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Introduction

• time scales limited by clock noise

• can model clock noise as stochastic process {Xt}
– set of random variables (RVs) indexed by t

– Xt represents clock noise at time t

– will concentrate on sampled data, for which

will take t ∈ Z ≡ {. . . ,−1, 0, 1, . . .}
(but sometimes use t ∈ Z

∗ ≡ {0, 1, 2, . . .})
• Q: which stochastic processes are useful models?

• Q: how can we deduce model parameters & other

characteristics from observed data?

• will cover the following in this tutorial:

– stationary processes & closely related processes

– fractionally differenced & related processes

– two analysis of variance (‘power’) techniques

∗ spectral analysis

∗ wavelet analysis

– parameter estimation via analysis techniques
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Stationary Processes: I

• stochastic process {Xt} called stationary if

– E{Xt} = µX for all t;

i.e., a constant that does not depend on t

– cov{Xt,Xt+τ} = sX,τ , all possible t & t + τ ;

i.e., depends on lag τ , but not t

• {sX,τ : τ ∈ Z} is autocovariance sequence (ACVS)

• sX,0 = cov{Xt,Xt} = var{Xt};
i.e., process variance is constant for all t

• spectral density function (SDF) given by

SX(f ) =
∞∑

τ=−∞
sX,τe

−i2πfτ , |f | ≤ 1/2

note: SX(−f ) = SX(f ) for real-valued processes
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Stationary Processes: II

• if {Xt} has SDF SX(·), then
∫ 1/2

−1/2
SX(f )ei2πfτ df = sX,τ , τ ∈ Z

• setting τ = 0 yields fundamental result:
∫ 1/2

−1/2
SX(f ) df = sX,0 = var {Xt};

i.e., SDF decomposes var {Xt} across frequencies f

• if {au} is a filter, then (with ‘matching condition’)

Yt ≡
∞∑

u=−∞
auXt−u

is stationary with SDF given by

SY (f ) = A(f )SX(f ), where A(f ) ≡
∣∣∣∣∣∣

∞∑
u=−∞

aue
−i2πfu

∣∣∣∣∣∣
2

• if {au} narrow-band of bandwidth ∆f about f , i.e.,

A(f ′) =




1
2∆f , f − ∆f

2 ≤ |f ′| ≤ f + ∆f
2

0, otherwise,

then have following interpretation for SX(f ):

var {Yt} =
∫ 1/2

−1/2
SY (f ′) df ′ =

∫ 1/2

−1/2
A(f ′)SX(f ′) df ′ ≈ SX(f )
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White Noise Process

• simplest stationary process is white noise

• {εt} is white noise process if

– E{εt} = µε for all t (usually take µε = 0)

– var {εt} = σ2
ε for all t

– cov {εt, εt′} = 0 for all t �= t′

• white noise thus stationary with ACVS

sε,τ = cov {εt, εt+τ} =


 σ2

ε , τ = 0;

0, otherwise,

and SDF

Sε(f ) =
∞∑

τ=−∞
sX,τe

−i2πfτ = σ2
ε
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Backward Differences of White Noise

• consider first order backward difference of white noise:

Xt = εt−εt−1 =
∞∑

u=−∞
auεt−u with au ≡




1, u = 0;

−1, u = 1;

0, otherwise.

• have SX(f ) = A(f )Sε(f ) = |2 sin(πf )|2σ2
ε ≈ |2πf |2σ2

ε

at low frequencies (using sin(x) ≈ x for small x)

• let B be backward shift operator: Bεt = εt−1,

B2εt = εt−2, (1 −B)εt = εt − εt−1, etc.

• consider dth order backward difference of white noise:

Xt = (1 −B)dεt =
d∑

k=0


d
k


(−1)kεt−k

=
d∑

k=0

d!

k!(d− k)!
(−1)kεt−k

=
∞∑
k=0

Γ(1 − δ)

Γ(k + 1)Γ(1 − δ − k)
(−1)kεt−k

with δ ≡ −d, i.e., δ = −1,−2, . . .

• SDF given by

SX(f ) = A(f )Sε(f ) =
σ2
ε

|2 sin(πf )|2δ ≈ σ2
ε

|2πf |2δ
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Fractional Differences of White Noise

• for δ not necessary an integer,

Xt =
∞∑
k=0

Γ(1 − δ)

Γ(k + 1)Γ(1 − δ − k)
(−1)kεt−k ≡

∞∑
k=0

ak(δ)εt−k

makes sense as long as δ < 1/2

• {Xt} stationary fractionally differenced (FD) process

• SDF is as before:

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ≈ σ2
ε

|2πf |2δ

• {Xt} said to obey power law at low frequencies if

lim
f→0

SX(f )

C|f |α = 1

for C > 0; i.e., SX(f ) ≈ C|f |α at low frequencies

• FD processes obey above with α = −2δ

• note: FD process reduces to white noise when δ = 0
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ACVS & PACS for FD Processes

• for δ < 1/2 & δ �= 0,−1, . . ., ACVS given by

sX,τ = σ2
ε

sin(πδ)Γ(1 − 2δ)Γ(τ + δ)

πΓ(1 + τ − δ)
;

when δ = 0,−1, . . ., have sX,τ = 0 for |τ | > −δ &

sX,τ = σ2
ε

(−1)τΓ(1 − 2δ)

Γ(1 + τ − δ)Γ(1 − τ − δ)
, 0 ≤ |τ | ≤ −δ

• for all δ < 1/2, have

sX,0 = var {Xt} = σ2
ε

Γ(1 − 2δ)

Γ2(1 − δ)
,

and rest of ACVS can be computed easily via

sX,τ = sX,τ−1
τ + δ − 1

τ − δ
, τ ∈ Z

+ ≡ {1, 2, . . .}

(for negative lags τ , recall that sX,−τ = sX,τ ).

• for all δ < 1/2, partial autocorrelation sequence

(PACS) given by

φt,t ≡
δ

t− δ
, t ∈ Z

+

(useful for constructing best linear predictors)

• FD processes thus have simple and easily computed

expressions for SDF, ACVS and PACS
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Simulating Stationary FD Processes

• for −1 ≤ δ < 1/2, can obtain exact simulations via

‘circulant embedding’ (Davies–Harte algorithm)

• given sX,0, . . . , sX,N , use discrete Fourier transform

(DFT) to compute

Sk ≡
N∑

τ=0
sX,τe

−i2πfkτ+
2N−1∑
τ=N+1

sX,2N−τe
−i2πfkτ , k = 0, . . . , N

• given 2N independent Gaussian deviates εt with mean

zero and variance σ2
ε , compute

Yk ≡




ε0

√
2NS0, k = 0;

(ε2k−1 + iε2k)
√
NSk, 1 ≤ k < N ;

ε2N−1

√
2NSN, k = N ;

Y∗
2N−k, N < k ≤ 2N − 1;

(asterisk denotes complex conjugate)

• use inverse DFT to construct the real-valued sequence

Yt =
1

2N

2N−1∑
k=0

Yke
i2πfkt, t = 0, . . . , 2N − 1

• Y0, Y1, . . . , YN−1 is exact simulation of FD process

• implication: can represent X0, X1, . . . , XN−1 as

Xt =
2N−1∑
k=0

ct,k(δ)εk rather than Xt =
∞∑
k=0

ak(δ)εt−k
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Nonstationary FD Processes: I

• suppose X
(1)
t is FD process with parameter δ(s)

such that −1/2 ≤ δ(s) < 1/2

• define Xt, t ∈ Z
∗, as cumulative sum of X

(1)
t , t ∈ Z

∗:

Xt ≡
t∑

l=0
X

(1)
l

(for l < 0, let Xt ≡ 0)

• since, for t ∈ Z
∗,

X
(1)
t = Xt −Xt−1 & SX(1)(f ) =

σ2
ε

|2 sin(πf )|2δ(s) ,

filtering theory suggests using relationship

SX(1)(f ) = |2 sin(πf )|2SX(f )

to define SDF for Xt, i.e.,

SX(f ) =
SX(1)(f )

|2 sin(πf )|2 =
σ2
ε

|2 sin(πf )|2δ

with δ ≡ δ(s) + 1 (Yaglom, 1958)
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Nonstationary FD Processes: II

• Xt has stationary 1st order backward differences

• 1 sum defines FD processes for 1/2 ≤ δ < 3/2

• 2 sums define FD processes for 3/2 ≤ δ < 5/2, etc

• Xt has stationary 2nd order backward differences, etc

• if X
(1)
t is white noise (δ(s) = 0) so SX(1)(f ) = σ2

ε ,

then Xt is random walk (δ = 1) with

SX(f ) =
σ2
ε

|2 sin(πf )|2 ≈ σ2
ε

|2πf |2

• if X
(2)
t is white noise and if

X
(1)
t ≡

t∑
l=0

X
(2)
l & Xt ≡

t∑
l=0

X
(1)
l , t ∈ Z

∗,

then Xt is random run (δ = 2), and

SX(f ) ≈ σ2
ε

|2πf |4
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Summary of FD Processes

• Xt said to be FD process if its SDF is given by

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ≈ σ2
ε

|2πf |2δ at low frequencies

• well-defined for any real-valued δ

• FD process obeys power law at low frequencies with

exponent α = −2δ

• if δ < 1/2, FD process stationary with

– ACVS given by

sX,0 = σ2
ε

Γ(1 − 2δ)

Γ2(1 − δ)
& sX,τ = sX,τ−1

τ + δ − 1

τ − δ
, τ ∈ Z

+

– PACS given by

φt,t ≡
δ

t− δ
, t ∈ Z

+

• if δ ≥ 1/2, FD process nonstationary but its dth

order backward difference is stationary FD process

with parameter δ(s), where

d ≡ �δ + 1/2� and δ(s) ≡ δ − d

(here �x� is largest integer ≤ x)
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Alternatives to FD Processes: I

• fractional Brownian motion (FBM)

– BH(t), 0 ≤ t < ∞, has SDF given by

SBH(t)(f ) =
σ2
XCH

|f |2H+1
, −∞ < f < ∞,

where σ2
X > 0, CH > 0 & 0 < H < 1

(H called Hurst parameter; CH depends on H)

– power law with −3 < α < −1

• discrete fractional Brownian motion (DFBM)

– Bt, t ∈ Z
+, is DFBM if Bt = BH(t)

– Bt has SDF given by

SBt(f ) = σ2
XCH

∞∑
j=−∞

1

|f + j|2H+1
, |f | ≤ 1/2

– power law at low frequencies with −3 < α < −1

– reduces to random walk if H = 1/2
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Alternatives to FD Processes: II

• fractional Gaussian noise (FGN)

– Xt, t ∈ Z
+, is FGN if Xt = Bt+1 −Bt

– Xt has SDF given by

SX(f ) = 4σ2
XCH sin2(πf )

∞∑
j=−∞

1

|f + j|2H+1
, |f | ≤ 1/2

– power law at low frequencies with −1 < α < 1

– Xt is stationary, with ACVS given by

sX,τ =
σ2
X

2

(
|τ + 1|2H − 2|τ |2H + |τ − 1|2H

)
, τ ∈ Z,

where σ2
X = var {Xt}

– reduces to white noise if H = 1/2

• discrete pure power law (PPL) process

– SDF given by SX(f ) = CS|f |α, |f | ≤ 1/2

– if α > −1, stationary, but ACVS takes some

effort to compute

– if α = 0, reduces to white noise

– α ≤ −1, nonstationary but backward differences

of certain order are stationary
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FD Processes vs. Alternatives

• FD processes cover full range of power laws

– FBMs, DFBMs and FGNs cover limited range

– PPL processes also cover full range

• differencing FD process yields another FD process;

differencing alternatives yields new type of process

• FD process has simple SDF; if stationary, has simple

ACVS & PACS

– FBM has simple SDF

– DFBM has complicated SDF

– FGN has simple ACVS, complicated SDF & PACS

– PPL has simple SDF, complicated ACVS & PACS

• FD, DFBM, FGN and PPL model sampled noise

– might be problematic to change sampling rate

– FBM models unsampled noise

• Fig. 1: comparison of SDFs for FGN, PPL & FD

• Fig. 2: comparison of realizations
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Figure 1. SDFs for FGN, PPL and FD processes (top to bottom rows, respectively) on both
linear/log and log/log axes (left- and right-hand columns, respectively). Each SDF SX(·) is
normalized such that SX(0.1) = 1. The table below gives the parameter values for the various
plotted curves. (Adapted from Figure 282, Percival and Walden, 2000, copyright Cambridge
University Press.)

process thick solid dotted dashed thin solid

FGN H = 0.55 H = 0.75 H = 0.90 H = 0.95
PPL α = −0.1 α = −0.5 α = −0.8 α = −0.9
FD δ = 0.05 δ = 0.25 δ = 0.40 δ = 0.45
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t

Figure 2. Simulated realizations of FGN, PPL and FD processes. The thick (thin) solid curves
in Figure 1 show the SDFs for the top (bottom) three series – these SDFs differ markedly only
at high frequencies. We formed each simulated X0, . . . , X511 using the circulant embedding
method, which does so by transforming a realization of a portion ε0, . . . , ε1023 of a white noise
process. To illustrate the similarity of FGN, PPL and FD processes with comparable H, α and
δ, we used the same εt to create all six series. Although the top (bottom) three series appear
to be identical, estimates of their SDFs show high frequency differences consistent with their
theoretical SDFs. (Adapted from Figure 283, Percival and Walden, 2000, copyright Cambridge
University Press.)



Extensions to FD Processes: I

• composite FD processes

SX(f ) =
M∑

m=1

σ2
m

|2 sin(πf )|2δm ;

i.e., linear combinations of independent FD processes

• autoregressive, fractionally integrated, moving aver-

age (ARFIMA) processes

– idea is to replace εt in

Xt =
∞∑
k=0

ak(δ)εt−k

with ARMA process, say,

Ut =
p∑

k=1
φkUt−k + εt −

q∑
k=1

θkεt−k

– yields process with SDF

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ·
∣∣∣∣1 − ∑q

k=1 θke
−i2πfk

∣∣∣∣2
|1 − ∑p

k=1 φke−i2πfk|2

– ARMA part can model, e.g., high-frequency

structure in noise
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Extensions to FD Processes: II

• can define time-varying FD (TVFD) process via

Xt =
∞∑
k=0

ak(δt)εt−k

as long as δt < 1/2 for all t

– can use representation

Xt =
2N−1∑
k=0

ct,k(δt)εk, t = 0, 1, . . . , N − 1,

to extend definition to handle arbitrary δt

– Fig. 3: realizations from 4 TVFD processes

– can also make σ2
ε time-varying
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Figure 3. Four examples of time series simulated from TVFD processes. The upper panel of
each plot shows the sequence δt, t = 0, . . . , 1023, used to generate the simulated time series in
the lower panel. All four simulated series were created using the circulant embedding method
on the same set of 2048 independent deviates from a standard Gaussian distribution. (Figure
1, Percival and Constantine, 2002.)



FD Process Parameter Estimation

• Q: given realization (clock noise) of X0, . . . , XN−1

from FD process, how can we estimate δ & σ2
ε ?

• many different estimators have been proposed!

(area of active research)

• will concentrate on estimators based on

– spectral analysis (frequency-based)

– wavelet analysis (scale-based)

• advantages of spectral and wavelet analysis

– physically interpretable

– both are analysis of variance techniques

(useful for more than just estimating δ & σ2
ε )

– can assess need for models more complex than

simple FD process (e.g., composite FD process)

– provide preliminary estimates for more compli-

cated schemes (maximum likelihood estimation)
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Estimation via Spectral Analysis

• recall that SDF for FD process given by

SX(f ) =
σ2
ε

|2 sin(πf )|2δ
and thus

log (SX(f )) = log (σ2
ε ) − 2δ log (|2 sin(πf )|);

i.e., plot of log (SX(f )) vs. log (|2 sin(πf )|) linear

with slope of −2δ

• for 0 < f < 1/8, have sin(πf ) ≈ πf , so

log (SX(f )) ≈ log (σ2
ε ) − 2δ log (2πf );

i.e., plot of log (SX(f )) vs. log (2πf ) approximately

linear at low frequencies with slope of −2δ = α

• basic scheme

– estimate SX(f ) via ŜX(f )

– fit linear model to ŜX(f ) vs. log (2πf )

over low frequencies

– use estimated slope α̂ to estimate δ via −α̂/2

– use estimated intercept to estimate σ2
ε
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The Periodogram: I

• basic estimator of S(f ) is periodogram:

Ŝ(p)(f ) ≡ 1

N

∣∣∣∣∣∣
N−1∑
t=0

Xte
−i2πft

∣∣∣∣∣∣
2

, |f | ≤ 1/2;

• represents decomposition of sample variance:

∫ 1/2

−1/2
Ŝ(p)(f ) df =

1

N

N−1∑
t=0

X2
t

• for stationary processes & large N , theory says

Ŝ(p)(f )
d= S(f )

χ2
2

2
, 0 < f < 1/2,

approximately, implying that

– E{Ŝ(p)(f )} ≈ E{S(f )χ2
2/2} = S(f )

– var {Ŝ(p)(f )} ≈ var {S(f )χ2
2/2} = S2(f )

(in above ‘
d=’ means ‘equal in distribution,’ and χ2

2 is

chi-square RV with 2 degrees of freedom)

• additionally, cov {Ŝ(p)(fj), Ŝ
(p)(fk)} ≈ 0

for fj ≡ j/N & 0 < fj < fk < 1/2
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The Periodogram: II

• taking log transform yields

log (Ŝ(p)(f ))
d= log


S(f )

χ2
2

2


 = log (S(f ))+log


χ2

2

2




• Bartlett & Kendall (1946):

E


log


χ2

η

η





 = ψ(η)−log (η) & var


log


χ2

η

η





 = ψ′(η)

where ψ(·) & ψ′(·) are di– & trigamma functions

• yields

E{log (Ŝ(p)(f ))} = log (S(f )) + ψ(2) − log (2)

= log (S(f )) − γ

var{log (Ŝ(p)(f ))} = ψ′(2) = π2/6

(γ .= 0.57721 is Euler’s constant)
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The Periodogram: III

• define Y (p)(fj) ≡ log (Ŝ(p)(fj)) + γ

• can model Y (p)(fj) as

Y (p)(fj) ≈ log (S(fj)) + ε(fj)

≈ log (σ2
ε ) − 2δ log (2πfj) + ε(fj)

over low frequencies indexed by 0 < j < J

• error ε(fj) in linear regression model such that

– E{ε(fj)} = 0 & var {ε(fj)} = π2/6 (known!)

– if {Xt} Gaussian & Ŝ(p)(fj)’s uncorrelated, then

ε(fj)’s pairwise uncorrelated

– ε(fj)
d= log (χ2

2) markedly non-Gaussian

• least squares procedure yields

– estimates δ̂ and σ̂2
ε for δ and σ2

ε

– estimates of variability in δ̂ and σ̂2
ε
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Multitaper Spectral Estimation: I

• warnings about periodogram:

– approximations might require N to be very large!

– approximations of questionable validity

for nonstationary FD processes

• Fig. 4: periodogram can suffer from ‘leakage’

• tapering is technique for alleviating leakage:

Ŝ(d)(f ) ≡
∣∣∣∣∣∣
N−1∑
t=0

atXte
−i2πft

∣∣∣∣∣∣
2

– {at} called data taper (typically bell-shaped curve)

– Ŝ(d)(·) called direct spectral estimator

• critique: loses ‘information’ at end of series

(sample size N effectively shortened)

• Thomson (1982): multitapering recovers ‘lost info’

• use set of K orthonormal data tapers {an,t}:
N−1∑
t=0

an,tal,t =




1, if n = l;

0, if n �= l.
0 ≤ n, l ≤ K − 1
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(a) (b)

(c) (d)

Figure 4. Periodogram (a) and direct spectral estimates (b,c,d) of noise simulated from
composite FD process with four components, namely, δ = 2, 1.5, 1 and 0.5 (corresponding
to α = −4,−3,−2 and −1). The true SDF is the solid curve in each plot, while the dots
are the spectral estimates. The data tapers used in the direct spectral estimates are Slepian
tapers (i.e., discrete prolate spheroidal sequences) with the resolution bandwidth W set via
(b) NW = 1, (c) NW = 2 and (d) NW = 4. The simulated series has length N = 1000.



Multitaper Spectral Estimation: II

• use {an,t} to form kth direct spectral estimator:

Ŝ
(mt)
k (f ) ≡

∣∣∣∣∣∣
N−1∑
t=0

an,tXte
−i2πft

∣∣∣∣∣∣
2

, n = 0, . . . , K − 1

• simplest form of multitaper SDF estimator:

Ŝ(mt)(f ) ≡ 1

K

K−1∑
n=0

Ŝ(mt)
n (f )

• sinusoidal tapers are one family of multitapers:

an,t =




2

(N + 1)




1/2

sin



(n + 1)π(t + 1)

N + 1


 , t = 0, . . . , N−1

(Riedel & Sidorenko, 1995)

• Figs. 5 and 6: example of multitapering

• if S(·) slowly varying around S(f ) & if N large,

Ŝ(mt)(f )
d=

S(f )χ2
2K

2K

approximately for 0 < f < 1/2, impling

var {Ŝ(mt)(f )} ≈ S2(f )

4K2
var {χ2

2K} =
S2(f )

K
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k 
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k 

=
 1

k 
=

 2
k 
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0 1024

t

0 1024

t

Figure 5. Sinusoidal tapers (left-hand column) as applied to a simulated FD time series with
δ = 0.45 (top plot, right-hand column), resulting in tapered series (right-hand column, second
to bottom rows).
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Figure 6. Direct spectral estimates formed using the kth sinusoidal taper, k = 0, . . . , 3
(left-hand column, top to bottom row), along with multitaper estimates formed by averaging
K = 1, . . . , 4 of these direct spectral estimates (right-hand column, top to bottom row).



Multitaper Spectral Estimation: III

• define Y (mt)(fj) ≡ log (Ŝ(mt)(fj))− ψ(K) + log (K)

• can model Y (mt)(fj) as

Y (mt)(fj) ≈ log (S(fj)) + η(fj)

≈ log (σ2
ε ) − 2δ log (2πfj) + η(fj)

over low frequencies indexed by 0 < j < J

• error η(fj) in linear regression model such that

– E{η(fj)} = 0

– var {η(fj)} = ψ′(K), a known constant!

– approximately Gaussian if K ≥ 5

– correlated, but with simple structure:

cov{η(fj), η(fj+ν)} ≈


ψ′(K)

(
1 − |ν|

K+1

)
, if |ν| ≤ K + 1;

0, otherwise.

• generalized least squares procedure yields

– estimates δ̂ and σ̂2
ε for δ and σ2

ε

– estimates of variability in δ̂ and σ̂2
ε

• multitaper approach superior to periodogram approach
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Discrete Wavelet Transform (DWT)

• let X = [X0, X1, . . . , XN−1]
T be observed time series

(for convenience, assume N integer multiple of 2J0)

• let W be N ×N orthonormal DWT matrix

• W = WX is vector of DWT coefficients

• orthonormality says X = WTW, so X ⇔ W

• can partition W as follows:

W =




W1
...

WJ0

VJ0




• Wj contains Nj = N/2j wavelet coefficients

– related to changes of averages at scale τj = 2j−1

(τj is jth ‘dyadic’ scale)

– related to times spaced 2j units apart

• VJ0 contains NJ0 = N/2J0 scaling coefficients

– related to averages at scale λJ0 = 2J0

– related to times spaced 2J0 units apart

25



Example: Haar DWT

• Fig. 7: W for Haar DWT with N = 16

– first 8 rows yield W1 ∝ changes on scale 1

– next 4 rows yield W2 ∝ changes on scale 2

– next 2 rows yield W3 ∝ changes on scale 4

– next to last row yields W4 ∝ change on scale 8

– last row yields V4 ∝ average on scale 16

• Fig. 8: Haar DWT coefficients for clock 571
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Figure 7. Row vectors WT
n• of the discrete wavelet transform matrix W based on the Haar

wavelet for N = 16 and n = 0 to 7 (top to bottom on left plot) and n = 8 to 15 (right plot).
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Figure 8. Haar DWT coefficients for clock 571 and sample autocorrelation sequences (ACSs).



DWT in Terms of Filters

• filter X0, X1, . . . , XN−1 to obtain

2j/2W̃j,t ≡
Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N−1;

hj,l is jth level wavelet filter (note: circular filtering)

• subsample to obtain wavelet coefficients:

Wj,t = 2j/2W̃j,2j(t+1)−1, t = 0, 1, . . . , Nj − 1,

where Wj,t is tth element of Wj

• Figs. 9 & 10: four sets of wavelet filters

• jth wavelet filter is band-pass with pass-band [ 1
2j+1 ,

1
2j ]

(i.e., scale related to interval of frequencies)

• similarly, scaling filters yield VJ0

• Figs. 11 & 12: four sets of scaling filters

• J0th scaling filter is low-pass with pass-band [0, 1
2J0+1 ]

• as width L of 1st level filters increases,

– band-pass & low-pass approximations improve

– # of embedded differencing operations increases

(related to # of ‘vanishing moments’)

27



Figure 9. Haar wavelet filters for scales τj = 2j−1, j = 1, 2, . . . , 7.



Figure 10. D(4), C(6) and LA(8) wavelet filters for scales τj = 2j−1, j = 1, 2, . . . , 7.



Figure 11. Haar scaling filters for scales λJ0 = 2J0 , J0 = 1, 2, . . . , 7.



Figure 12. D(4), C(6) and LA(8) scaling filters for scales λJ0 = 2J0 , J0 = 1, 2, . . . , 7.



DWT-Based Analysis of Variance

• consider ‘energy’ in time series:

‖X‖2 = XTX =
N−1∑
t=0

X2
t

• energy preserved in DWT coefficients:

‖W‖2 = ‖WX‖2 = XTWTWX = XTX = ‖X‖2

• since W1, . . . ,WJ0,VJ0 partitions W, have

‖W‖2 =
J0∑
j=1

‖Wj‖2 + ‖VJ0‖2,

leading to analysis of sample variance:

σ̂2 ≡ 1

N

N−1∑
t=0

X2
t =

1

N


 J0∑
j=1

‖Wj‖2 + ‖VJ0‖2




• scale-based decomposition (cf. frequency-based)

28



Variation: Maximal Overlap DWT

• can eliminate downsampling and use

W̃j,t ≡
1

2j/2

Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N−1

to define MODWT coefficients W̃j (& also Ṽj)

• unlike DWT, MODWT is not orthonormal

(in fact MODWT is highly redundant)

• like DWT, can do analysis of variance because

‖X‖2 =
J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2

• unlike DWT, MODWT works for all samples sizes N

(i.e., power of 2 assumption is not required)

• Fig. 13: Haar MODWT coefficients for clock 571

(cf. Fig. 8 with DWT coefficients)

• can use to track time-varying FD process
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Definition of Wavelet Variance

• let Xt, t ∈ Z, be a stochastic process

• run Xt through jth level wavelet filter:

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z

• definition of time dependent wavelet variance

(also called wavelet spectrum):

ν2
X,t(τj) ≡ var {Wj,t},

assuming var {Wj,t} exists and is finite

• ν2
X,t(τj) depends on τj and t

• will consider time independent wavelet variance:

ν2
X(τj) ≡ var {Wj,t}

(can be easily adapted to time varying situation)

• rationale for wavelet variance

– decomposes variance on scale by scale basis

– useful substitute/complement for SDF
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Variance Decomposition

• suppose Xt has SDF SX(f ):

∫ 1/2

−1/2
SX(f ) df = var {Xt};

i.e., decomposes var {Xt} across frequencies f

– involves uncountably infinite number of f ’s

– SX(f ) ∆f ≈ contribution to var {Xt} due to f ’s

in interval of length ∆f centered at f

– note: var {Xt} taken to be ∞ for nonstationary

processes with stationary backward differences

• wavelet variance analog to fundamental result:

∞∑
j=1

ν2
X(τj) = var {Xt}

i.e., decomposes var {Xt} across scales τj

– recall DWT/MODWT and sample variance

– involves countably infinite number of τj’s

– ν2
X(τj) contribution to var {Xt} due to scale τj

– νX(τj) has same units as Xt (easier to interpret)
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Spectrum Substitute/Complement

• because h̃j,l ≈ bandpass over [1/2j+1, 1/2j],

ν2
X(τj) ≈ 2

∫ 1/2j

1/2j+1 SX(f ) df (∗)

• if SX(f ) ‘featureless’, info in ν2
X(τj) ⇔ info in SX(f )

• ν2
X(τj) more succinct: only 1 value per octave band

• recall SDF for FD process:

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ≈ σ2
ε

|2πf |2δ

• (∗) implies ν2
X(τj) ∝ τ 2δ−1

j approximately

• can deduce δ from slope of log (ν2
X(τj)) vs. log (τj)

• can estimate δ & σ2
ε by applying regression analysis

to log of estimates of ν2
X(τj)
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Estimation of Wavelet Variance: I

• can base estimator on MODWT of X0, X1, . . . , XN−1:

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

(DWT-based estimator possible, but less efficient)

• recall that

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t = 0,±1,±2, . . .

so W̃j,t = Wj,t if mod not needed: Lj − 1 ≤ t < N

• if N − Lj ≥ 0, unbiased estimator of ν2
X(τj) is

ν̂2
X(τj) ≡

1

N − Lj + 1

N−1∑
t=Lj−1

W̃ 2
j,t =

1

Mj

N−1∑
t=Lj−1

W
2
j,t,

where Mj ≡ N − Lj + 1

• can also construct biased estimator of ν2
X(τj):

ν̃2
X(τj) ≡

1

N

N−1∑
t=0

W̃ 2
j,t =

1

N

(Lj−2∑
t=0

W̃ 2
j,t +

N−1∑
t=Lj−1

W
2
j,t

)

1st sum in parentheses influenced by circularity
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Estimation of Wavelet Variance: II

• biased estimator unbiased if {Xt} white noise

• biased estimator offers exact analysis of σ̂2;

unbiased estimator need not

• biased estimator can have better mean square error

(Greenhall et al., 1999; need to ‘reflect’ Xt)
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Statistical Properties of ν̂2
X(τj)

• suppose {Wj,t} Gaussian, mean 0 & SDF Sj(f )

• suppose square integrability condition holds:

Aj ≡
∫ 1/2

−1/2
S2

j (f ) df < ∞ & Sj(f ) > 0

(holds for FD process if L large enough)

• can show ν̂2
X(τj) asymptotically normal with

mean ν2
X(τj) & large sample variance 2Aj/Mj

• can estimate Aj and use with ν̂2
X(τj)

to construct confidence interval for ν2
X(τj)

• example

– Fig. 14: clock errors Xt ≡ X
(0)
t along with

differences X
(i)
t ≡ X

(i−1)
t −X

(i−1)
t−1 for i = 1, 2

– Fig. 15: ν̂2
X(τj) for clock errors

– Fig. 16: ν̂2
Y (τj) for Y t ∝ X

(1)
t

– Haar ν̂2
Y (τj) related to Allan variance σ2

Y (2, τj):

ν2
Y (τj) = 1

2σ
2
Y (2, τj)
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Figure 14. Plot of differences in time {Xt} as kept by clock 571 (a cesium beam atomic
clock) and as kept by the time scale UTC(USNO) maintained by the US Naval Observatory,

Washington, DC (top plot); its first backward difference {X
(1)
t } (middle); and its second

backward difference {X
(2)
t } (bottom). In the middle plot, Y t(τ1) denotes the τ1 average

fractional frequency deviates (given in parts in 1013) – these are proportional to X
(1)
t .
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Figure 15. Square roots of wavelet variance estimates for atomic clock time differences {Xt}
based upon the unbiased MODWT estimator and the following wavelet filters: Haar (x’s in
left-hand plot, through which a least squares line has been fit), D(4) (circles in left- and right-
hand plots) and D(6) (pluses in left-hand plot). The right-hand plot also shows 95% confidence
intervals for the unknown wavelet variances.
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Figure 16. Square roots of wavelet variance estimates for atomic clock one day average

fractional frequency deviates {Y t(τ1)} based upon the unbiased MODWT estimator and the
following wavelet filters: Haar (x’s in left-hand plot) and D(4) (circles in left and right-hand
plots).



Summary

• fractionally differenced processes are

– able to cover all power laws

– easy to work with (SDF, ACVS & PACS simply

expressed)

– extensible to composite, ARFIMA & time-varying

processes

• spectral and wavelet analysis can provide

– estimates of parameters of FD processes

– decomposition of sample variance across

∗ frequencies (in case of spectral analysis)

∗ scales (in case of wavelet analysis)

– complementary analyses

• wavelet analysis has some advantages for clock noise

– estimates δ & σ2
ε somewhat better

– useful with time-varying noise process

– can deal with polynomial trends (not covered here)

– results expressed in same units as X2
t

• a big ‘thank you’ to conference organizers!
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