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Introduction

• time scales limited by clock noise

• can model clock noise as stochastic process {Xt}
– set of random variables (RVs) indexed by t

– Xt represents clock noise at time t

– will concentrate on sampled data, for which

will take t ∈ Z ≡ {. . . ,−1, 0, 1, . . .}
(but sometimes use t ∈ Z

∗ ≡ {0, 1, 2, . . .})
• Q: which stochastic processes are useful models?

• Q: how can we deduce model parameters & other

characteristics from observed data?

• will cover the following in this tutorial:

– stationary processes & closely related processes

– fractionally differenced & related processes

– two analysis of variance (‘power’) techniques

∗ spectral analysis

∗ wavelet analysis

– parameter estimation via analysis techniques
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Stationary Processes: I

• stochastic process {Xt} called stationary if

– E{Xt} = µX for all t;

i.e., a constant that does not depend on t

– cov{Xt,Xt+τ} = sX,τ , all possible t & t + τ ;

i.e., depends on lag τ , but not t

• {sX,τ : τ ∈ Z} is autocovariance sequence (ACVS)

• sX,0 = cov{Xt,Xt} = var{Xt};
i.e., process variance is constant for all t

• spectral density function (SDF) given by

SX(f ) =
∞∑

τ=−∞
sX,τe

−i2πfτ , |f | ≤ 1/2

note: SX(−f ) = SX(f ) for real-valued processes
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Stationary Processes: II

• if {Xt} has SDF SX(·), then
∫ 1/2

−1/2
SX(f )ei2πfτ df = sX,τ , τ ∈ Z

• setting τ = 0 yields fundamental result:
∫ 1/2

−1/2
SX(f ) df = sX,0 = var {Xt};

i.e., SDF decomposes var {Xt} across frequencies f

• if {au} is a filter, then (with ‘matching condition’)

Yt ≡
∞∑

u=−∞
auXt−u

is stationary with SDF given by

SY (f ) = A(f )SX(f ), where A(f ) ≡
∣∣∣∣∣∣

∞∑
u=−∞

aue
−i2πfu

∣∣∣∣∣∣
2

• if {au} narrow-band of bandwidth ∆f about f , i.e.,

A(f ′) =




1
2∆f , f − ∆f

2 ≤ |f ′| ≤ f + ∆f
2

0, otherwise,

then have following interpretation for SX(f ):

var {Yt} =
∫ 1/2

−1/2
SY (f ′) df ′ =

∫ 1/2

−1/2
A(f ′)SX(f ′) df ′ ≈ SX(f )
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White Noise Process

• simplest stationary process is white noise

• {εt} is white noise process if

– E{εt} = µε for all t (usually take µε = 0)

– var {εt} = σ2
ε for all t

– cov {εt, εt′} = 0 for all t �= t′

• white noise thus stationary with ACVS

sε,τ = cov {εt, εt+τ} =


 σ2

ε , τ = 0;

0, otherwise,

and SDF

Sε(f ) =
∞∑

τ=−∞
sX,τe

−i2πfτ = σ2
ε
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Backward Differences of White Noise

• consider first order backward difference of white noise:

Xt = εt−εt−1 =
∞∑

u=−∞
auεt−u with au ≡




1, u = 0;

−1, u = 1;

0, otherwise.

• have SX(f ) = A(f )Sε(f ) = |2 sin(πf )|2σ2
ε ≈ |2πf |2σ2

ε

at low frequencies (using sin(x) ≈ x for small x)

• let B be backward shift operator: Bεt = εt−1,

B2εt = εt−2, (1 −B)εt = εt − εt−1, etc.

• consider dth order backward difference of white noise:

Xt = (1 −B)dεt =
d∑

k=0


d
k


(−1)kεt−k

=
d∑

k=0

d!

k!(d− k)!
(−1)kεt−k

=
∞∑
k=0

Γ(1 − δ)

Γ(k + 1)Γ(1 − δ − k)
(−1)kεt−k

with δ ≡ −d, i.e., δ = −1,−2, . . .

• SDF given by

SX(f ) = A(f )Sε(f ) =
σ2
ε

|2 sin(πf )|2δ ≈ σ2
ε

|2πf |2δ
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Fractional Differences of White Noise

• for δ not necessary an integer,

Xt =
∞∑
k=0

Γ(1 − δ)

Γ(k + 1)Γ(1 − δ − k)
(−1)kεt−k ≡

∞∑
k=0

ak(δ)εt−k

makes sense as long as δ < 1/2

• {Xt} stationary fractionally differenced (FD) process

• SDF is as before:

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ≈ σ2
ε

|2πf |2δ

• {Xt} said to obey power law at low frequencies if

lim
f→0

SX(f )

C|f |α = 1

for C > 0; i.e., SX(f ) ≈ C|f |α at low frequencies

• FD processes obey above with α = −2δ

• note: FD process reduces to white noise when δ = 0
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ACVS & PACS for FD Processes

• for δ < 1/2 & δ �= 0,−1, . . ., ACVS given by

sX,τ = σ2
ε

sin(πδ)Γ(1 − 2δ)Γ(τ + δ)

πΓ(1 + τ − δ)
;

when δ = 0,−1, . . ., have sX,τ = 0 for |τ | > −δ &

sX,τ = σ2
ε

(−1)τΓ(1 − 2δ)

Γ(1 + τ − δ)Γ(1 − τ − δ)
, 0 ≤ |τ | ≤ −δ

• for all δ < 1/2, have

sX,0 = var {Xt} = σ2
ε

Γ(1 − 2δ)

Γ2(1 − δ)
,

and rest of ACVS can be computed easily via

sX,τ = sX,τ−1
τ + δ − 1

τ − δ
, τ ∈ Z

+ ≡ {1, 2, . . .}

(for negative lags τ , recall that sX,−τ = sX,τ ).

• for all δ < 1/2, partial autocorrelation sequence

(PACS) given by

φt,t ≡
δ

t− δ
, t ∈ Z

+

(useful for constructing best linear predictors)

• FD processes thus have simple and easily computed

expressions for SDF, ACVS and PACS
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Simulating Stationary FD Processes

• for −1 ≤ δ < 1/2, can obtain exact simulations via

‘circulant embedding’ (Davies–Harte algorithm)

• given sX,0, . . . , sX,N , use discrete Fourier transform

(DFT) to compute

Sk ≡
N∑

τ=0
sX,τe

−i2πfkτ+
2N−1∑
τ=N+1

sX,2N−τe
−i2πfkτ , k = 0, . . . , N

• given 2N independent Gaussian deviates εt with mean

zero and variance σ2
ε , compute

Yk ≡




ε0

√
2NS0, k = 0;

(ε2k−1 + iε2k)
√
NSk, 1 ≤ k < N ;

ε2N−1

√
2NSN, k = N ;

Y∗
2N−k, N < k ≤ 2N − 1;

(asterisk denotes complex conjugate)

• use inverse DFT to construct the real-valued sequence

Yt =
1

2N

2N−1∑
k=0

Yke
i2πfkt, t = 0, . . . , 2N − 1

• Y0, Y1, . . . , YN−1 is exact simulation of FD process

• implication: can represent X0, X1, . . . , XN−1 as

Xt =
2N−1∑
k=0

ct,k(δ)εk rather than Xt =
∞∑
k=0

ak(δ)εt−k
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Nonstationary FD Processes: I

• suppose X
(1)
t is FD process with parameter δ(s)

such that −1/2 ≤ δ(s) < 1/2

• define Xt, t ∈ Z
∗, as cumulative sum of X

(1)
t , t ∈ Z

∗:

Xt ≡
t∑

l=0
X

(1)
l

(for l < 0, let Xt ≡ 0)

• since, for t ∈ Z
∗,

X
(1)
t = Xt −Xt−1 & SX(1)(f ) =

σ2
ε

|2 sin(πf )|2δ(s) ,

filtering theory suggests using relationship

SX(1)(f ) = |2 sin(πf )|2SX(f )

to define SDF for Xt, i.e.,

SX(f ) =
SX(1)(f )

|2 sin(πf )|2 =
σ2
ε

|2 sin(πf )|2δ

with δ ≡ δ(s) + 1 (Yaglom, 1958)
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Nonstationary FD Processes: II

• Xt has stationary 1st order backward differences

• 1 sum defines FD processes for 1/2 ≤ δ < 3/2

• 2 sums define FD processes for 3/2 ≤ δ < 5/2, etc

• Xt has stationary 2nd order backward differences, etc

• if X
(1)
t is white noise (δ(s) = 0) so SX(1)(f ) = σ2

ε ,

then Xt is random walk (δ = 1) with

SX(f ) =
σ2
ε

|2 sin(πf )|2 ≈ σ2
ε

|2πf |2

• if X
(2)
t is white noise and if

X
(1)
t ≡

t∑
l=0

X
(2)
l & Xt ≡

t∑
l=0

X
(1)
l , t ∈ Z

∗,

then Xt is random run (δ = 2), and

SX(f ) ≈ σ2
ε

|2πf |4
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Summary of FD Processes

• Xt said to be FD process if its SDF is given by

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ≈ σ2
ε

|2πf |2δ at low frequencies

• well-defined for any real-valued δ

• FD process obeys power law at low frequencies with

exponent α = −2δ

• if δ < 1/2, FD process stationary with

– ACVS given by

sX,0 = σ2
ε

Γ(1 − 2δ)

Γ2(1 − δ)
& sX,τ = sX,τ−1

τ + δ − 1

τ − δ
, τ ∈ Z

+

– PACS given by

φt,t ≡
δ

t− δ
, t ∈ Z

+

• if δ ≥ 1/2, FD process nonstationary but its dth

order backward difference is stationary FD process

with parameter δ(s), where

d ≡ �δ + 1/2� and δ(s) ≡ δ − d

(here �x� is largest integer ≤ x)
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Alternatives to FD Processes: I

• fractional Brownian motion (FBM)

– BH(t), 0 ≤ t < ∞, has SDF given by

SBH(t)(f ) =
σ2
XCH

|f |2H+1
, −∞ < f < ∞,

where σ2
X > 0, CH > 0 & 0 < H < 1

(H called Hurst parameter; CH depends on H)

– power law with −3 < α < −1

• discrete fractional Brownian motion (DFBM)

– Bt, t ∈ Z
+, is DFBM if Bt = BH(t)

– Bt has SDF given by

SBt(f ) = σ2
XCH

∞∑
j=−∞

1

|f + j|2H+1
, |f | ≤ 1/2

– power law at low frequencies with −3 < α < −1

– reduces to random walk if H = 1/2
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Alternatives to FD Processes: II

• fractional Gaussian noise (FGN)

– Xt, t ∈ Z
+, is FGN if Xt = Bt+1 −Bt

– Xt has SDF given by

SX(f ) = 4σ2
XCH sin2(πf )

∞∑
j=−∞

1

|f + j|2H+1
, |f | ≤ 1/2

– power law at low frequencies with −1 < α < 1

– Xt is stationary, with ACVS given by

sX,τ =
σ2
X

2

(
|τ + 1|2H − 2|τ |2H + |τ − 1|2H

)
, τ ∈ Z,

where σ2
X = var {Xt}

– reduces to white noise if H = 1/2

• discrete pure power law (PPL) process

– SDF given by SX(f ) = CS|f |α, |f | ≤ 1/2

– if α > −1, stationary, but ACVS takes some

effort to compute

– if α = 0, reduces to white noise

– α ≤ −1, nonstationary but backward differences

of certain order are stationary
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FD Processes vs. Alternatives

• FD processes cover full range of power laws

– FBMs, DFBMs and FGNs cover limited range

– PPL processes also cover full range

• differencing FD process yields another FD process;

differencing alternatives yields new type of process

• FD process has simple SDF; if stationary, has simple

ACVS & PACS

– FBM has simple SDF

– DFBM has complicated SDF

– FGN has simple ACVS, complicated SDF & PACS

– PPL has simple SDF, complicated ACVS & PACS

• FD, DFBM, FGN and PPL model sampled noise

– might be problematic to change sampling rate

– FBM models unsampled noise

• Fig. 1: comparison of SDFs for FGN, PPL & FD

• Fig. 2: comparison of realizations
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Extensions to FD Processes: I

• composite FD processes

SX(f ) =
M∑

m=1

σ2
m

|2 sin(πf )|2δm ;

i.e., linear combinations of independent FD processes

• autoregressive, fractionally integrated, moving aver-

age (ARFIMA) processes

– idea is to replace εt in

Xt =
∞∑
k=0

ak(δ)εt−k

with ARMA process, say,

Ut =
p∑

k=1
φkUt−k + εt −

q∑
k=1

θkεt−k

– yields process with SDF

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ·
∣∣∣∣1 − ∑q

k=1 θke
−i2πfk

∣∣∣∣2
|1 − ∑p

k=1 φke−i2πfk|2

– ARMA part can model, e.g., high-frequency

structure in noise
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Extensions to FD Processes: II

• can define time-varying FD (TVFD) process via

Xt =
∞∑
k=0

ak(δt)εt−k

as long as δt < 1/2 for all t

– can use representation

Xt =
2N−1∑
k=0

ct,k(δt)εk, t = 0, 1, . . . , N − 1,

to extend definition to handle arbitrary δt

– Fig. 3: realizations from 4 TVFD processes

– can also make σ2
ε time-varying
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FD Process Parameter Estimation

• Q: given realization (clock noise) of X0, . . . , XN−1

from FD process, how can we estimate δ & σ2
ε ?

• many different estimators have been proposed!

(area of active research)

• will concentrate on estimators based on

– spectral analysis (frequency-based)

– wavelet analysis (scale-based)

• advantages of spectral and wavelet analysis

– physically interpretable

– both are analysis of variance techniques

(useful for more than just estimating δ & σ2
ε )

– can assess need for models more complex than

simple FD process (e.g., composite FD process)

– provide preliminary estimates for more compli-

cated schemes (maximum likelihood estimation)
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Estimation via Spectral Analysis

• recall that SDF for FD process given by

SX(f ) =
σ2
ε

|2 sin(πf )|2δ
and thus

log (SX(f )) = log (σ2
ε ) − 2δ log (|2 sin(πf )|);

i.e., plot of log (SX(f )) vs. log (|2 sin(πf )|) linear

with slope of −2δ

• for 0 < f < 1/8, have sin(πf ) ≈ πf , so

log (SX(f )) ≈ log (σ2
ε ) − 2δ log (2πf );

i.e., plot of log (SX(f )) vs. log (2πf ) approximately

linear at low frequencies with slope of −2δ = α

• basic scheme

– estimate SX(f ) via ŜX(f )

– fit linear model to ŜX(f ) vs. log (2πf )

over low frequencies

– use estimated slope α̂ to estimate δ via −α̂/2

– use estimated intercept to estimate σ2
ε
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The Periodogram: I

• basic estimator of S(f ) is periodogram:

Ŝ(p)(f ) ≡ 1

N

∣∣∣∣∣∣
N−1∑
t=0

Xte
−i2πft

∣∣∣∣∣∣
2

, |f | ≤ 1/2;

• represents decomposition of sample variance:

∫ 1/2

−1/2
Ŝ(p)(f ) df =

1

N

N−1∑
t=0

X2
t

• for stationary processes & large N , theory says

Ŝ(p)(f )
d= S(f )

χ2
2

2
, 0 < f < 1/2,

approximately, implying that

– E{Ŝ(p)(f )} ≈ E{S(f )χ2
2/2} = S(f )

– var {Ŝ(p)(f )} ≈ var {S(f )χ2
2/2} = S2(f )

(in above ‘
d=’ means ‘equal in distribution,’ and χ2

2 is

chi-square RV with 2 degrees of freedom)

• additionally, cov {Ŝ(p)(fj), Ŝ
(p)(fk)} ≈ 0

for fj ≡ j/N & 0 < fj < fk < 1/2
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The Periodogram: II

• taking log transform yields

log (Ŝ(p)(f ))
d= log


S(f )

χ2
2

2


 = log (S(f ))+log


χ2

2

2




• Bartlett & Kendall (1946):

E


log


χ2

η

η





 = ψ(η)−log (η) & var


log


χ2

η

η





 = ψ′(η)

where ψ(·) & ψ′(·) are di– & trigamma functions

• yields

E{log (Ŝ(p)(f ))} = log (S(f )) + ψ(2) − log (2)

= log (S(f )) − γ

var{log (Ŝ(p)(f ))} = ψ′(2) = π2/6

(γ .= 0.57721 is Euler’s constant)

20



The Periodogram: III

• define Y (p)(fj) ≡ log (Ŝ(p)(fj)) + γ

• can model Y (p)(fj) as

Y (p)(fj) ≈ log (S(fj)) + ε(fj)

≈ log (σ2
ε ) − 2δ log (2πfj) + ε(fj)

over low frequencies indexed by 0 < j < J

• error ε(fj) in linear regression model such that

– E{ε(fj)} = 0 & var {ε(fj)} = π2/6 (known!)

– if {Xt} Gaussian & Ŝ(p)(fj)’s uncorrelated, then

ε(fj)’s pairwise uncorrelated

– ε(fj)
d= log (χ2

2) markedly non-Gaussian

• least squares procedure yields

– estimates δ̂ and σ̂2
ε for δ and σ2

ε

– estimates of variability in δ̂ and σ̂2
ε
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Multitaper Spectral Estimation: I

• warnings about periodogram:

– approximations might require N to be very large!

– approximations of questionable validity

for nonstationary FD processes

• Fig. 4: periodogram can suffer from ‘leakage’

• tapering is technique for alleviating leakage:

Ŝ(d)(f ) ≡
∣∣∣∣∣∣
N−1∑
t=0

atXte
−i2πft

∣∣∣∣∣∣
2

– {at} called data taper (typically bell-shaped curve)

– Ŝ(d)(·) called direct spectral estimator

• critique: loses ‘information’ at end of series

(sample size N effectively shortened)

• Thomson (1982): multitapering recovers ‘lost info’

• use set of K orthonormal data tapers {an,t}:
N−1∑
t=0

an,tal,t =




1, if n = l;

0, if n �= l.
0 ≤ n, l ≤ K − 1
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Multitaper Spectral Estimation: II

• use {an,t} to form kth direct spectral estimator:

Ŝ
(mt)
k (f ) ≡

∣∣∣∣∣∣
N−1∑
t=0

an,tXte
−i2πft

∣∣∣∣∣∣
2

, n = 0, . . . , K − 1

• simplest form of multitaper SDF estimator:

Ŝ(mt)(f ) ≡ 1

K

K−1∑
n=0

Ŝ(mt)
n (f )

• sinusoidal tapers are one family of multitapers:

an,t =




2

(N + 1)




1/2

sin



(n + 1)π(t + 1)

N + 1


 , t = 0, . . . , N−1

(Riedel & Sidorenko, 1995)

• Figs. 5 and 6: example of multitapering

• if S(·) slowly varying around S(f ) & if N large,

Ŝ(mt)(f )
d=

S(f )χ2
2K

2K

approximately for 0 < f < 1/2, impling

var {Ŝ(mt)(f )} ≈ S2(f )

4K2
var {χ2

2K} =
S2(f )

K
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Multitaper Spectral Estimation: III

• define Y (mt)(fj) ≡ log (Ŝ(mt)(fj))− ψ(K) + log (K)

• can model Y (mt)(fj) as

Y (mt)(fj) ≈ log (S(fj)) + η(fj)

≈ log (σ2
ε ) − 2δ log (2πfj) + η(fj)

over low frequencies indexed by 0 < j < J

• error η(fj) in linear regression model such that

– E{η(fj)} = 0

– var {η(fj)} = ψ′(K), a known constant!

– approximately Gaussian if K ≥ 5

– correlated, but with simple structure:

cov{η(fj), η(fj+ν)} ≈


ψ′(K)

(
1 − |ν|

K+1

)
, if |ν| ≤ K + 1;

0, otherwise.

• generalized least squares procedure yields

– estimates δ̂ and σ̂2
ε for δ and σ2

ε

– estimates of variability in δ̂ and σ̂2
ε

• multitaper approach superior to periodogram approach
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Discrete Wavelet Transform (DWT)

• let X = [X0, X1, . . . , XN−1]
T be observed time series

(for convenience, assume N integer multiple of 2J0)

• let W be N ×N orthonormal DWT matrix

• W = WX is vector of DWT coefficients

• orthonormality says X = WTW, so X ⇔ W

• can partition W as follows:

W =




W1
...

WJ0

VJ0




• Wj contains Nj = N/2j wavelet coefficients

– related to changes of averages at scale τj = 2j−1

(τj is jth ‘dyadic’ scale)

– related to times spaced 2j units apart

• VJ0 contains NJ0 = N/2J0 scaling coefficients

– related to averages at scale λJ0 = 2J0

– related to times spaced 2J0 units apart
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Example: Haar DWT

• Fig. 7: W for Haar DWT with N = 16

– first 8 rows yield W1 ∝ changes on scale 1

– next 4 rows yield W2 ∝ changes on scale 2

– next 2 rows yield W3 ∝ changes on scale 4

– next to last row yields W4 ∝ change on scale 8

– last row yields V4 ∝ average on scale 16

• Fig. 8: Haar DWT coefficients for clock 571
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DWT in Terms of Filters

• filter X0, X1, . . . , XN−1 to obtain

2j/2W̃j,t ≡
Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N−1;

hj,l is jth level wavelet filter (note: circular filtering)

• subsample to obtain wavelet coefficients:

Wj,t = 2j/2W̃j,2j(t+1)−1, t = 0, 1, . . . , Nj − 1,

where Wj,t is tth element of Wj

• Figs. 9 & 10: four sets of wavelet filters

• jth wavelet filter is band-pass with pass-band [ 1
2j+1 ,

1
2j ]

(i.e., scale related to interval of frequencies)

• similarly, scaling filters yield VJ0

• Figs. 11 & 12: four sets of scaling filters

• J0th scaling filter is low-pass with pass-band [0, 1
2J0+1 ]

• as width L of 1st level filters increases,

– band-pass & low-pass approximations improve

– # of embedded differencing operations increases

(related to # of ‘vanishing moments’)
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DWT-Based Analysis of Variance

• consider ‘energy’ in time series:

‖X‖2 = XTX =
N−1∑
t=0

X2
t

• energy preserved in DWT coefficients:

‖W‖2 = ‖WX‖2 = XTWTWX = XTX = ‖X‖2

• since W1, . . . ,WJ0,VJ0 partitions W, have

‖W‖2 =
J0∑
j=1

‖Wj‖2 + ‖VJ0‖2,

leading to analysis of sample variance:

σ̂2 ≡ 1

N

N−1∑
t=0

X2
t =

1

N


 J0∑
j=1

‖Wj‖2 + ‖VJ0‖2




• scale-based decomposition (cf. frequency-based)
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Variation: Maximal Overlap DWT

• can eliminate downsampling and use

W̃j,t ≡
1

2j/2

Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N−1

to define MODWT coefficients W̃j (& also Ṽj)

• unlike DWT, MODWT is not orthonormal

(in fact MODWT is highly redundant)

• like DWT, can do analysis of variance because

‖X‖2 =
J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2

• unlike DWT, MODWT works for all samples sizes N

(i.e., power of 2 assumption is not required)

• Fig. 13: Haar MODWT coefficients for clock 571

(cf. Fig. 8 with DWT coefficients)

• can use to track time-varying FD process
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Definition of Wavelet Variance

• let Xt, t ∈ Z, be a stochastic process

• run Xt through jth level wavelet filter:

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z

• definition of time dependent wavelet variance

(also called wavelet spectrum):

ν2
X,t(τj) ≡ var {Wj,t},

assuming var {Wj,t} exists and is finite

• ν2
X,t(τj) depends on τj and t

• will consider time independent wavelet variance:

ν2
X(τj) ≡ var {Wj,t}

(can be easily adapted to time varying situation)

• rationale for wavelet variance

– decomposes variance on scale by scale basis

– useful substitute/complement for SDF
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Variance Decomposition

• suppose Xt has SDF SX(f ):

∫ 1/2

−1/2
SX(f ) df = var {Xt};

i.e., decomposes var {Xt} across frequencies f

– involves uncountably infinite number of f ’s

– SX(f ) ∆f ≈ contribution to var {Xt} due to f ’s

in interval of length ∆f centered at f

– note: var {Xt} taken to be ∞ for nonstationary

processes with stationary backward differences

• wavelet variance analog to fundamental result:

∞∑
j=1

ν2
X(τj) = var {Xt}

i.e., decomposes var {Xt} across scales τj

– recall DWT/MODWT and sample variance

– involves countably infinite number of τj’s

– ν2
X(τj) contribution to var {Xt} due to scale τj

– νX(τj) has same units as Xt (easier to interpret)
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Spectrum Substitute/Complement

• because h̃j,l ≈ bandpass over [1/2j+1, 1/2j],

ν2
X(τj) ≈ 2

∫ 1/2j

1/2j+1 SX(f ) df (∗)

• if SX(f ) ‘featureless’, info in ν2
X(τj) ⇔ info in SX(f )

• ν2
X(τj) more succinct: only 1 value per octave band

• recall SDF for FD process:

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ≈ σ2
ε

|2πf |2δ

• (∗) implies ν2
X(τj) ∝ τ 2δ−1

j approximately

• can deduce δ from slope of log (ν2
X(τj)) vs. log (τj)

• can estimate δ & σ2
ε by applying regression analysis

to log of estimates of ν2
X(τj)
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Estimation of Wavelet Variance: I

• can base estimator on MODWT of X0, X1, . . . , XN−1:

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

(DWT-based estimator possible, but less efficient)

• recall that

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t = 0,±1,±2, . . .

so W̃j,t = Wj,t if mod not needed: Lj − 1 ≤ t < N

• if N − Lj ≥ 0, unbiased estimator of ν2
X(τj) is

ν̂2
X(τj) ≡

1

N − Lj + 1

N−1∑
t=Lj−1

W̃ 2
j,t =

1

Mj

N−1∑
t=Lj−1

W
2
j,t,

where Mj ≡ N − Lj + 1

• can also construct biased estimator of ν2
X(τj):

ν̃2
X(τj) ≡

1

N

N−1∑
t=0

W̃ 2
j,t =

1

N

(Lj−2∑
t=0

W̃ 2
j,t +

N−1∑
t=Lj−1

W
2
j,t

)

1st sum in parentheses influenced by circularity
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Estimation of Wavelet Variance: II

• biased estimator unbiased if {Xt} white noise

• biased estimator offers exact analysis of σ̂2;

unbiased estimator need not

• biased estimator can have better mean square error

(Greenhall et al., 1999; need to ‘reflect’ Xt)
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Statistical Properties of ν̂2
X(τj)

• suppose {Wj,t} Gaussian, mean 0 & SDF Sj(f )

• suppose square integrability condition holds:

Aj ≡
∫ 1/2

−1/2
S2

j (f ) df < ∞ & Sj(f ) > 0

(holds for FD process if L large enough)

• can show ν̂2
X(τj) asymptotically normal with

mean ν2
X(τj) & large sample variance 2Aj/Mj

• can estimate Aj and use with ν̂2
X(τj)

to construct confidence interval for ν2
X(τj)

• example

– Fig. 14: clock errors Xt ≡ X
(0)
t along with

differences X
(i)
t ≡ X

(i−1)
t −X

(i−1)
t−1 for i = 1, 2

– Fig. 15: ν̂2
X(τj) for clock errors

– Fig. 16: ν̂2
Y (τj) for Y t ∝ X

(1)
t

– Haar ν̂2
Y (τj) related to Allan variance σ2

Y (2, τj):

ν2
Y (τj) = 1

2σ
2
Y (2, τj)
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Summary

• fractionally differenced processes are

– able to cover all power laws

– easy to work with (SDF, ACVS & PACS simply

expressed)

– extensible to composite, ARFIMA & time-varying

processes

• spectral and wavelet analysis can provide

– estimates of parameters of FD processes

– decomposition of sample variance across

∗ frequencies (in case of spectral analysis)

∗ scales (in case of wavelet analysis)

– complementary analyses

• wavelet analysis has some advantages for clock noise

– estimates δ & σ2
ε somewhat better

– useful with time-varying noise process

– can deal with polynomial trends (not covered here)

– results expressed in same units as X2
t

• a big ‘thank you’ to conference organizers!
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