A Tutorial on Stochastic Models and Statistical Analysis for Frequency Stability Measurements

Don Percival

Applied Physics Lab, University of Washington, Seattle

overheads for talk available at

http://staff.washington.edu/dbp/talks.html
Introduction

- time scales limited by clock noise
- can model clock noise as stochastic process \(\{X_t\} \)
 - set of random variables (RVs) indexed by \(t \)
 - \(X_t \) represents clock noise at time \(t \)
 - will concentrate on sampled data, for which will take \(t \in \mathbb{Z} \equiv \{\ldots, -1, 0, 1, \ldots\} \)
 (but sometimes use \(t \in \mathbb{Z}^* \equiv \{0, 1, 2, \ldots\} \))
- Q: which stochastic processes are useful models?
- Q: how can we deduce model parameters & other characteristics from observed data?
- will cover the following in this tutorial:
 - stationary processes & closely related processes
 - fractionally differenced & related processes
 - two analysis of variance (‘power’) techniques
 * spectral analysis
 * wavelet analysis
 - parameter estimation via analysis techniques
Stationary Processes: I

- stochastic process $\{X_t\}$ called stationary if
 - $E\{X_t\} = \mu_X$ for all t;
 i.e., a constant that does not depend on t
 - $\text{cov}\{X_t, X_{t+\tau}\} = s_{X,\tau}$, all possible t & $t + \tau$;
 i.e., depends on lag τ, but not t

- $\{s_{X,\tau} : \tau \in \mathbb{Z}\}$ is autocovariance sequence (ACVS)

- $s_{X,0} = \text{cov}\{X_t, X_t\} = \text{var}\{X_t\}$;
 i.e., process variance is constant for all t

- spectral density function (SDF) given by
 $$S_X(f) = \sum_{\tau=-\infty}^{\infty} s_{X,\tau} e^{-i2\pi f \tau}, \quad |f| \leq 1/2$$

note: $S_X(-f) = S_X(f)$ for real-valued processes
Stationary Processes: II

• if \(\{X_t\} \) has SDF \(S_X(\cdot) \), then
 \[
 \int_{-1/2}^{1/2} S_X(f) e^{i2\pi f \tau} \, df = s_{X,\tau}, \quad \tau \in \mathbb{Z}
 \]
• setting \(\tau = 0 \) yields fundamental result:
 \[
 \int_{-1/2}^{1/2} S_X(f) \, df = s_{X,0} = \text{var} \{X_t\};
 \]
i.e., SDF decomposes \(\text{var} \{X_t\} \) across frequencies \(f \)
• if \(\{a_u\} \) is a filter, then (with ‘matching condition’)
 \[
 Y_t \equiv \sum_{u=-\infty}^{\infty} a_u X_{t-u}
 \]
is stationary with SDF given by
 \[
 S_Y(f) = A(f) S_X(f), \quad \text{where } A(f) \equiv \left| \sum_{u=-\infty}^{\infty} a_u e^{-i2\pi fu} \right|^2
 \]
• if \(\{a_u\} \) narrow-band of bandwidth \(\Delta f \) about \(f \), i.e.,
 \[
 A(f') = \begin{cases}
 \frac{1}{2\Delta f}, & f - \frac{\Delta f}{2} \leq |f'| \leq f + \frac{\Delta f}{2} \\
 0, & \text{otherwise},
 \end{cases}
 \]
then have following interpretation for \(S_X(f) \):
 \[
 \text{var} \{Y_t\} = \int_{-1/2}^{1/2} S_Y(f') \, df' = \int_{-1/2}^{1/2} A(f') S_X(f') \, df' \approx S_X(f)
 \]
White Noise Process

• simplest stationary process is white noise

• \(\{\epsilon_t\} \) is white noise process if
 - \(E\{\epsilon_t\} = \mu_\epsilon \) for all \(t \) (usually take \(\mu_\epsilon = 0 \))
 - \(\text{var} \{\epsilon_t\} = \sigma_\epsilon^2 \) for all \(t \)
 - \(\text{cov} \{\epsilon_t, \epsilon_{t'}\} = 0 \) for all \(t \neq t' \)

• white noise thus stationary with ACVS

\[
s_{\epsilon,\tau} = \text{cov} \{\epsilon_t, \epsilon_{t+\tau}\} = \begin{cases} \sigma_\epsilon^2, & \tau = 0; \\ 0, & \text{otherwise}, \end{cases}
\]

and SDF

\[
S_\epsilon(f) = \sum_{\tau=-\infty}^{\infty} s_{X,\tau} e^{-i2\pi f \tau} = \sigma_\epsilon^2
\]
Backward Differences of White Noise

- consider first order backward difference of white noise:
 \[X_t = \epsilon_t - \epsilon_{t-1} = \sum_{u=-\infty}^{\infty} a_u \epsilon_{t-u} \text{ with } a_u \equiv \begin{cases}
 1, & u = 0; \\
 -1, & u = 1; \\
 0, & \text{otherwise.}
\end{cases} \]

- have \(S_X(f) = A(f)S_\epsilon(f) = |2\sin(\pi f)|^2 \sigma_\epsilon^2 \approx |2\pi f|^2 \sigma_\epsilon^2 \) at low frequencies (using \(\sin(x) \approx x \) for small \(x \))

- let \(B \) be backward shift operator: \(B\epsilon_t = \epsilon_{t-1} \), \(B^2\epsilon_t = \epsilon_{t-2} \), \((1 - B)\epsilon_t = \epsilon_t - \epsilon_{t-1} \), etc.

- consider \(d \)th order backward difference of white noise:
 \[X_t = (1 - B)^d \epsilon_t = \sum_{k=0}^{d} \binom{d}{k} (-1)^k \epsilon_{t-k} \]

 \[= \sum_{k=0}^{d} \frac{d!}{k!(d-k)!} (-1)^k \epsilon_{t-k} \]

 \[= \sum_{k=0}^{\infty} \frac{\Gamma(1 - \delta)}{\Gamma(k + 1) \Gamma(1 - \delta - k)} (-1)^k \epsilon_{t-k} \]

 with \(\delta \equiv -d \), i.e., \(\delta = -1, -2, \ldots \)

- SDF given by
 \[S_X(f) = A(f)S_\epsilon(f) = \frac{\sigma_\epsilon^2}{|2\sin(\pi f)|^{2\delta}} \approx \frac{\sigma_\epsilon^2}{|2\pi f|^{2\delta}} \]
Fractional Differences of White Noise

• for δ not necessary an integer,

$$X_t = \sum_{k=0}^{\infty} \frac{\Gamma(1 - \delta)}{\Gamma(k + 1)\Gamma(1 - \delta - k)} (-1)^k \epsilon_{t-k} \equiv \sum_{k=0}^{\infty} a_k(\delta) \epsilon_{t-k}$$

makes sense as long as $\delta < 1/2$

• $\{X_t\}$ stationary fractionally differenced (FD) process

• SDF is as before:

$$S_X(f) = \frac{\sigma^2}{|2\sin(\pi f)|^{2\delta}} \approx \frac{\sigma^2}{|2\pi f|^{2\delta}}$$

• $\{X_t\}$ said to obey power law at low frequencies if

$$\lim_{f \to 0} \frac{S_X(f)}{C|f|^\alpha} = 1$$

for $C > 0$; i.e., $S_X(f) \approx C|f|^\alpha$ at low frequencies

• FD processes obey above with $\alpha = -2\delta$

• note: FD process reduces to white noise when $\delta = 0$
ACVS & PACS for FD Processes

- for $\delta < 1/2 \& \delta \neq 0, -1, \ldots$, ACVS given by
 \[
s_{X,\tau} = \frac{\sigma^2\sin(\pi\delta)\Gamma(1-2\delta)\Gamma(\tau+\delta)}{\pi\Gamma(1+\tau-\delta)};
 \]
 when $\delta = 0, -1, \ldots$, have $s_{X,\tau} = 0$ for $|\tau| > -\delta$ &
 \[
s_{X,\tau} = \frac{(-1)^\tau\Gamma(1-2\delta)}{\Gamma(1+\tau-\delta)\Gamma(1-\tau-\delta)}, \quad 0 \leq |\tau| \leq -\delta
 \]
- for all $\delta < 1/2$, have
 \[
s_{X,0} = \text{var} \{X_t\} = \sigma^2 \frac{\Gamma(1-2\delta)}{\Gamma^2(1-\delta)},
 \]
 and rest of ACVS can be computed easily via
 \[
s_{X,\tau} = s_{X,\tau-1}\frac{\tau + \delta - 1}{\tau - \delta}, \quad \tau \in \mathbb{Z}^+ \equiv \{1, 2, \ldots\}
 \]
 (for negative lags τ, recall that $s_{X,-\tau} = s_{X,\tau}$).
- for all $\delta < 1/2$, partial autocorrelation sequence (PACS) given by
 \[
 \phi_{t,t} \equiv \frac{\delta}{t - \delta}, \quad t \in \mathbb{Z}^+
 \]
 (useful for constructing best linear predictors)
- FD processes thus have simple and easily computed expressions for SDF, ACVS and PACS
Simulating Stationary FD Processes

• for $-1 \leq \delta < 1/2$, can obtain exact simulations via 'circulant embedding' (Davies–Harte algorithm)

• given $s_{X,0}, \ldots, s_{X,N}$, use discrete Fourier transform (DFT) to compute

\[
S_k \equiv \sum_{\tau=0}^{N} s_{X,\tau} e^{-i2\pi f_k \tau} + \sum_{\tau=N+1}^{2N-1} s_{X,2N-\tau} e^{-i2\pi f_k \tau}, \quad k = 0, \ldots, N
\]

• given $2N$ independent Gaussian deviates ε_t with mean zero and variance σ^2_ε, compute

\[
Y_k \equiv \begin{cases}
\varepsilon_0 \sqrt{2NS_0}, & k = 0; \\
(\varepsilon_{2k-1} + i\varepsilon_{2k})\sqrt{NS_k}, & 1 \leq k < N; \\
\varepsilon_{2N-1} \sqrt{2NS_N}, & k = N; \\
Y_{2N-k}^*, & N < k \leq 2N - 1;
\end{cases}
\]

(asterisk denotes complex conjugate)

• use inverse DFT to construct the real-valued sequence

\[
Y_t = \frac{1}{2N} \sum_{k=0}^{2N-1} Y_k e^{i2\pi f_k t}, \quad t = 0, \ldots, 2N - 1
\]

• $Y_0, Y_1, \ldots, Y_{N-1}$ is exact simulation of FD process

• implication: can represent $X_0, X_1, \ldots, X_{N-1}$ as

\[
X_t = \sum_{k=0}^{2N-1} c_{t,k}(\delta) \varepsilon_k \text{ rather than } X_t = \sum_{k=0}^{\infty} a_k(\delta)\varepsilon_{t-k}
\]
Nonstationary FD Processes: I

• suppose $X_t^{(1)}$ is FD process with parameter $\delta^{(s)}$ such that $-1/2 \leq \delta^{(s)} < 1/2$

• define $X_t, t \in \mathbb{Z}^*$, as cumulative sum of $X_t^{(1)}, t \in \mathbb{Z}^*$:

\[X_t \equiv \sum_{l=0}^{t} X_l^{(1)} \]

(for $l < 0$, let $X_t \equiv 0$)

• since, for $t \in \mathbb{Z}^*$,

\[X_t^{(1)} = X_t - X_{t-1} \quad \& \quad S_{X^{(1)}}(f) = \frac{\sigma^2}{|2\sin(\pi f)|^{2\delta^{(s)}}}, \]

filtering theory suggests using relationship

\[S_{X^{(1)}}(f) = |2\sin(\pi f)|^2 S_X(f) \]

to define SDF for X_t, i.e.,

\[S_X(f) = \frac{S_{X^{(1)}}(f)}{|2\sin(\pi f)|^2} = \frac{\sigma^2}{|2\sin(\pi f)|^{2\delta}} \]

with $\delta \equiv \delta^{(s)} + 1$ (Yaglom, 1958)
Nonstationary FD Processes: II

- \(X_t \) has stationary 1st order backward differences
- 1 sum defines FD processes for \(1/2 \leq \delta < 3/2 \)
- 2 sums define FD processes for \(3/2 \leq \delta < 5/2 \), etc
- \(X_t \) has stationary 2nd order backward differences, etc
- if \(X_t^{(1)} \) is white noise \((\delta^{(s)} = 0) \) so \(S_{X^{(1)}}(f) = \sigma^2 \),
 then \(X_t \) is random walk \((\delta = 1) \) with
 \[
 S_X(f) = \frac{\sigma^2}{|2 \sin(\pi f)|^2} \approx \frac{\sigma^2}{|2\pi f|^2}
 \]
- if \(X_t^{(2)} \) is white noise and if
 \[
 X_t^{(1)} \equiv \sum_{l=0}^t X_l^{(2)} \& \ X_t \equiv \sum_{l=0}^t X_l^{(1)}, \ t \in \mathbb{Z}^*,
 \]
 then \(X_t \) is random run \((\delta = 2) \), and
 \[
 S_X(f) \approx \frac{\sigma^2}{|2\pi f|^4}
 \]
Summary of FD Processes

• X_t said to be FD process if its SDF is given by

$$S_X(f) = \frac{\sigma^2}{|2\sin(\pi f)|^{2\delta}} \approx \frac{\sigma^2}{|2\pi f|^{2\delta}}$$

at low frequencies

• well-defined for any real-valued δ

• FD process obeys power law at low frequencies with exponent $\alpha = -2\delta$

• if $\delta < 1/2$, FD process stationary with
 – ACVS given by
 $$s_{X,0} = \sigma^2 \frac{\Gamma(1 - 2\delta)}{\Gamma^2(1 - \delta)} \quad \& \quad s_{X,\tau} = s_{X,\tau-1} \frac{\tau + \delta - 1}{\tau - \delta}, \quad \tau \in \mathbb{Z}^+$$
 – PACS given by
 $$\phi_{t,t} \equiv \frac{\delta}{t - \delta}, \quad t \in \mathbb{Z}^+$$

• if $\delta \geq 1/2$, FD process nonstationary but its dth order backward difference is stationary FD process with parameter $\delta^{(s)}$, where

$$d \equiv \lfloor \delta + 1/2 \rfloor \quad \text{and} \quad \delta^{(s)} \equiv \delta - d$$

(here $[x]$ is largest integer $\leq x$)
Alternatives to FD Processes: I

- fractional Brownian motion (FBM)

 $B_H(t), 0 \leq t < \infty$, has SDF given by

 $$S_{B_H(t)}(f) = \frac{\sigma_X^2 C_H}{|f|^{2H+1}}, \quad -\infty < f < \infty,$$

 where $\sigma_X^2 > 0$, $C_H > 0$ & $0 < H < 1$
 (H called Hurst parameter; C_H depends on H)

 - power law with $-3 < \alpha < -1$

- discrete fractional Brownian motion (DFBM)

 $B_t, t \in \mathbb{Z}^+$, is DFBM if $B_t = B_H(t)$

 - B_t has SDF given by

 $$S_{B_t}(f) = \sigma_X^2 C_H \sum_{j=-\infty}^{\infty} \frac{1}{|f + j|^{2H+1}}, \quad |f| \leq 1/2$$

 - power law at low frequencies with $-3 < \alpha < -1$
 - reduces to random walk if $H = 1/2$
Alternatives to FD Processes: II

- fractional Gaussian noise (FGN)

 - $X_t, t \in \mathbb{Z}^+$, is FGN if $X_t = B_{t+1} - B_t$

 - X_t has SDF given by

 $$S_X(f) = 4 \sigma_X^2 C_H \sin^2(\pi f) \sum_{j=-\infty}^{\infty} \frac{1}{|f + j|^{2H+1}}, \quad |f| \leq 1/2$$

 - power law at low frequencies with $-1 < \alpha < 1$

 - X_t is stationary, with ACVS given by

 $$s_{X,\tau} = \frac{\sigma_X^2}{2} \left(|\tau + 1|^{2H} - 2|\tau|^{2H} + |\tau - 1|^{2H}\right), \quad \tau \in \mathbb{Z},$$

 where $\sigma_X^2 = \text{var} \{X_t\}$

 - reduces to white noise if $H = 1/2$

- discrete pure power law (PPL) process

 - SDF given by $S_X(f) = C_S |f|^{\alpha}, \quad |f| \leq 1/2$

 - if $\alpha > -1$, stationary, but ACVS takes some effort to compute

 - if $\alpha = 0$, reduces to white noise

 - $\alpha \leq -1$, nonstationary but backward differences of certain order are stationary
FD Processes vs. Alternatives

- FD processes cover full range of power laws
 - FBM, DFBM and FGN cover limited range
 - PPL processes also cover full range
- differencing FD process yields another FD process; differencing alternatives yields new type of process
- FD process has simple SDF; if stationary, has simple ACVS & PACS
 - FBM has simple SDF
 - DFBM has complicated SDF
 - FGN has simple ACVS, complicated SDF & PACS
 - PPL has simple SDF, complicated ACVS & PACS
- FD, DFBM, FGN and PPL model sampled noise
 - might be problematic to change sampling rate
 - FBM models unsampled noise
- Fig. 1: comparison of SDFs for FGN, PPL & FD
- Fig. 2: comparison of realizations
Extensions to FD Processes: I

- composite FD processes

\[S_X(f) = \sum_{m=1}^{M} \frac{\sigma_m^2}{|2\sin(\pi f)|^{2\delta_m}}; \]

i.e., linear combinations of independent FD processes

- autoregressive, fractionally integrated, moving average (ARFIMA) processes

 - idea is to replace \(\epsilon_t \) in

 \[X_t = \sum_{k=0}^{\infty} a_k(\delta)\epsilon_{t-k} \]

 with ARMA process, say,

 \[U_t = \sum_{k=1}^{p} \phi_k U_{t-k} + \epsilon_t - \sum_{k=1}^{q} \theta_k \epsilon_{t-k} \]

 - yields process with SDF

 \[S_X(f) = \frac{\sigma_\epsilon^2}{|2\sin(\pi f)|^{2\delta}} \cdot \frac{|1 - \sum_{k=1}^{q} \theta_k e^{-i2\pi fk}|^2}{|1 - \sum_{k=1}^{p} \phi_k e^{-i2\pi fk}|^2} \]

 - ARMA part can model, e.g., high-frequency structure in noise
Extensions to FD Processes: II

- can define time-varying FD (TVFD) process via

\[X_t = \sum_{k=0}^{\infty} a_k(\delta_t)\epsilon_{t-k} \]

as long as \(\delta_t < 1/2 \) for all \(t \)

- can use representation

\[X_t = \sum_{k=0}^{2N-1} c_{t,k}(\delta_t)\epsilon_k, \quad t = 0, 1, \ldots, N - 1, \]

to extend definition to handle arbitrary \(\delta_t \)

- Fig. 3: realizations from 4 TVFD processes

- can also make \(\sigma_\epsilon^2 \) time-varying
FD Process Parameter Estimation

• Q: given realization (clock noise) of X_0, \ldots, X_{N-1} from FD process, how can we estimate δ & σ_ϵ^2?

• many different estimators have been proposed! (area of active research)

• will concentrate on estimators based on

 – spectral analysis (frequency-based)
 – wavelet analysis (scale-based)

• advantages of spectral and wavelet analysis

 – physically interpretable

 – both are analysis of variance techniques (useful for more than just estimating δ & σ_ϵ^2)

 – can assess need for models more complex than simple FD process (e.g., composite FD process)

 – provide preliminary estimates for more complicated schemes (maximum likelihood estimation)
Estimation via Spectral Analysis

• recall that SDF for FD process given by

\[S_X(f) = \frac{\sigma^2}{|2 \sin(\pi f)|^{2\delta}} \]

and thus

\[\log(S_X(f)) = \log(\sigma^2_\epsilon) - 2\delta \log(|2 \sin(\pi f)|); \]

i.e., plot of \(\log(S_X(f)) \) vs. \(\log(|2 \sin(\pi f)|) \) linear with slope of \(-2\delta\)

• for \(0 < f < 1/8 \), have \(\sin(\pi f) \approx \pi f \), so

\[\log(S_X(f)) \approx \log(\sigma^2_\epsilon) - 2\delta \log(2\pi f); \]

i.e., plot of \(\log(S_X(f)) \) vs. \(\log(2\pi f) \) approximately linear at low frequencies with slope of \(-2\delta = \alpha\)

• basic scheme

 – estimate \(S_X(f) \) via \(\hat{S}_X(f) \)
 – fit linear model to \(\hat{S}_X(f) \) vs. \(\log(2\pi f) \) over low frequencies
 – use estimated slope \(\hat{\alpha} \) to estimate \(\delta \) via \(-\hat{\alpha}/2\)
 – use estimated intercept to estimate \(\sigma^2_\epsilon \)
The Periodogram: I

- basic estimator of $S(f)$ is periodogram:
 \[
 \hat{S}^{(p)}(f) \equiv \frac{1}{N} \left| \sum_{t=0}^{N-1} X_t e^{-i2\pi ft} \right|^2, \quad |f| \leq 1/2;
 \]

- represents decomposition of sample variance:
 \[
 \int_{-1/2}^{1/2} \hat{S}^{(p)}(f) \, df = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2
 \]

- for stationary processes & large N, theory says
 \[
 \hat{S}^{(p)}(f) \overset{d}{=} S(f) \frac{\chi^2_2}{2}, \quad 0 < f < 1/2,
 \]
 approximately, implying that
 \[
 - E\{\hat{S}^{(p)}(f)\} \approx E\{S(f)\chi^2_2/2\} = S(f)

 - \text{var} \{\hat{S}^{(p)}(f)\} \approx \text{var} \{S(f)\chi^2_2/2\} = S^2(f)
 \]
 (in above ‘$\overset{d}{=}$’ means ‘equal in distribution,’ and χ^2_2 is chi-square RV with 2 degrees of freedom)

- additionally, \(\text{cov} \{\hat{S}^{(p)}(f_j), \hat{S}^{(p)}(f_k)\} \approx 0 \)
 for $f_j \equiv j/N$ & $0 < f_j < f_k < 1/2$
The Periodogram: II

- taking log transform yields
 \[
 \log (\hat{S}^{(p)}(f)) \overset{d}{=} \log \left(S(f) \frac{\chi^2_2}{2} \right) = \log (S(f)) + \log \left(\frac{\chi^2_2}{2} \right)
 \]

- Bartlett & Kendall (1946):
 \[
 E \left\{ \log \left(\frac{\chi^2_2}{\eta} \right) \right\} = \psi(\eta) - \log(\eta) \quad \text{and} \quad \text{var} \left\{ \log \left(\frac{\chi^2_2}{\eta} \right) \right\} = \psi'(\eta)
 \]
 where \(\psi(\cdot)\) & \(\psi'(\cdot)\) are di- & trigamma functions

- yields
 \[
 E\{\log(\hat{S}^{(p)}(f))\} = \log (S(f)) + \psi(2) - \log(2)
 \]
 \[
 = \log (S(f)) - \gamma
 \]
 \[
 \text{var}\{\log(\hat{S}^{(p)}(f))\} = \psi'(2) = \pi^2 / 6
 \]
 \[
 (\gamma \doteq 0.57721 \text{ is Euler’s constant})
 \]
The Periodogram: III

• define $Y^{(p)}(f_j) \equiv \log (\hat{S}^{(p)}(f_j)) + \gamma$

• can model $Y^{(p)}(f_j)$ as

$$Y^{(p)}(f_j) \approx \log (S(f_j)) + \epsilon(f_j)$$

$$\approx \log (\sigma^2\epsilon) - 2\delta \log (2\pi f_j) + \epsilon(f_j)$$

over low frequencies indexed by $0 < j < J$

• error $\epsilon(f_j)$ in linear regression model such that

 $- E\{\epsilon(f_j)\} = 0 & \text{var} \{\epsilon(f_j)\} = \pi^2/6$ (known!)

 $- \text{if} \{X_t\} \text{Gaussian} & \hat{S}^{(p)}(f_j)’s \text{uncorrelated, then}$

 $\epsilon(f_j)’s \text{pairwise uncorrelated}$

 $- \epsilon(f_j) \overset{d}{=} \log (\chi^2_2) \text{markedly non-Gaussian}$

• least squares procedure yields

 $- \text{estimates} \hat{\delta} \text{ and } \hat{\sigma}^2_{\epsilon} \text{ for } \delta \text{ and } \sigma^2_{\epsilon}$

 $- \text{estimates of variability in } \hat{\delta} \text{ and } \hat{\sigma}^2_{\epsilon}$
Multitaper Spectral Estimation: I

- warnings about periodogram:
 - approximations might require \(N \) to be very large!
 - approximations of questionable validity for nonstationary FD processes

- Fig. 4: periodogram can suffer from ‘leakage’

- tapering is technique for alleviating leakage:

\[
\hat{S}^{(d)}(f) \equiv \left| \sum_{t=0}^{N-1} a_t X_t e^{-i2\pi ft} \right|^2
\]

- \(\{a_t\} \) called data taper (typically bell-shaped curve)
- \(\hat{S}^{(d)}(\cdot) \) called direct spectral estimator

- critique: loses ‘information’ at end of series (sample size \(N \) effectively shortened)

- Thomson (1982): multitapering recovers ‘lost info’

- use set of \(K \) orthonormal data tapers \(\{a_{n,t}\} \):

\[
\sum_{t=0}^{N-1} a_{n,t} a_{l,t} = \begin{cases} 1, & \text{if } n = l; \\ 0, & \text{if } n \neq l. \end{cases} \quad 0 \leq n, l \leq K - 1
\]
Multitaper Spectral Estimation: II

- use \(\{a_{n,t}\} \) to form \(k \)th direct spectral estimator:

\[
\hat{S}_k^{(mt)}(f) \equiv \left| \sum_{t=0}^{N-1} a_{n,t} X_t e^{-i2\pi ft} \right|^2, \quad n = 0, \ldots, K - 1
\]

- simplest form of multitaper SDF estimator:

\[
\hat{S}^{(mt)}(f) \equiv \frac{1}{K} \sum_{n=0}^{K-1} \hat{S}_n^{(mt)}(f)
\]

- sinusoidal tapers are one family of multitapers:

\[
a_{n,t} = \left\{ \frac{2}{(N + 1)} \right\}^{1/2} \sin \left\{ \frac{(n + 1)\pi(t + 1)}{N + 1} \right\}, \quad t = 0, \ldots, N-1
\]

(Riedel & Sidorenko, 1995)

- Figs. 5 and 6: example of multitapering

- if \(S(\cdot) \) slowly varying around \(S(f) \) & if \(N \) large,

\[
\hat{S}^{(mt)}(f) \overset{d}{=} \frac{S(f) \chi_{2K}^2}{2K}
\]

approximately for \(0 < f < 1/2 \), implying

\[
\text{var} \{ \hat{S}^{(mt)}(f) \} \approx \frac{S^2(f)}{4K^2} \text{var} \{ \chi_{2K}^2 \} = \frac{S^2(f)}{K}
\]
Multitaper Spectral Estimation: III

• define \(Y^{(mt)}(f_j) \equiv \log(\hat{S}^{(mt)}(f_j)) - \psi(K) + \log(K) \)

• can model \(Y^{(mt)}(f_j) \) as

\[
Y^{(mt)}(f_j) \approx \log(S(f_j)) + \eta(f_j)
\]

\[
\approx \log(\sigma^2) - 2\delta \log(2\pi f_j) + \eta(f_j)
\]

over low frequencies indexed by \(0 < j < J \)

• error \(\eta(f_j) \) in linear regression model such that

- \(E\{\eta(f_j)\} = 0 \)
- \(\text{var}\{\eta(f_j)\} = \psi'(K) \), a known constant!
- approximately Gaussian if \(K \geq 5 \)
- correlated, but with simple structure:

\[
\text{cov}\{\eta(f_j), \eta(f_{j+\nu})\} \approx \begin{cases}
\psi'(K) \left(1 - \frac{\nu}{K+1}\right), & \text{if } |\nu| \leq K + 1; \\
0, & \text{otherwise}.
\end{cases}
\]

• generalized least squares procedure yields

- estimates \(\hat{\delta} \) and \(\hat{\sigma}_\epsilon^2 \) for \(\delta \) and \(\sigma_\epsilon^2 \)
- estimates of variability in \(\hat{\delta} \) and \(\hat{\sigma}_\epsilon^2 \)

• multitaper approach superior to periodogram approach
Discrete Wavelet Transform (DWT)

- let $\mathbf{X} = [X_0, X_1, \ldots, X_{N-1}]^T$ be observed time series (for convenience, assume N integer multiple of 2^{J_0})
- let \mathbf{W} be $N \times N$ orthonormal DWT matrix
- $\mathbf{W} = \mathbf{W} \mathbf{X}$ is vector of DWT coefficients
- orthonormality says $\mathbf{X} = \mathbf{W}^T \mathbf{W}$, so $\mathbf{X} \leftrightarrow \mathbf{W}$
- can partition \mathbf{W} as follows:

$$\mathbf{W} = \begin{bmatrix}
\mathbf{W}_1 \\
\vdots \\
\mathbf{W}_{J_0} \\
\mathbf{V}_{J_0}
\end{bmatrix}$$

- \mathbf{W}_j contains $N_j = N/2^j$ wavelet coefficients
 - related to changes of averages at scale $\tau_j = 2^{j-1}$ (τ_j is jth ‘dyadic’ scale)
 - related to times spaced 2^j units apart
- \mathbf{V}_{J_0} contains $N_{J_0} = N/2^{J_0}$ scaling coefficients
 - related to averages at scale $\lambda_{J_0} = 2^{J_0}$
 - related to times spaced 2^{J_0} units apart
Example: Haar DWT

• Fig. 7: \mathcal{W} for Haar DWT with $N = 16$
 - first 8 rows yield $W_1 \propto changes$ on scale 1
 - next 4 rows yield $W_2 \propto changes$ on scale 2
 - next 2 rows yield $W_3 \propto changes$ on scale 4
 - next to last row yields $W_4 \propto change$ on scale 8
 - last row yields $V_4 \propto average$ on scale 16

• Fig. 8: Haar DWT coefficients for clock 571
DWT in Terms of Filters

- filter $X_0, X_1, \ldots, X_{N-1}$ to obtain

$$2^{j/2} \tilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \ldots, N-1;$$

$h_{j,l}$ is jth level wavelet filter (note: circular filtering)

- subsample to obtain wavelet coefficients:

$$W_{j,t} = 2^{j/2} \tilde{W}_{j,2^j(t+1)-1}, \quad t = 0, 1, \ldots, N_j - 1,$$

where $W_{j,t}$ is tth element of W_j

- Figs. 9 & 10: four sets of wavelet filters

- jth wavelet filter is band-pass with pass-band $[\frac{1}{2^{j+1}}, \frac{1}{2^j}]$ (i.e., scale related to interval of frequencies)

- similarly, scaling filters yield V_{J_0}

- Figs. 11 & 12: four sets of scaling filters

- J_0th scaling filter is low-pass with pass-band $[0, \frac{1}{2^{J_0+1}}]$

- as width L of 1st level filters increases,

 - band-pass & low-pass approximations improve
 - # of embedded differencing operations increases
 (related to # of ‘vanishing moments’)
DWT-Based Analysis of Variance

• consider ‘energy’ in time series:
 \[\| \mathbf{X} \|^2 = \mathbf{X}^T \mathbf{X} = \sum_{t=0}^{N-1} X_t^2 \]

• energy preserved in DWT coefficients:
 \[\| \mathbf{W} \|^2 = \| \mathbf{W} \mathbf{X} \|^2 = \mathbf{X}^T \mathbf{W}^T \mathbf{W} \mathbf{X} = \mathbf{X}^T \mathbf{X} = \| \mathbf{X} \|^2 \]

• since \(\mathbf{W}_1, \ldots, \mathbf{W}_{J_0}, \mathbf{V}_{J_0} \) partitions \(\mathbf{W} \), have
 \[\| \mathbf{W} \|^2 = \sum_{j=1}^{J_0} \| \mathbf{W}_j \|^2 + \| \mathbf{V}_{J_0} \|^2, \]

leading to analysis of sample variance:

\[\hat{\sigma}^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 = \frac{1}{N} \left(\sum_{j=1}^{J_0} \| \mathbf{W}_j \|^2 + \| \mathbf{V}_{J_0} \|^2 \right) \]

• scale-based decomposition (cf. frequency-based)
Variation: Maximal Overlap DWT

• can eliminate downsampling and use

\[\tilde{W}_{j,t} = \frac{1}{2^{j/2}} \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \ldots, N-1 \]

to define MODWT coefficients \(\tilde{W}_j \) (also \(\tilde{V}_j \))

• unlike DWT, MODWT is not orthonormal
 (in fact MODWT is highly redundant)

• like DWT, can do analysis of variance because

\[\|X\|^2 = \sum_{j=1}^{J_0} \|\tilde{W}_j\|^2 + \|\tilde{V}_{J_0}\|^2 \]

• unlike DWT, MODWT works for all sample sizes \(N \)
 (i.e., power of 2 assumption is not required)

• Fig. 13: Haar MODWT coefficients for clock 571
 (cf. Fig. 8 with DWT coefficients)

• can use to track time-varying FD process
Definition of Wavelet Variance

- let X_t, $t \in \mathbb{Z}$, be a stochastic process
- run X_t through jth level wavelet filter:

 $$W_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l}, \quad t \in \mathbb{Z}$$

- definition of time dependent wavelet variance (also called wavelet spectrum):

 $$\nu^2_{X,t}(\tau_j) \equiv \text{var}\{W_{j,t}\},$$

 assuming $\text{var}\{W_{j,t}\}$ exists and is finite

- $\nu^2_{X,t}(\tau_j)$ depends on τ_j and t

- will consider time independent wavelet variance:

 $$\nu^2_X(\tau_j) \equiv \text{var}\{W_{j,t}\}$$

 (can be easily adapted to time varying situation)

- rationale for wavelet variance
 - decomposes variance on scale by scale basis
 - useful substitute/complement for SDF
Variance Decomposition

• suppose X_t has SDF $S_X(f)$:
\[
\int_{-1/2}^{1/2} S_X(f) \, df = \text{var} \{ X_t \};
\]
i.e., decomposes \(\text{var} \{ X_t \} \) across frequencies \(f \)
 - involves uncountably infinite number of \(f \)'s
 - \(S_X(f) \Delta f \approx \) contribution to \(\text{var} \{ X_t \} \) due to \(f \)'s
 in interval of length \(\Delta f \) centered at \(f \)
 - note: \(\text{var} \{ X_t \} \) taken to be \(\infty \) for nonstationary processes with stationary backward differences

• wavelet variance analog to fundamental result:
\[
\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \text{var} \{ X_t \}
\]
i.e., decomposes \(\text{var} \{ X_t \} \) across scales \(\tau_j \)
 - recall DWT/MODWT and sample variance
 - involves countably infinite number of \(\tau_j \)'s
 - \(\nu_X^2(\tau_j) \) contribution to \(\text{var} \{ X_t \} \) due to scale \(\tau_j \)
 - \(\nu_X(\tau_j) \) has same units as \(X_t \) (easier to interpret)
Spectrum Substitute/Complement

- because $\tilde{h}_{j,l} \approx$ bandpass over $[1/2^j, 1/2^{j+1}]$,
 \[\nu^2_X(\tau_j) \approx 2 \int_{1/2^{j+1}}^{1/2^j} S_X(f) \, df \]
 (*)

- if $S_X(f)$ ‘featureless’, info in $\nu^2_X(\tau_j) \iff$ info in $S_X(f)$

- $\nu^2_X(\tau_j)$ more succinct: only 1 value per octave band

- recall SDF for FD process:
 \[S_X(f) = \frac{\sigma^2_\epsilon}{|2\sin(\pi f)|^{2\delta}} \approx \frac{\sigma^2_\epsilon}{|2\pi f|^{2\delta}} \]

- (*) implies $\nu^2_X(\tau_j) \propto \tau_j^{2\delta - 1}$ approximately

- can deduce δ from slope of log ($\nu^2_X(\tau_j)$) vs. log (τ_j)

- can estimate δ & σ^2_ϵ by applying regression analysis
 to log of estimates of $\nu^2_X(\tau_j)$
Estimation of Wavelet Variance: I

- can base estimator on MODWT of $X_0, X_1, \ldots, X_{N-1}$:
 \[\tilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \ldots, N - 1 \]
 (DWT-based estimator possible, but less efficient)
- recall that
 \[\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l}, \quad t = 0, \pm 1, \pm 2, \ldots \]
 so $\tilde{W}_{j,t} = \overline{W}_{j,t}$ if mod not needed: $L_j - 1 \leq t < N$
- if $N - L_j \geq 0$, unbiased estimator of $\nu_X^2(\tau_j)$ is
 \[\hat{\nu}_X^2(\tau_j) \equiv \frac{1}{N - L_j + 1} \sum_{t=L_j-1}^{N-1} \overline{W}_{j,t}^2 = \frac{1}{M_j} \sum_{t=L_j-1}^{N-1} \overline{W}_{j,t}^2, \]
 where $M_j \equiv N - L_j + 1$
- can also construct biased estimator of $\nu_X^2(\tau_j)$:
 \[\tilde{\nu}_X^2(\tau_j) \equiv \frac{1}{N} \sum_{t=0}^{N-1} \tilde{W}_{j,t}^2 = \frac{1}{N} \left(\sum_{t=0}^{L_j-2} \tilde{W}_{j,t}^2 + \sum_{t=L_j-1}^{N-1} \overline{W}_{j,t}^2 \right) \]
 1st sum in parentheses influenced by circularity
Estimation of Wavelet Variance: II

- biased estimator unbiased if \(\{X_t\} \) white noise
- biased estimator offers exact analysis of \(\hat{\sigma}^2 \); unbiased estimator need not
- biased estimator can have better mean square error
 (Greenhall et al., 1999; need to ‘reflect’ \(X_t \))
Statistical Properties of $\hat{\nu}_X^2(\tau_j)$

- suppose $\{W_{j,t}\}$ Gaussian, mean 0 & SDF $S_j(f)$
- suppose square integrability condition holds:
 \[A_j \equiv \int_{-1/2}^{1/2} S_j^2(f) \, df < \infty \ & \ S_j(f) > 0 \]
 (holds for FD process if L large enough)
- can show $\hat{\nu}_X^2(\tau_j)$ asymptotically normal with mean $\nu_X^2(\tau_j)$ & large sample variance $2A_j/M_j$
- can estimate A_j and use with $\hat{\nu}_X^2(\tau_j)$
 to construct confidence interval for $\nu_X^2(\tau_j)$
- example
 - Fig. 14: clock errors $X_t \equiv X_t^{(0)}$ along with differences $X_t^{(i)} \equiv X_t^{(i-1)} - X_{t-1}^{(i-1)}$ for $i = 1, 2$
 - Fig. 15: $\hat{\nu}_X^2(\tau_j)$ for clock errors
 - Fig. 16: $\hat{\nu}_Y^2(\tau_j)$ for $Y_t \propto X_t^{(1)}$
 - Haar $\hat{\nu}_Y^2(\tau_j)$ related to Allan variance $\sigma_Y^2(2, \tau_j)$:
 \[\nu_Y^2(\tau_j) = \frac{1}{2} \sigma_Y^2(2, \tau_j) \]
Summary

• fractionally differenced processes are
 – able to cover all power laws
 – easy to work with (SDF, ACVS & PACS simply expressed)
 – extensible to composite, ARFIMA & time-varying processes

• spectral and wavelet analysis can provide
 – estimates of parameters of FD processes
 – decomposition of sample variance across
 * frequencies (in case of spectral analysis)
 * scales (in case of wavelet analysis)
 – complementary analyses

• wavelet analysis has some advantages for clock noise
 – estimates δ & σ^2_ϵ somewhat better
 – useful with time-varying noise process
 – can deal with polynomial trends (not covered here)
 – results expressed in same units as X_t^2

• a big ‘thank you’ to conference organizers!