified W. An
assessment of the accuracy of the predictions can be made using Monte Carlo techniques, i.e., by repetitively
using random deviates generated from the assumed distributions in place of the expected values for the
undetermined elements of W.

As suggested by our analysis in Section 4, the basic model above can be refined by using atmospheric
pressure as a covariate. Measured pressure values would thus be used to adjust the simple model for
logE{W̃ 2

j,t} so that predicted variability is decreased when atmospheric pressure is high.

5.3 Zero Phase Filtering

As noted in Section 3.2, the details and smooths constructed by the MODWT can be regarded as outputs
from zero phase filters. This zero phase property is important if we want to relate events in the details
to events in the original series and if we want to understand the temporal relationships between events at
different scales. To illustrate what this property of zero phase means in practice, we show in the top plot of
Figure 6 portions of the MODWT detail D̃5 (thin curve) and X (thick) around the first part of 1986. This

detail should reflect changes in X on a scale of 8 days, so we would expect values in D̃5 to be large when
an average spanning about 8 days differs markedly from values surrounding it. This time period was picked
because there are three peaks in X of such a duration – these are centered at about 32, 48 and 72 days
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from 1 January 1986. The MODWT detail picks out these events nicely, and the location of the peaks in D̃5

roughly match those in X. Because D̃5 is invariant under circular shifts in X, the top plot will remain the
same no matter what origin we pick for X.

By way of contrast, the thin curves in the middle and bottom plots of Figure 6 show DWT details D5

for two different shifts in the origin of X, namely, 12 and 8 values (corresponding to 6 and 4 days). Note
that changing the origin of X by 2 days changes markedly the D5’s. Because DWT details do not possess
the zero phase property, the locations of peaks in D5 need not match up very well with those in X. For
example, consider the location of the peak in D5 corresponding to the one in X near 32 days. Relative to
D̃5 in the upper plot, the peak in D5 occurs markedly later in the middle plot and markedly earlier in the
bottom plot. The ability of DWT details to properly locate transient events in X is thus limited, whereas
MODWT details perform well because of their zero phase property.

5.4 Circularity Assumption

Both the DWT and the MODWT make use of circular filtering, which means that, e.g., XN−1 is regarded
as a useful surrogate for X−1 for the purposes of filtering. This assumption is reasonable for some series if
the sample size is chosen appropriately. For example, the subtidal fluctuations discussed in Section 4 has
a strong annual component, so it can be regarded as a circular series to a good approximation because the
number of samples covers about 12 complete years. We note that the circularity assumption is fairly mild
here because it affects only a small number of end points for short scales. Also the additivity constraint
satisfied by a MODWT multiresolution analysis ensures a certain degree of fidelity between the components
of the analysis and X.

For other series, circularity is a problematic assumption, particularly if there is a large discontinuity
between XN−1 and X0. Because a circularity assumption is equivalent to the periodic condition often
assumed in Fourier analysis, we can make use of some of the techniques that have been successful in Fourier
analysis. One simple – but effective – technique is to reflect the series at the boundaries; i.e., we append a
reversed version of X to the end of X to form a circular series of length 2N , which by construction begins and
ends with X0 (note that the reflected series has the same sample mean and variance as X). Other possibilities
for dealing with the circularity assumption include zero padding, tapering and polynomial extrapolations.
A comprehensive discussion of how to handle circularity is beyond the scope of this paper, but Chapter
14 of the recent book by Bruce and Gao (1996) discusses several different options and gives practitioners
guidelines for choosing a technique that is suitable for a given time series. For the Crescent City series, we
found that using either a reflected series or zero padding rather than just assuming X to be circular made
very little difference in our analysis.

5.5 Other Analysis Techniques

While we advocate the use of MODWT analysis in this paper, it is important to understand how this
technique compares to others that might seem reasonable to use with time series similar to the Crescent City
series. We have already indicated the key differences between MODWT and DWT analyses in Sections 3 and
5.3. Here we briefly compare MODWT analysis with two important Fourier-based techniques for handling
nonstationary time series, namely, the short-time Fourier transform and complex demodulation.

While the nonstationary features of the Crescent City series that are readily picked out by MODWT
analysis cannot be extracted by a traditional Fourier analysis of the entire series X, it is possible to extract
some of the same features by nonstandard use of short-time Fourier transform (STFT) analysis, which is
a type of time/frequency analysis used primarily to track the evolution of narrowband signals across time
(Cohen, 1995). The standard way of using STFT analysis is to choose a window size and then to conduct
Fourier analyses over subsets of X defined by the window size. For example, if we picked a window size of
30.5 days, we could conduct a spectral analysis over each period of length 30.5 days contained in 1980 to
1991 in the Crescent City series. This STFT analysis of variance would yield a narrowband decomposition
of X across each 30.5 day period, and the results would usually be displayed as a color-coded plot showing
variations in X at particular frequencies and centered at particular times. Since the MODWT coefficients
W̃j,t reflect variations over the broadband interval from 1/2j to 1/2j−1 cycles per day, we could use the
30.5 day STFT to extract monthly variations analogous to those in Figure 5 at scales of 1, 2 and 4 days
(j = 1, 2 and 3, respectively) by averaging the STFT spectral analyses across appropriate frequency bands;
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by increasing the window size, the same could be done for 8, 16 and 32 days. This nonstandard application of
STFT spectral analysis (i.e., averaging across frequencies and piecing together averages from different window
sizes) would closely mimic MODWT analysis. Reasons for preferring MODWT analysis over standard STFT
analysis for the Crescent City series are the following. First, the Crescent City series does not have time-
varying narrowband features, so a few MODWT coefficients can succinctly summarize what a large number of
STFT coefficients would tell us about the time-varying broadband properties of the data. Second, MODWT
coefficients are computed via a scheme whereby the time series X is automatically looked at through a
variety of window sizes commensurate with scales τj∆t, whereas STFT coefficients are computed using a
user-selected window size. Because the Crescent City series has time-varying features over a variety of scales
(e.g., short scale transients and seasonally dependent variability), we would need to conduct STFT analyses
with a variety of windows, and there is no natural way of tying these different analyses together to, e.g.,
formulate a model similar to the wavelet-based one described in Section 5.2.

Complex demodulation (CD) is a technique for analyzing nonstationary time series in which the series
is multiplied by a series defined by the complex exponential ei2πft∆t and then filtered using a narrowband
low-pass filter to obtain a complex-valued series that reflects the variations in the series over a small band of
frequencies centered about f (Bloomfield, 1976). As is true for STFT analysis, we could use a nonstandard
version of CD to pick out variations analogous to those shown in Figure 5 for MODWT analysis. This
nonstandard CW would use a set of frequencies centered about intervals from 1/2j to 1/2j−1 cycles per day
and would make the width of the passband equal to 1/2j cycles per day. Reasons for preferring MODWT
analysis over standard CD for the Crescent City series are quite similar for not preferring STFT analysis,
namely, that CD is usually thought of as a narrowband technique intended to examine variations around
single frequencies, whereas the series under study exhibits broadband variations; furthermore, there is no
natural way to tie together CDs for different frequencies to come up with a model analogous to the one in
Section 5.2.

6. CONCLUSIONS

Wavelet analysis seems ideally suited for describing subtidal sea level and other geophysical series with non-
stationary or transient components. The analysis given in this paper illustrates how the maximal overlap
discrete wavelet transform (MODWT) provides a succinct way of quantifying the nonstationary character-
istics of time series. Similar results could be obtained by applying a set of short-time Fourier transforms to
the time series if these transforms are utilized in a nonstandard way. However, wavelet methods are more
straight-forward to apply and guarantee additivity for both the multiresolution and variance analyses. The
MODWT offers some advantages over the orthonormal DWT. The results of the MODWT are insensitive
to circular shifts of the series and to the series length. Further, the details and smooths from the MODWT
multiresolution analyses can be interpreted as linear filter outputs in which events in the details and smooths
have proper alignment with respect to events in the original series, an essential property when relating events
across scales. Series of rotated cumulative variance show clearly the temporal variations of variance across
scales. By applying known shifts to the MODWT variance series, the events in variance are also aligned
relative to the time series. The pseudo-code in the appendix should make it easy for data analysts to apply
the MODWT to other data sets.

The MODWT analysis of subtidal sea level fluctuations at Crescent City shows that these fluctua-
tions are strongest during the winter regime (November–March) and occur preferentially at the scales 4–16
days. The occurrence of storm-related fluctuations tends to be modulated by longer scales associated with
weather patterns that steer storms to – or away from – the Crescent City region. There are interannual
variations in both the seasonal and intraseasonal fluctuations that coincide with major El Niño/Southern
Oscillation events in the Equatorial Pacific Ocean. When superimposed on high astronomical tides, the
subtidal fluctuations can contribute to coastal inundation by tsunamis, storm surges and high waves. How-
ever, the well-defined annual cycle of the variance indicates that a statistical model of the fluctuations can
be developed that would be useful for planning purposes. The persistence implied by the 4–16 day scales
suggests that short-term forecasts can be generated that would be useful during tsunami and storm surge
emergencies, especially if sea level forecasts are augmented by response models of the coastal sea level to
forecasted weather forcing. While not discussed explicitly in this paper, low sea level events are also of
interest because they are hazards to navigation and have important implications for coastal ecosystems. The
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MODWT analysis provides a basis for characterizing these events as well.
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APPENDIX 1: PSEUDO-CODE FOR MODWT

Here we give pseudo-code that can be used to compute the MODWT and its inverse. Let Ṽ0,t ≡ Xt for

t = 0, . . . , N − 1, where N is any positive integer. Let {h̃n ≡ h̃1,n ≡ h1,n/
√

2 : n = 0, . . . , L1 − 1} be a
rescaled wavelet filter of even length L1 (see, e.g., Equation (15) in Appendix 3). Let {g̃n ≡ g̃1,n ≡ g1,n/

√
2}

be the corresponding rescaled scaling filter (cf. Equation (2)). Denote the elements of W̃j and ṼJ as W̃j,t

and ṼJ,t, t = 0, . . . , N − 1. Given Ṽj−1, the following pseudo-code computes W̃j and Ṽj :

For t = 0, . . . , N − 1, do the outer loop:

Set k to t.

Set W̃j,t to h̃0Ṽj−1,k, and set Ṽj,t to g̃0Ṽj−1,k.

For n = 1, . . . , L1 − 1, do the inner loop:

Decrement k by 2j−1.

If k < 0, set k to k mod N .

Increment W̃j,t by h̃nṼj−1,k, and increment Ṽj,t by g̃nṼj−1,k.

End of inner loop.

End of outer loop.

Note that, if j is such that 2j−1 ≤ N (as will usually be the case in practical applications), then the single
‘k mod N ’ in the above code can be replaced by ‘k + N .’ By using the pseudo-code above first for j = 1
(i.e., starting with Ṽ0 = X) and then successively for j = 2, . . . , J , we obtain the component vectors of the

MODWT, namely, W̃1, . . . , W̃J and ṼJ , along with the intermediate vectors Ṽ1, . . . ṼJ−1.

The task of the inverse MODWT is to compute X given the MODWT vectors W̃1, . . . , W̃J and ṼJ .

Given W̃j and Ṽj , the following pseudo-code computes Ṽj−1:

For t = 0, . . . , N − 1, do the outer loop:

Set k to t.

Set Ṽj−1,t to h̃0W̃j,k + g̃0Ṽj,k.

For n = 1, . . . , L1 − 1, do the inner loop:

Increment k by 2j−1.

If k ≥ N , set k to k mod N .

Increment Ṽj−1,t by h̃nW̃j,k + g̃nṼj,k.

End of the inner loop.

End of the outer loop.

Note that, if j is such that 2j−1 ≤ N , then the single ‘k mod N ’ in the above code can be replaced by ‘k−N .’

By using the pseudo-code above first for j = J (i.e., starting with W̃J and ṼJ) and then successively for

j = J − 1, . . . , 1, we obtain ṼJ−1, . . . , Ṽ1 and finally Ṽ0 = X.

The jth detail D̃j can be obtained by taking the inverse MODWT of the j + 1 vectors 0̃1, . . . , 0̃j−1,

W̃j and 0̃j , where 0̃k, k = 1, . . . , j, is a vector of N zeros. This detail can be computed by iterating the

inverse MODWT algorithm over j, j − 1, . . . , 1 starting with W̃j and with 0̃j substituted for Ṽj in the

above pseudo-code. At the end of j iterations, the desired D̃j will be stored in Ṽ0. Likewise, the smooth S̃J

can be obtaining by applying the inverse DWT to the J + 1 vectors 0̃1, . . . , 0̃J and ṼJ .
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APPENDIX 2: PROOFS OF BASIC MODWT PROPERTIES

Proof of Equation (9):

Since the tth elements of D̃j and S̃J are by definition W̃T
j T th̃∗

j and ṼT
J T tg̃∗

J , we need to show that

Xt =

J∑
j=1

W̃T
j T th̃∗

j + ṼT
J T tg̃∗

J , t = 0, . . . , N − 1.

If we let Xk denote the DFT of the Xt’s, the above is equivalent to showing that

Xk =

J∑
j=1

N−1∑
t=0

W̃T
j T th̃∗

je
−i2πtk/N +

N−1∑
t=0

ṼT
J T tg̃∗

Je
−i2πtk/N , k = 0, . . . , N − 1. (11)

Since the sequence W̃T
j T th̃∗

j is a circular convolution of W̃j with the filter h̃∗
j , its DFT is given by the

product of the DFTs for W̃j and h̃∗
j . As indicated in Section 3.2, the DFT of h̃∗

j is given by H∗
j,k/2

j/2,

i.e., the complex conjugate of Hj,k/2
j/2. Since the elements of W̃j are obtained by circularly convolving X

with the filter h̃j = hj/2
j/2, the DFT of W̃j is equal to the product of the DFTs for X and h̃j , namely,

XkHj,k/2
j/2. Using an analogous argument for the DFT of ṼT

J T tg̃∗
J , the right-hand side of (11) is equal to

J∑
j=1

1

2j
XkHj,kH

∗
j,k +

1

2J
XkGJ,kG

∗
J,k = Xk


 J∑

j=1

1

2j
|Hj,k|2 +

1

2J
|GJ,k|2


 ,

so the desired result follows if we can show that

J∑
j=1

1

2j
|Hj,k|2 +

1

2J
|GJ,k|2 = 1. (12)

To see that (12) holds for J = 1, note that Equation (1) implies that

|H1,k|2 + |G1,k|2 = 2 (13)

for all k (see Equations (5.1.20) and (5.1.39) of Daubechies, 1992). Assume now that (12) holds when J is
replaced by J − 1. To see that this implies that (12) holds for J , use the definitions for Hj,k and GJ,k given
in Equations (3) and (4) to obtain

J∑
j=1

1

2j
|Hj,k|2 +

1

2J
|GJ,k|2

=

J−1∑
j=1

1

2j
|Hj,k|2 +

1

2J

(∣∣H1,2J−1k mod N

∣∣2 +
∣∣G1,2J−1k mod N

∣∣2) J−2∏
l=0

∣∣G1,2lk mod N

∣∣2

=

J−1∑
j=1

1

2j
|Hj,k|2 +

1

2J−1
|GJ−1,k|2 = 1,

which establishes the desired result.
Proof of Equation (10):

With Ṽ0 ≡ X, Equation (10) follows readily if we can establish that

‖Ṽj−1‖2 = ‖W̃j‖2 + ‖Ṽj‖2, j = 1, . . . , J. (14)
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Since N times the norm of a vector is equal to the norm of its DFT (Parseval’s theorem); since W̃j is

the circular convolution of X and h̃j ; since the DFT of a convolution is the product of the DFTs of its

components; and since the DFTs of X and h̃j are given by Xk and Hj,k/2
j/2, we have

‖W̃j‖2 =
1

2jN

N−1∑
k=0

|Xk|2 |Hj,k|2 ; likewise, ‖Ṽj‖2 =
1

2jN

N−1∑
k=0

|Xk|2 |Gj,k|2 .

Equation (14) thus follows if we can show that 2 |Gj−1,k|2 = |Hj,k|2 + |Gj,k|2 (we define G0,k = 1). Using
Equations (3), (4) and (13), we have

|Hj,k|2 + |Gj,k|2 =
(∣∣H1,2j−1k mod N

∣∣2 +
∣∣G1,2j−1k mod N

∣∣2) |Gj−1,k|2 = 2 |Gj−1,k|2 ,

which establishes Equation (10).

APPENDIX 3: SHIFTS FOR WAVELET AND SCALING FILTERS

Daubechies (1992) developed the class of “least asymmetric” (LA) wavelets to approximate linear phase filters
as closely as possible. For example, the rescaled LA(8) wavelet filter consists of the following 8 coefficients:

h̃1,0 = 0.022785172948 h̃1,4 = 0.568329121704

h̃1,1 = 0.008912350721 h̃1,5 = −0.351869534328

h̃1,2 = −0.070158812089 h̃1,6 = −0.020955482562

h̃1,3 = −0.210617267102 h̃1,7 = 0.053574450709

(15)

The source of these coefficients is the “N = 4” entry of Table 6.3, p. 198, Daubechies (1992). The coefficients
in that table were divided by 2 to yield the rescaled LA(8) scaling filter g̃1,n with normalization

∑
g̃2
1,n = 1/2

– the above h̃1,n’s were obtained via the relationship h̃1,n = (−1)ng̃1,L1−1−n (cf. Equation (2)). The same

table also gives coefficients for filters of lengths 10, 12, . . . , 20. McCoy et al. (1995) establish that h̃1,n and

g̃1,n and the higher order filters h̃j,n and g̃j,n can be converted to approximate zero phase filters if the filter
outputs are (circularly) shifted by appropriate amounts, namely,

ν
(H)
j ≡




−Lj

2 , if L1/2 is even;

−Lj

2 + 1, if L1 = 10 or 18;

−Lj

2 − 1, if L1 = 14,

for the wavelet filters and

ν
(G)
j ≡




− (Lj−1)(L1−2)
2(L1−1) , if L1/2 is even;

− (Lj−1)L1

2(L1−1) , if L1 = 10 or 18;

− (Lj−1)(L1−4)
2(L1−1) , if L1 = 14,

for the scaling filters (in the above Lj ≡ (2j − 1)(L1 − 1) + 1 is the number of nonzero coefficients in h̃j,n).
The above shifts hold only if the LA(10), LA(14), and LA(18) scaling coefficients are taken in reverse order
from their tabulation in Daubechies (1992).
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FIGURE CAPTIONS

Figure 1. MODWT multiresolution analysis of Crescent City subtidal sea level fluctuations based upon
the LA(8) wavelet filter. The fluctuations X are plotted at the bottom (the mark above each labeled
year indicates the beginning of that year), while the eight time series above X show, from the bottom on

up, the details D̃1, . . . , D̃7 and the smooth S̃7. The detail D̃j is associated with changes on a scale of

τj∆t = 2j−2 days, while the smooth S̃7 is associated with variations on scales of 64 days and higher. (As
of 1997, the 8746 values comprising X could be obtained via electronic mail by sending a message with the
single line “send percival-m from jasadata” to the Internet address statlib@lib.stat.cmu.edu, which
is the address for StatLib, a statistical archive maintained by Carnegie–Mellon University. The data are also
accessible via the StatLib Web site at http://lib.stat.cmu.edu/.)

Figure 2. Portion of multiresolution analysis for Crescent City series showing details D̃2 (1 day scale) and

D̃3 (2 day scale) and smooth S̃7 for years 1985–86.

Figure 3. MODWT analysis of variance of Crescent City series. The six plotted series are running 61 point
(30.5 day) averages of the squared circularly shifted MODWT wavelet coefficients W̃j,t for j = 2 (scale of
1 day; bottom of plot) to j = 7 (scale of 32 days; top of plot). The dashed horizontal lines indicated the

squared W̃j,t’s averaged over all t.

Figure 4. Rotated cumulative variance plots for circularly shifted MODWT wavelet coefficients W̃2,t (scale

of 1 day; bottom plot) and W̃7,t (scale of 32 days; top plot).

Figure 5. Averages of squared circularly shifted MODWT wavelet coefficients W̃j,t grouped by months
across 12 years (1980–91). The six curves show the averaged squared coefficients for scales j = 2 (scale of 1
day) to j = 7 (scale of 32 days). The height of one of the six crisscrosses at the bottom of the plot indicates
the width (on a logarithmic scale) of a 95% confidence interval for a point on the curve for the corresponding
scale.

Figure 6. Demonstration of zero phase property of MODWT details. The thick curve in each of the three
plots is the Crescent City series for a period encompassing the first quarter of 1986. The thin curve in the
top plot shows the MODWT detail D̃5 (scale of 8 days), while the corresponding curves in the other two
plots show the DWT detail D5 under two choices for the beginning of the entire Crescent City series X (the
first choice displaces the origin of X by 12 data values (6 days), and the second, by 8 values (4 days)).
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