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Introduction

e time scales limited by clock noise
e can model clock noise as stochastic process { X;}

— set of random variables (RVs) indexed by ¢
— X; represents clock noise at time ¢

— will concentrate on sampled data, for which
will taket € Z =4{...,—-1,0,1,...}
(but sometimes use t € Z* = {0,1,2,...})

e (): which stochastic processes are useful models?

e (): how can we deduce model parameters & other
characteristics from observed data?

e will cover the following in this tutorial:

— stationary processes & closely related processes
— fractionally differenced & related processes
— two analysis of variance (‘power’) techniques

x spectral analysis

x wavelet analysis

— parameter estimation via analysis techniques



Stationary Processes: 1

e stochastic process {X;} called stationary if

— E{X;} = px for all ¢;
i.e., a constant that does not depend on ¢

— cov{ Xy, Xy4-} = Sx-, all possible t & ¢ + 7;
i.e., depends on lag 7, but not ¢

o {sy.: 7 €Z} is autocovariance sequence (ACVS)

o sxo=cov{Xy, Xi} = var{ X;};
i.e., process variance is constant for all ¢

e spectral density function (SDF) given by

Sx(f)= 3 sx.e 2T |f] <1/2



Stationary Processes: Il

o if {X;} has SDF Sx(-), then

1/2 :
N Sx(F)e™ T df = s, TEL

e setting 7 = 0 yields fundamental result:

_1{?2 Sx(f)df = sxo=var{X;};

i.e., SDF decomposes var { Xy} across frequencies f

o if {a,} is a filter, then (with ‘matching condition’)
}/t = § auXt—u

U=—00

is stationary with SDF' given by

Sy (f) = A(f)Sx(f), where A(f) =

2

00 .
Z aue—z27rfu
U=—00

e if {a,} narrow-band of bandwidth Af about f, i.e.,

0,  otherwise,

then have following interpretation for Sx(f):
1/2 1/2

var {Y;} = /1/2 f)df' = /1/2 Sx(f)df =~ Sx(f)



White Noise Process

e simplest stationary process is white noise

e {¢;} is white noise process if
— E{e;} = pe for all ¢ (usually take pe = 0)
—var {e;} = o2 for all ¢
—covie,epp =0forallt #¢

e white noise thus stationary with ACVS
2

€
0, otherwise,

o2, 17=0;

Se,r = COV {Eta E?H-T} - {

and SDF



Backward Differences of White Noise

e consider first order backward difference of white noise:
I, u=0;
OO .
Xi=€¢—€_1= > au€—_y With a, =4 —1, u=1;

U=—00

0, otherwise.

o have Sx(f) = A(f)S(f) = [2sin(r f)Po? = |27 f P07

at low frequencies (using sin(x) & x for small x)

e let B be backward shift operator: Be; = €;_1,
BQEt = €+_9, (1 — B)Et = €+ — €41, etc.

e consider dth order backward difference of white noise:

Xi=(1- Bl = 3 (d)<—1>’fetk

k=0 \Kk
4 dl .
=5 k!(d—k)!(_l) Uk
5 r(1—94
_ Z ( ) (—1)k€t—k

SoT(k+ DI(1—6 — k)
with 6 = —d, i, 6 = —1, -2, ...

e SDF given by

o’ o2

SX(f) — A(f)SG(f) — ‘2811’1(761']0)’26 ~ ‘27-(-}’25




Fractional Differences of White Noise

e for J not necessary an integer,

= T4 o«
o= rh A= — gy Ve = X el

makes sense as long as § < 1/2
e { X;} stationary fractionally differenced (FD) process

e SDF is as before:

o2 o2

N = gn(m ) ™ o

e {X;} said to obey power law at low frequencies if

- Sx(f)
e

for C'> 0;i.e., Sx(f) =~ C|f|* at low frequencies

1

e F'D processes obey above with o = —26

e note: F'D process reduces to white noise when 6 = 0



ACVS & PACS for FD Processes

o for § <1/2& 0 #0,—1,..., ACVS given by
) Hsin(md) (1 — 20)'(7 + 0)
r—0 ;
AT e ATl 41— 0)
when 6 =0, —1,..., have sy, =0 for |7| > =0 &
o (=1)T(1 —20)
T = 9 O S S _5
T TP ST (1 — 1 — ) 7]

e for all 0 < 1/2, have

2 1'(1 — 20)
‘T2(1-96)’
and rest of ACVS can be computed easily via
T+0—1
— cZ"=1{1,2,...
r_ 5 ) T { ) “y }

(for negative lags 7, recall that sx _, = sx ;).

sxo=var{X;} =0

SXr— SX -1

e for all 6 < 1/2, partial autocorrelation sequence

(PACS) given by

%)
=" teZ"
¢t,t t— 57 E

(useful for constructing best linear predictors)
e 'D processes thus have simple and easily computed

expressions for SDF, ACVS and PACS
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Simulating Stationary FD Processes

o for —1 < ¢ < 1/2, can obtain exact simulations via
‘circulant embedding” (Davies—Harte algorithm)

® given sxy,...,Sx.n, use discrete Fourier transform
(DFT) to compute
N —127 fi.7 21 —127 fi.7
Sp = sxse T+ 3 sxan,e TR k=0,...,N
7=0 T=N+1

e given 2N independent Gaussian deviates €; with mean

zero and variance o2, compute

£0v2N Sy, k=0;

. (6%_1 + i€2k>\/ NS, 1<k<N:;

Vi = €2N—1\/m, k= N;

Vin_is N <k <2N —1;

(asterisk denotes complex conjugate)

e use inverse DF'T to construct the real-valued sequence
1 2N—1

Y, = — eIt =0,... 2N — 1
"ToN ];::0 Yt
e Yy, Y1, ..., Yy_; is exact simulation of FD process
e implication: can represent Xy, X1,..., Xy_1 as

2N -1 00
Xy = Y ¢ i(0)er rather than Xy = > ap(d)e—p
k=0 k=0



Nonstationary FD Processes: 1

® suppose Xt(l) is FD process with parameter §(*)
such that —1/2 < §®) < 1/2

e define X;, ¢t € Z", as cumulative sum of Xt(l),t e "
t
Xt = lgo Xl(l)

(for I <0, let X3 =0)
e since, for t € Z",

0.2

(1) _ — €
Xt == Xt _ Xt—l & SX(l)(f) - IQSin(ﬂ-f)‘Qé(S),

filtering theory suggests using relationship
Sy (f) = [2sin(r f)|*Sx(f)
to define SDF for X, i.e.,

_ Syolf) o;
- 2sin(mf)]2 [2sin(wf)]20

with § = 6©) + 1 (Yaglom, 1958)

Sx(f)



Nonstationary FD Processes: 11

e X, has stationary 1st order backward differences
e 1 sum defines FD processes for 1/2 < § < 3/2
e 2 sums define FD processes for 3/2 < § < 5/2, etc

e X has stationary 2nd order backward differences, etc

o if X, is white noise (6 = 0) so Sy (f) = 02,
then X is random walk (6 = 1) with

o O'2

2sin(x /)P [2nfP

Mo

SX(f) -

o if Xt(2) is white noise and if
XY le & X = le . telZ,

then X; is random run (§ = 2), and

0.2

Sx(f) =~ |27T}’4

10



Summary of FD Processes

e X, said to be FD process if its SDF' is given by

0.2 2

Sx(f) : ~

— 2sin(n [P ~ \27r]€”\25 at low frequencies

e well-defined for any real-valued o

e 'D process obeys power law at low frequencies with
exponent o = —20

e if § < 1/2, FD process stationary with

— ACVS given by
['(1 — 20) T+0—1
pu— 2— p— _—
SX0 = Oy gy SN = S

— PACS given by

reZ"

0
= tel"’
¢t,t t— 57 E

e if 0 > 1/2, FD process nonstationary but its dth
order backward difference is stationary FD process
with parameter ), where

d=1[6+1/2] and 0¥ =6 —d

(here |z] is largest integer < x)
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Alternatives to FD Processes: 1

e fractional Brownian motion (FBM)
— By (t),0 <t < o0, has SDF given by

o2 Cy
SBH(t)(f) - ‘f)’;H—i_l, —00 < f < 00,

where 05 > 0,Cyp >0& 0< H < 1
(H called Hurst parameter; C'y depends on H)

— power law with —3 < a < —1

e discrete fractional Brownian motion (DFBM)

— B,,t € Z",is DFBM if B, = By(t)
— B; has SDF given by

S5 (f) = o%Cr % : Ifl <1/2

j=oo | [+ g

— power law at low frequencies with —3 < a < —1
— reduces to random walk if H = 1/2

12



Alternatives to FD Processes: 11

e fractional Gaussian noise (FGN)
— Xt,t € Z+, i1s FGN if Xt = Bt—l—l — Bt
— X, has SDF' given by

0 1
42 in2
SX(f) =405 Cysin (Wf) j:z_:oo \f Jrj‘2H+1’

— power law at low frequencies with —1 < a < 1

— X, is stationary, with ACVS given by

2
sxr = o (T 1P = 2dr + [r —1P7), re
where 0% = var { X;}

— reduces to white noise if H = 1/2

f1<1/2

e discrete pure power law (PPL) process

— SDF given by Sx(f) = Cs|f[*, |f] <1/2

—if o > —1, stationary, but ACVS takes some
effort to compute

— if a = 0, reduces to white noise

— a < —1, nonstationary but backward differences
of certain order are stationary

13



FD Processes vs. Alternatives

e I'D processes cover full range of power laws

— FBMs, DFBMs and FGNs cover limited range

— PPL processes also cover full range

e differencing F'D process yields another FD process;
differencing alternatives yields new type of process

e F'D process has simple SDF; if stationary, has simple
ACVS & PACS

— FBM has simple SDF

— DFBM has complicated SDF

— FGN has simple ACVS, complicated SDF & PACS
— PPL has simple SDF, complicated ACVS & PACS

e 'D, DFBM, FGN and PPL model sampled noise

— might be problematic to change sampling rate

— FBM models unsampled noise
e Fig. 1. comparison of SDFs for FGN, PPL & FD

e [ig. 2: comparison of realizations

14



Extensions to FD Processes: 1

e composite F'D processes

M 0'2

Sx(f) =X -

w1 [2sin(m f)[ 2

i.e., linear combinations of independent FD processes

e autoregressive, fractionally integrated, moving aver-
age (ARFIMA) processes

— idea is to replace € in
Xi =X ak(5)€t—k
k=0
with ARMA process, say,
p q
U= oU+ea— X Orey,
k=1 k=1
— vyields process with SDF

» 2
o Ll g

Sx(f) -

N |2 sin (7 f)]2 11—, ¢k@—i2ﬁfk"2

— ARMA part can model, e.g., high-frequency
structure in noise

15



Extensions to FD Processes: 11

e can define time-varying FD (TVFEFD) process via
Xe= > ak(5t)€t—k
k=0

as long as 0y < 1/2 for all ¢

— can use representation

2N—1
Xt: Z Ctk((st)gk;, t:O,l,...,N—l,
k=0

to extend definition to handle arbitrary d;
— Fig. 3: realizations from 4 TVFD processes

— can also make o time-varying

16



FD Process Parameter Estimation

e (): given realization (clock noise) of Xy, ..., Xny_1
from FD process, how can we estimate § & o2?

e many different estimators have been proposed!
(area of active research)

e will concentrate on estimators based on

— spectral analysis (frequency-based)

— wavelet analysis (scale-based)
e advantages of spectral and wavelet analysis

— physically interpretable

— both are analysis of variance techniques
(useful for more than just estimating & & o?)

— can assess need for models more complex than
simple FD process (e.g., composite FD process)

— provide preliminary estimates for more compli-
cated schemes (maximum likelihood estimation)

17



Estimation via Spectral Analysis

e recall that SDF for FD process given by

0.2

Sx(f) = |281n(7€rf)\25

and thus

log (Sx(f)) = log (07) — 20 log (|2sin(7 f)|):

i.e., plot of log(Sx(f)) vs. log(|2sin(7f)|) linear
with slope of —20

o for 0 < f < 1/8, have sin(nf) ~ 7 f, so
log (Sx(f)) ~ log (o) — 28 log (27 f);

i.e., plot of log (Sx(f)) vs. log (27 f) approximately
linear at low frequencies with slope of —20 = «

e basic scheme

— estimate Sx(f) via Sx(f)

— fit linear model to Sx(f) vs. log (27 f)
over low frequencies

— use estimated slope & to estimate & via —d&/2

— use estimated intercept to estimate o2

18



The Periodogram: 1

e basic estimator of S(f) is periodogram:

. 1 2

SW(f) ==

<1/2
N ) ‘f’—/7

Nil X, pi2mft
t=0

e represents decomposition of sample variance:
/2 &(p) _ 1 e

e for stationary processes & large N, theory says

SN LS 0<r<ip

approximately, implying that
- B{SV(f)} ~ B{S(f)x3/2} = S(f)
—var {SW(f)} ~ var {S(f)x3/2} = S*(f)

(in above ‘L means ‘equal in distribution,” and x3 is
chi-square RV with 2 degrees of freedom)

e additionally, cov {S®(f;), S®)(f)} ~ 0
for f,=j/N&O< f; < fr <1/2

19



The Periodogram: 11

e taking log transform yields

2

08 (3(7) £ 1o (122 = o (500106 (]

e Bartlett & Kendall (1946):

E{log (f?”)} Y(n)—log(n) & Vaf{log (ﬁ)} = ¢'(n)

where ¢(-) & ¢/(+) are di— & trigamma functions

e yields
E{log (SV(f)} = log (S(f)) +(2) — log (2)
= log (S(f)) —~
var{log (SP(f))} = ¢/(2) = 7%/6

(v = 0.57721 is Euler’s constant)

20



The Periodogram: 111

o define Y)(f;) = log (S¥(f;)) +
e can model Y?)(f;) as
YWI(f) =~ log (S(f) + €(f;)
~ log(07) — 26log (27 f;) + €(f;)
over low frequencies indexed by 0 < 5 < J

e crror €( f;) in linear regression model such that
— FE{e(f;)} = 0 & var {e(f;)} = 7*/6 (known!)

—if {X;} Gaussian & S®)(f;)’s uncorrelated, then
€(f;)’s pairwise uncorrelated

— €( fj)g log (x3) markedly non-Gaussian
e least squares procedure yields

— estimates 0 and 62 for 6 and o2

— estimates of variability in 5 and &62

21



Multitaper Spectral Estimation: I

e warnings about periodogram:

— approximations might require N to be very large!

— approximations of questionable validity
for nonstationary FD processes

e Fig. 4: periodogram can suffer from ‘leakage’

e tapering is technique for alleviating leakage:

2

A

N-1 ‘
S(d) (f) = Z CLtXtG_ZQWft
£=0
— {a;} called data taper (typically bell-shaped curve)

— S@(.) called direct spectral estimator

e critique: loses ‘information’” at end of series
(sample size N effectively shortened)

e Thomson (1982): multitapering recovers ‘lost info’

e use set of K orthonormal data tapers {a,}:

N-1 1, iftn=1
n — ) . ) < <K_1
Eo @t Ot {O, if n # 1. O<mis

22



Multitaper Spectral Estimation: 11

e use {a,,} to form kth direct spectral estimator:

. N-1 _ 2
SE(f) = Py A Xe 2 o =0,...,K -1

e simplest form of multitaper SDF' estimator:
1 K-1 .

S0 = 5 £ S)

e sinusoidal tapers are one family of multitapers:

am:{ 2 }1/2Sm{(n—|—1)7r(t+1)}7 o

(N +1) N+1
(Riedel & Sidorenko, 1995)
e Figs. 5 and 6: example of multitapering
e if S(-) slowly varying around S(f) & if NV large,

: S(f)x3
S(mt) d 2K
DR
approximately for 0 < f < 1/2, impling

ar (§(1}y & 5 var gy = 2
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Multitaper Spectral Estimation: III

o define Y")(f;) = log (S™(f;)) — ¥(K) + log (K)
e can model Y™ (f;) as

Ye(f) =~ log (S(£)) +n(f;)
~ log(07) — 26log (2 f;) + n(f;)

over low frequencies indexed by 0 < 5 < J

e crror 7)(f;) in linear regression model such that
— E{n(f;)} =0
—var {n(f;)} = ¢¥'(K), a known constant!
— approximately Gaussian if K > 5

— correlated, but with simple structure:

W(K)(1- ), il <K +1

0, otherwise.

cor () n(frn)} ~ {

e generalized least squares procedure yields

— estimates 0 and 62 for ¢ and o2

— estimates of variability in 5 and &62

e multitaper approach superior to periodogram approach
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Discrete Wavelet Transform (DWT)

o let X = [Xy, X1,..., Xy_1]! be observed time series
(for convenience, assume N integer multiple of 2‘]0)

e let WW be N x N orthonormal DWT matrix

e W = WX is vector of DWT coefficients

e orthonormality says X = W/ W, s0 X & W

e can partition W as follows:
W,

W = W,

Vi

0

e W, contains N; = N/27 wavelet coefficients

— related to changes of averages at scale 7; = 2771
(75 is gth ‘dyadic’ scale)
— related to times spaced 27 units apart

e V, contains Nj, = N/270 scaling coefficients

— related to averages at scale \j, = 27

— related to times spaced 270 units apart

25



Example: Haar DWT

e Fig. 7. VW for Haar DWT with N = 16

— first 8 rows yield Wy o< changes on scale 1
— next 4 rows yield Wy o< changes on scale 2
— next 2 rows yield W3 o< changes on scale 4
— next to last row yields W4 o< change on scale 8

— last row yields V4 o< average on scale 16

e Fig. 8: Haar DWT coefficients for clock 571
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DWT in Terms of Filters

o filter Xo,Xl, ..., Xy_1 to obtain

1
WP, = Z hjiXi—imoan, t=0,1,...,N—1;

h;; is jth level wavelet filter (note: circular filtering)
e subsample to obtain wavelet coefficients:
Wis=2"W, 40121, t=0,1,...,N;—1,
where W, is tth element of W
e Figs. 9 & 10: four sets of wavelet filters
e jth wavelet filter is band-pass with pass-band [5.1+

9j+1> 2]]
(i.e., scale related to interval of frequencies)

e similarly, scaling filters yield V j,

e Figs. 11 & 12: four sets of scaling filters

o Joth scaling filter is low-pass with pass-band [0, . .
e as width L of 1st level filters increases,

— band-pass & low-pass approximations improve

— # of embedded differencing operations increases
(related to # of ‘vanishing moments’)

27



DWT-Based Analysis of Variance

e consider ‘energy’ in time series:
N-1
X = XTX = 3 X2
t=0
e cnergy preserved in DW'T' coefficients:
WP = [WX][]? = XIW'WX = X'X = [[X]?
o since Wy,..., W,V partitions W, have
o D 2 2
W= = Py W1+ 1TV sl

leading to analysis of sample variance:
1

1 N-1
D 2
D
? NS N

L 2 2
[ 1w, + 1V, 1)

e scale-based decomposition (cf. frequency-based)
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Variation: Maximal Overlap DWT

e can eliminate downsampling and use

. 1 LTt
Wj’tEW ZZO hj,lXt—lmode t:()’l,,N—l

to define MODWT coefficients Wj (& also /Vj)

e unlike DWT, MODWT is not orthonormal
(in fact MODWT is highly redundant)

e like DWT, can do analysis of variance because
Ry S
X[ = 2 Wil + 1Vl
j:

e unlike DW'T, MODWT works for all samples sizes N
(i.e., power of 2 assumption is not required)

e Fig. 13: Haar MODWTT coefficients for clock 571
(cf. Fig. 8 with DWT coefficients)

e can use to track time-varying FD process
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Definition of Wavelet Variance

o let X, t € Z, be a stochastic process

e run X; through jth level wavelet filter:

_ Li—1
Wj,t = ZX:O hj,lXt—h t e Z

e definition of time dependent wavelet variance
(also called wavelet spectrum):

V(1)) = var {W,},
assuming var {W;,} exists and is finite
® v%,(7;) depends on 7; and ¢t
e will consider time independent wavelet variance:
vy (7)) = var {W;,;}
(can be easily adapted to time varying situation)

e rationale for wavelet variance

— decomposes variance on scale by scale basis

— useful substitute/complement for SDF
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Variance Decomposition

e suppose X; has SDF Sy (f):

1/2

~1/2 SX(f) df = var {Xt}?

i.e., decomposes var { X;} across frequencies f

— involves uncountably infinite number of f’s

— Sx(f) Af ~ contribution to var {X;} due to f’s
in interval of length A f centered at f

— note: var {X;} taken to be oo for nonstationary
processes with stationary backward differences

e wavelet variance analog to fundamental result:
< 2
'21 vy (1) = var { X, }
J:

i.e., decomposes var { X;} across scales 7;

— recall DWT/MODWT and sample variance
— involves countably infinite number of 7;’s
— v%(7;) contribution to var {X;} due to scale 7;

— vx(7;) has same units as X; (easier to interpret)
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Spectrum Substitute/Complement

e because Bj,l ~ bandpass over [1/2/71,1/2/],

1/27

vx (7)) 2 2 [y Sx(f) df (+)

o if Sx(f) ‘featureless’, info in v%(7;) < infoin Sx(f)

e 1%(7;) more succinct: only 1 value per octave band

e rccall SDF for FD process:

o2 o’
g _ €
)= Bt pE ™ P
e (x) implies V% (7;) o Tj% I approximately

e can deduce ¢ from slope of log (V%(Tj)) vs. log (7;)

e can estimate § & o2 by applying regression analysis
to log of estimates of v%(7;)
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Estimation of Wavelet Variance: 1

e can base estimator on MODWT of X, X1, ..., Xy_1:

_ Lj—1_
Wjjt = lz:() hj,lXt—l mod Ny t=0,1,...,N—1

(DWT-based estimator possible, but less efficient)

e rccall that

Li-1 _

Wj,t = Z hj,lXt—l; t = O, :l:l, :t2, RN
[=0

SO Wj’t = Wﬁ if mod not needed: L; —1 <t < N

if N — L; >0, unbiased estimator of v%(7;) is
1 N-1 __ 1 N-1
-2 _ 2 2
Uy (1i) = W: = — Wi,
X( ]) N — [j‘7 + 1 t—LZj—l 7.t M] t—LZ—l 7.t

where M; = N — L; +1
can also construct biased estimator of v%(7;):

= W)

—L;—1

. 1 LEi2
V)Q((Tj) = Y Wﬁt = N< t;) Wﬁt +t

Ist sum in parentheses influenced by circularity
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Estimation of Wavelet Variance: 11

e biased estimator unbiased if {X;} white noise

e biased estimator offers exact analysis of 62
unbiased estimator need not

e biased estimator can have better mean square error
(Greenhall et al., 1999; need to ‘reflect’ X;)
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Statistical Properties of v%(7;)

suppose { W} Gaussian, mean 0 & SDF S;(f)

suppose square integrability condition holds:

2 SR df < 0o & Si(f) >0

4; = —1/2 "7
(holds for FD process if L large enough)

can show 0% (7;) asymptotically normal with

mean v%(7;) & large sample variance 2A4; /M,

can estimate A; and use with 0% (7;)
to construct confidence interval for V%(Tj)

example

— Fig. 14: clock errors X; = Xt(o). along with
differences Xt(z) = Xt(l_l) — X(Z_11> fori=1,2

— Fig. 15: 0%(7;) for clock errors
— Fig. 16: 02&(7;) for Y, X
— Haar 02(;) related to Allan variance 0%(2, 7;):

() = o4 (2,7)
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Summary

e fractionally differenced processes are

— able to cover all power laws

— easy to work with (SDF, ACVS & PACS simply
expressed )

— extensible to composite, ARFIMA & time-varying
Processes

e spectral and wavelet analysis can provide

— estimates of parameters of FD processes
— decomposition of sample variance across

* frequencies (in case of spectral analysis)

* scales (in case of wavelet analysis)

— complementary analyses
e wavelet analysis has some advantages for clock noise

— estimates § & o? somewhat better
— useful with time-varying noise process
— can deal with polynomial trends (not covered here)

— results expressed in same units as X7

e a big ‘thank you’ to conference organizers!
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