Clock Statistics: A Tutorial

Don Percival

Applied Physics Laboratory
University of Washington, Seattle



Motivating Example: I

e consider following measurements:

30

-110 I |
10

X, (ns)

1.16

U

X, - X, (ns)
o
)
parts in 10%3

-10 I -1.16
0 256 512
t (days)

— top: Xy = time (phase) difference between clock 55 and
USNO time scale at day t (adjusted for systematic drift)

— bottom: Xt<1> = X+ — X3_1 « fractional frequency deviate
averaged over one day



Motivating Example: 11

e clock statistics used to summarize performance

—if Xt(l) constant, clock b5 agrees with time scale (essentially)

- X§1> has stochastic (noise-like) fluctuations
— statistics used to quantity fluctuations

e sample statistics

R N—1 1
— mean: [ = % D e Xt< )
(here N = 512 = # of measurements)
— variance: 62 = ~ ZN 1<Xt<1) — [1)?
— ¢ (standard deviation) is measure of spread

e casiest to interpret 4 & & if data taken to be independent
samples from Gaussian (i.e., normal) distribution
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Motivating Example: 111

e (): is Gaussian assumption reasonable?
e comparison of histogram to probability density function:
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— Gaussian assumption seems reasonable



Motivating Example: IV

e (): is independent assumption reasonable?

e under Gaussianity, uncorrelatedness implies independence

e sample autocorrelation sequence measures uncorrelatedness:
DY i T (B )

iio%Xt(” — o’

e can interpret pr as correlation coefficient:

Cr=12,... N—1

1

o b [

'1 1 1 1 |

T (days)

— since pr ~ 0, uncorrelatedness seems reasonable
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Conclusions from Motivating Example

° t<1) well-modeled as uncorrelated Gaussian deviates

(sometimes called Gaussian white noise)

o theory says 1 & 62 are sufficient statistics for summarizing
statistical information about clock 55

e implies ‘random walk’ model for time difference data Xy

e seems we need little more than what is taught in ‘Statistics 101’



Reality Bites!

e alas, other clocks do not have such simple statistical properties
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e /1 & 62 not sufficient summaries for clock in middle plot
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Overview of Remainder of Tutorial

e discussion of models for interpreting clock statistics

— models specified via spectrum (spectral density function)

— while white noise & random walk models depend on u & o2,
more comprehensive models depend on p and spectrum

— in simplest case, spectrum itself depends on 2 parameters

* ag, a parameter setting overall level of spectrum
x v, a so-called ‘power law’ parameter

e look at clock statistics based upon 2 variance decompositions

— spectral analysis

— wavelet analysis



The Spectrum

e let X+ be a stochastic process, i.e., collection of random vari-

ables (RVs) indexed by t
e suppose further that X; is stationary
e implies certain theoretical properties do not change with time

e in particular, its variance o2 = var { X;} is the same for all ¢

e spectrum Sy (+) decomposes o2 across frequencies f:
1/2
r(Xih= [ Sx()d

here f is a Fourier frequency with units of cycles per unit time
(e.g., cycles per day for process sampled once per day)



Physical Interpretation of Spectrum via Filtering

o let ay, be a filter, and form Yy = > ¢ ay,Xi—y
e Y} has spectrum Sy (f) = A(f)Sx(f), where

A(f) _ ‘ Z aue—iQqu 2

U=——00

is squared gain function

e if a,, narrow-band of bandwidth A f about f, i.e.,
1 A A
.A(f/): maf_Tf§|f/|§f+Tf
0,  otherwise,
then have following interpretation for Sy (f):

1/2 1/2
(i) = [ st = [ A s

—1/2



Spectrum for White Noise Process

e simplest stationary process is white noise
e ¢; is white noise process if
— F{et} = pe for all ¢ (usually take pe = 0),
where E{e;} denotes expected value of RV ¢
— var{e;} = o7 for all t

— ¢ and ey are uncorrelated for all ¢ # ¢/

e spectrum for white noise is just Se(f) = o2
e note that
1/2 12 ,
[ sapdr= [ otdr=o? —var{a}
—1/2 —1/2

as required
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First Order Backward Difference of White Noise

e consider first order backward difference of white noise:

00 (1, u=0;
Xt =€ —€_1= Z ayet—y & ay = —1, u=1,
U=—00 | 0, otherwise.

e squared gain function is

O

.A(f) _ ‘ Z aue—z'27rfu
o have Sy (f) = A(F)Sc(f) = o2 |2sin(n f) |2

o note that Sy (f) ~ o2 |27 f|? at low frequencies
(using sin(z) &~ x for small x)

2 .
= |1 - e_ZZWfIQ — 2sin(7 f)|?
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Higher Order Backward Differences of White Noise

e let B be backward shift operator: Ber = €;_1,
Bzet =¢_9, (1 — B)ep = €4 — €41, ete.

e consider dth order backward difference of white noise:

d L d k
Xt =(1-B) et:Zk(d k) (=1

- o
ZF k+1 (1+2 k)<_1)k€’f—k

-

k
with o = 2d, i.e., o = 2

)

~»
.

e spectrum given by
Sx(f) = A(f)Se(f) = of |2sin(m f)|* = oF |21 |
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Fractional Differences of White Noise

e for v not necessary an integer,

o (1+%) NG :Ooa e
Xt—kzor(k+1>r<1+%_k>( D)€ ];) Kla)e

makes sense as long as a > —1
e X; is stationary fractionally differenced (FD) process

e note: FD processes introduced in 1980 paper co-authored by
C.W.J. Granger, co-winner of 2003 Nobel Prize for economics!

e spectrum is as before:
2 - 2
Sx(f) = o¢ [2sin( )| & o |27 f|*
e obeys power law at low frequencies with exponent o

e note: F'D process reduces to white noise when o = 0
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Nonstationary FD Processes: 1

e lot Xt(1> be FD process with parameter —1 < o'l <1

e define X; as cumulative sum of Xt<1>: Xt = Zfzo X l<1>
® since
(1) 2 e o)
Xt ZXt—Xt_l & SX<1)(f) — O¢ ’2811’1(7Tf>’ ,
filtering theory suggests using relationship

Syw(f) = [2sin(x f)[*Sx(f)

to define spectrum for Xy, i.e.,

S ()
)= Baie P

= o2 |2sin(n f)|*

with a = all) — 2
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Nonstationary FD Processes: 11

e X; said to have stationary 1st order backward differences

e special case: it o) = 0 so that Xtm is white noise,
then Xt is a random walk process and has spectrum

Sx(f) = o¢ [2sin(x f)| 7% = of 27 f| 77,
i.e., random walk is FD process with o = —2

e one cumulative sum defines FD processes for —3 < a < —1

e two cumulative sums define FD processes for —5 < a < —3

e special case: if Xt<z> is white noise and if

t t
X=X e x, =3 xY,
[=0 [=0

X; is a random run, and Sy (f) = o2 |27 f| % so a = —4
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Examples of Spectra for FD Processes

e three examples of clock noise well-modelled by FD processes
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‘

X, - X, (ns)
o

e on log/log plot, power law spectra appear linear with slope «
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Summary of FD Processes

e X; said to be FD process if its spectrum is given by
Sx(f) = o¢ [2sin(r f)|*
e well-defined for any real-valued exponent o

o at low frequencies, have Sy (f) = o2 |27 f|%; i.e., FD spectrum
is approximately a power law with exponent «

o if « > —1, FD process stationary

o if « < —1, FD process nonstationary but its dth order back-
ward difference is stationary FD process with parameter a®),
where

—a—1
d=1+ { &2 J and o? = o + 24
(here |z] is largest integer < x)
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Generalization: Composite FD Process

e I'D process not always an adequate model, so of interest to
consider generalizations

o suppose X¢(ayp) is FD process with power law oy, and o2 = 1
e suppose X¢(ap) & X¢(a,,/) are independent when m # m/
e form composite FD process Xy = Z% _O amXt(am)

e has spectrum given by
M—1

= ) ag [2sin(mf)|*m

m=0
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Generalization: ARFIMA Process

e autoregressive, fractionally integrated, moving average

e idea is to replace € in

with ARMA process Uy (models high-frequency part of noise):

p q
U= ¢pUi—p+e— Y Operg
k=1 k=1

e yields process with spectrum

‘1 . Z%:l le—ZQWfk

=20 dpe= Ik

‘ 2

Sx(f) = oZ|2sin(m f)|*
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Generalization: Time-Varying FD Process

e can define time-varying FD (TVFD) process via

¢
Zak ()€t

k=0
as long as ay > —1 for all ¢

e can use representation
IN—1

Xy = Z Ct,k(at)gka t=0,1,... ,N —1,
k=0
to extend definition to handle arbitrary ay

e can also make ag time-varying
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Examples of Time-Varying FD Processes

e realizations from four TVFEFD processes

0\_ _

s -1 =

0 512 0 512 0 512 0 512
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FD Process Parameter Estimation

e (): given sample Xy, ..., X y_1 that is assumed to be realiza-
tion of F'D process, how can we estimate o & a??

e many different estimators have been proposed!
(area of active research)

e will concentrate on estimators based on

— spectral analysis (frequency-based)

— wavelet analysis (scale-based)
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Why Spectral and Wavelet Analysis?

e both physically interpretable
e both are analysis of variance techniques

— useful for more than just estimating o & a?

— provide useful characterizations of clock performance

e can assess need for models more complex than FD process
(e.g., composite FD process)

e provide preliminary estimates for more complicated schemes
(maximum likelihood estimation)
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Estimation via Spectral Analysis

e recall that spectrum for FD process given by
Sx(f) = o¢ |2sin(m f)|
and thus
log (Sx(f)) = log (0¢) + alog (|2sin(m f)]);
i.e., plot of log (Sx (f)) vs. log (|2sin(7 f)|) linear with slope «

o for 0 < f < 1/8, have sin(wf) =~ 7 f, so

log (Sx(f)) ~ log (07) + arlog (2 f):

i.e., plot of log (Sx(f)) vs. log (27 f) approximately linear at
low frequencies with slope «
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Basic Spectral Estimation Scheme

o estimate Sy (f) via Sx(f)

o fit linear model to log (Sx (f)) vs. log (27 f) over low f’s
e use estimated slope & to estimate «

e manipulate estimated intercept to estimate o2

e lots of possible estimators S x (f) in the literature

e will consider periodogram & multitaper spectral estimator
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The Periodogram: 1

e basic estimator of Sx(f) is periodogram:

—2t
X N‘ZXt “Tf|

e gives decomposition of sample variance:

1/2 1N 1
[ sPpar=a® =
—1/2 N t:O
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The Periodogram: 11

e for stationary processes & large N, theory says

2
SN Esx(NZ2 0<f<1/

approximately, implying that
- B{SY(N} ~ B{Sx(Nx3/2} = Sx (/)
—var {SP ()} ~ var {Sx ()x3/2} = S%(f)

d Ce :
x ‘=" means ‘equal in distribution’

* X% is chi-square RV with 2 degrees of freedom

0 S’g?( fj) and Sg]g)( f1) approximately uncorrelated
for fj =4, fr=1and 0 < fj < f, < 1/2
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The Periodogram: 111

e taking log transform yields
2 2

A X9 X
log (SW()) < log (Sx (f)32) = log (Sx(f)) + log (2)
e Bartlett & Kendall (1946):
X77 T _ U X?? (M
Blos (5))) = #(3) ~low (5) & r e ()1 =/ (5)
where () & 9/(+) are di— & trigamma functions
o letting v = 0.57721 be Euler’s constant, yields

E{log (SP(£)} = log (Sx(f)) + (1) — log (1)
= log (Sx(f)) —
2
5

var{log (SY(£)} = ¢'(1) = =
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The Periodogram: IV

o define Y<p)(f]) log ( (f]))
e model V(P )( f;) over low frequenmes indexed by 0 < j < J as
p

(fj) = log (SX(f])) + (/)
~ log (¢2) 4+ arlog (27 f;) + €(f5)

e error €( f;) in linear regression model such that
2

— E{e(fj)} = 0 & var{e(f;)} = & (known!)

— can argue that ¢( fj)’s approximately pairwise uncorrelated
d :
—€(fj)=log (X%) + v — log(2) markedly non-Gaussian

o least squares procedure yields estimates & and 2 for a and o2,
along with estimates of variability in & and 62
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Examples of Periodogram-Based Spectral Analysis

e examples of clock noise, periodograms & fitted regression lines
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t (days) f (cycles/day)

a=—183
95% CI = [—1.94, —1.72]
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a=—0.85

-135 95% CI = [—1.01, —0.69]

2nd X, - X, (ns)

a=—0.11

Ot 95% CI = [—0.28,0.06]

X, - X4 (ns)

— note: ‘Cl’ stands for ‘confidence interval’
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Bias in Periodogram due to Leakage

e periodogram can be badly biased for certain processes

e example: periodogram for X; generated from composite FD
process (g = —4 and o] = —2)
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Alleviation of Leakage via Tapering

e tapering is technique for alleviating leakage:
() Nl 2
x ()= ‘ a( Xy — eI
t=0

o S&CD() called direct spectral estimator

e a; called data taper (typically bell-shaped curve)

e example: Hanning data taper

0.08

< 0.04 —

0.00 I |
0 256 512
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Example of Alleviation of Leakage

e periodogram & direct spectral estimate for composite FD series

10°
104

103
102
10!
10°
101
102
103

10+
10-5 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 IIIIII|
103 107 10? 10° 103 107 10? 10°

f (cycles/day) f (cycles/day)

— note: used Hanning data taper in forming Sé?)()
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Multitaper Spectral Estimation: I

e critique: tapering loses ‘information’ at end of series
(sample size N effectively shortened)

e Thomson (1982): multitapering recovers ‘lost info’

o use set of K orthonormal data tapers ay, 4

1, if k=1

N—-1
Zakz,tal,t{ | 0 nl<K-1
P 0, if k#I,

® use ay, 4 to form kth direct spectral estimator:

Ag(;: _‘ZaktXt _ZQWft , k=0,... K—-1
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Multitaper Spectral Estimation: II

e simplest form of multitaper spectrum estimator:
mt), LN glmd
TN AT
SX (f):?z: Xﬁ(f)
k=0

e sinusoidal tapers are one family of multitapers:

2 \"? . [(k+Dr(t+1)
Ut \N+1) 7 N +1

(Riedel & Sidorenko, 1995)
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Example of Sinusoidal Tapers & Tapered Series

o Xy (top); ag. ¢, k =0,1,2 (middle); ay, ;X (bottom)

X, (ns)

o 0.0
-0.1
04 B B
5
= 0.0 /M/\ W fM
]
-0.4 I J I J I J

0 256 512 0 256 512 0 256 512
t t t
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Example of Multitaper Spectral Estimates

o SV K =0,1,2 (top); SY(), K =1,2,3 (bottom)
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Multitaper Spectral Estimation: III

o if Sx(-) slowly varying around Sx (f) & if N large,

(m S 2
ng t)mg X(QJ?(XQK

approximately for 0 < f < 1/2, implying
52(f )

2
) var (e} = 2

var {SU ()} ~

o define Y1) (f;) = log (S W (f)) = V(K + log (K)
o can model Y (M (f]) as
y"(f;) & log (Sx (f;)) + ¢(f;)

~ log (07) + arlog (2 f5) + C(f;)
over low frequencies indexed by 0 < 7 < J
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Multitaper Spectral Estimation: IV

e error ((f;) in linear regression model such that

— E{¢(f;j)} =0
—var{((f;)} = ¥/(K), a known constant!
— approximately Gaussian if K > 5

— correlated, but with known simple structure

e generalized least squares procedure yields estimates & and 62
for o and (7?, along with estimates of variability in & and (32

e multitaper approach superior to periodogram approach
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Discrete Wavelet Transform (DWT): I

o let X = (X, Xq,... ,XN_l]T be observed time series
(for convenience, assume N integer multiple of 2 0)

e let W be N x N orthonormal DW'T matrix;
Le., inverse of W is just its transpose W1

e W = WX is vector of DW'T' coefficients
e orthonormality says X = wiw

e implies X & W are equivalent (no loss of information in W)
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Discrete Wavelet Transform (DWT): 11

e can partition W as follows:

W:

Vi
e W, contains N; = N/ 2J wavelet coefficients

— related to changes of averages at ‘dyadic’ scale T = 271

— related to times spaced 27 units apart
eV, contains Nj = N/ 270 scaling coefficients

— related to averages at scale A j, = 270

— related to times spaced 2J0 units apart
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Example: )V for Haar DWT with N =8

» ol BN w N = o

N Y I
0 7

e rows 0, 1, 2 & 3 yield W1 o changes on scale 1
e next 2 rows yield Wo o< changes on scale 2
e row 0 yields W3 o< change on scale 4

e row 7 yields V3 o< average on scale 8

42



DWT in Terms of Filters

o filter X, X1,..., X y_1 to obtain
Lj—1
2‘7/2Wj,t = Z PiiXe—imod N, t=0,1,...,N—1
[=0

h;pis jth level wavelet filter (note: circular filtering)

e subsample to obtain wavelet coefficients:
_0d/ 2w . _ L

where W) ¢ is tth element of W,

e jth wavelet filter is band-pass with pass-band [#, 2%}

(i.e., scale related to interval of frequencies)
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Four Examples of Wavelet Filters

=1 ‘\

- u
=2 u

|

|
3 | | |
ja 4 - 4
=5 o L T
T e S e e e S
Iy - v L A

e from lett to right, these plots show

— Haar wavelet filters, for which L1 = 2

— D(4) filters, i.e., Daubechies’ ‘extremal phase’ with L1 =4
— C(6) filters, i.e., Daubechies’ ‘coiflet” with L1 = 6

— LA(B) filters, i.e., Daubechies’ ‘least asymmetic’ with L; = 8
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Four Examples of Scaling Filters

e above are scaling filters corresponding to wavelet filters

o scaling filters yield V ;.
e Joth scaling filter is low-pass with pass-band |0, #]

e as width L of 1st level filter increases, band-pass & low-pass
approximations 1mprove
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Example: D(4) DWT Coefficients for Clock 55 X;

20
>§_150_\/\f/\f\/
-320
30 I 1 10
e x
;w 0_'_\ “““H OL‘_‘L_L_/‘—J“‘///
-30 10
15[ 1
z 0 \““ Tt “w\\“ “‘m“w‘\‘ Oty
151 10
10 1
gm' OTL\‘H‘\ ‘ \‘w\“H‘\H“H“\‘\HM‘\ 1 HH‘\‘\‘\‘M‘\ 0_"_‘ T
-10 10
10 1/
;:i Oﬁ““”” \H‘\‘\‘\ e Wy ‘H H‘\H“ gk ”\‘\‘\M‘ H“H\w\ )=
-10 10
ol
e
-110 l | -1
0 256 512 0 32

t (days) T
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Variation: Maximal Overlap DWT (MODWT)

e can eliminate downsampling and use
B L
Wit = e > hi X modn, t=0,1,...,N—1,
[=0
to define MODWT coefficients Wj (& also V )

e unlike DWT, MODWT is not orthonormal
(in fact MODWT is highly redundant)

e unlike DWT, MODW'T works for all samples sizes N
(i.e., power of 2 assumption is not required)

47



Example: D(4) MODWT Coefficients for Clock 55

X, (ns)
5
fgg;;

-110 I
0 256 512
t (days)

e can use to track, e.g., time-varying FD process
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Wavelet-Based Analysis of Variance: I

o consider ‘energy’ in time series: | X||? = XX = ZN 1X x
e energy preserved in DW'T coefficients:

[W[° = [WX|? = XIWI WX = XTX = [IX]°
o since Wy,... , W ;. V partitions W, have

Jo
2 2 2
[WIZ =D W7+ Vgl
j=1
leading to analysis of sample variance:
N—1 Jo

. 1 . .
5= = S i = (S IWS P IV ) - 2

t=0 1=1
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Wavelet-Based Analysis of Variance: 11

e energy also preserved in MODWTT coeflicients:

Jo
2 A7 ]2 \/ 2
IXI17 =D IWI+ 1Vl
1=1
leading to an analogous analysis of sample variance:
1 N—1 | Jo
2 A\ 2 A7 |12 \/ 2 ~2
07 = > (X = ) = (DO IW R+ [V I2) — s
Nt 0 VA 1
— ]:

e scale-based decomposition (spectrum is frequency-based)
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Wavelet Variance Analysis: 1

e for FD and related processes X, can define wavelet variance

— run X through jth level wavelet filter:

| L;,—1
Wj’t:'—Z Z hj,lXt—l7 t:...,—l,O,l,...
2/ (=0

— wavelet variance is variance of filter output:
5 __
VX(Tj) — var {Wjjt}
— does not depend on ¢ and has same units as X752

— also called wavelet spectrum

e wavelet variance decomposes o2

var { Xz} = Z V%(Tj)
j=1

across scales T
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Wavelet Variance Analysis: 11

e because h; ~ bandpass over [1/2j+1, 1/2j],

1/27

2
V5iA(T:) &~ 2 S d X
X< j) /1/2j+1 X(f) f ( )
o if Sx(-) “featureless’, info in VQX(T]'> equivalent to info in Sx(-)

o V%(Tj) more succinct: only one value per octave band

e recall spectrum for FD process:

Sx(f) = o¢ [2sin(r f)|* ~ o7 [27 f°
e (x) implies V%(Tj) X Tj_o‘_l approximately
e can deduce « from slope of log (V%(Tj)) vs. log (7;)
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Estimation of Wavelet Variance: 1

e can base estimator on MODWT of X, Xq,..., Xn_1

e if we compare

—~ 1
j,t:—/z lXt—ZmodNa t=0,... ,N—1,

L;—1
Wj,t 2]/QZhJZXt ;, t=...,—10,1,...

find W, ; = W, if ‘mod’ not needed: L; —1<t< N
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Estimation of Wavelet Variance: 11

o if N — L; >0, unbiased estimator of V%(Tj) is
N—

(1) = §— L+1 Z Z

tL—l =

WhefeMj:N—Lj—|—1

e can also construct biased estimator of V%(Tj)t

' Lj—2 N—1
o) T (3 e X
= t=L;—

first sum in parentheses influenced by circularity

o4

Jt>

—2
Wj,t>



Estimation of Wavelet Variance: 111

e biased estimator unbiased if X; white noise

e biased estimator offers exact analysis of &2;
unbiased estimator need not

e biased estimator can have better mean square error

(Greenhall et al., 1999; need to ‘reflect’ Xy)
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Statistical Properties of VX(T]>

o suppose { W} Gaussian with mean 0 & spectrum S;(f)

e suppose square integrability condition holds:

1/2
Aj:/I/QSf-(f)df< o & Si(f) >0
(holds for FD process if wavelet filter width L large enough)

e can show V%(T]) asymptotically normal with mean yg((rj) &

large sample variance 24, /M

e can estimate A; and use with VX(T]) to construct confidence

interval for Vg( (T]>
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Example: Wavelet Variance Analysis of Clock 55

e use one day average fractional frequency deviates Y; oc X (L)

1.16

0

H 13
Y, (parts in 10

-1.16

1013

10 14

Y(T)

10 15
l

256 512

| 10_16 1 IIII|_|,|J 1 IIIII|,|J 1 IIII|_L|] 1 IIIILI_IJ 1 IIII|_|,|J

B
B
B
B
'R
X X
o
X

10t 10° 10! 10% 103
t (days)

covond ol ol
10t 10° 10 10% 10°

T (days) T (days)

® X's: V7<7']> using Haar wavelet; related to square root of Allan
variance JY(Q T;) since

2
v (75) =

20 (2, 75)

e o's: Ig7(7) using D(4) wavelet, along with 95% Cls & weighted
linear least squares fit of logyo(257(7;) versus logyp(7;)
e yields & = —0.06 (very close to white noise a = 0)
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Summary

e fractionally differenced processes

— provide statistically tractable models for clock noise

— extensible to composite, ARFIMA & time-varying processes
e spectral and wavelet analysis can provide

— estimates of parameters of FD processes
— decomposition of sample variance across

* frequencies (in case of spectral analysis)
* scales (in case of wavelet analysis)

e wavelet variance has some advantages for clock noise
— has same units as Xt2 & estimates o & o2 somewhat better

— useful with time-varying noise process & polynomial trends
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