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Motivating Example: I

• consider following measurements:
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− top: Xt = time (phase) difference between clock 55 and
USNO time scale at day t (adjusted for systematic drift)

− bottom: X
(1)
t = Xt −Xt−1 ∝ fractional frequency deviate

averaged over one day
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Motivating Example: II

• clock statistics used to summarize performance

− if X
(1)
t constant, clock 55 agrees with time scale (essentially)

−X
(1)
t has stochastic (noise-like) fluctuations

− statistics used to quantify fluctuations

• sample statistics

− mean: µ̂ = 1
N

∑N−1
t=0 X

(1)
t

(here N = 512 = # of measurements)

− variance: σ̂2 = 1
N

∑N−1
t=0 (X

(1)
t − µ̂)2

− σ̂ (standard deviation) is measure of spread

• easiest to interpret µ̂ & σ̂ if data taken to be independent
samples from Gaussian (i.e., normal) distribution
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Motivating Example: III

• Q: is Gaussian assumption reasonable?

• comparison of histogram to probability density function:
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− Gaussian assumption seems reasonable
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Motivating Example: IV

• Q: is independent assumption reasonable?

• under Gaussianity, uncorrelatedness implies independence

• sample autocorrelation sequence measures uncorrelatedness:

ρ̂τ =

∑N−τ−1
t=0 (X

(1)
t − µ̂)(X

(1)
t+τ − µ̂)∑N−1

t=0 (X
(1)
t − µ̂)2

, τ = 1, 2, . . . , N − 1

• can interpret ρ̂τ as correlation coefficient:
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− since ρ̂τ ≈ 0, uncorrelatedness seems reasonable
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Conclusions from Motivating Example

•X(1)
t well-modeled as uncorrelated Gaussian deviates

(sometimes called Gaussian white noise)

• theory says µ̂ & σ̂2 are sufficient statistics for summarizing
statistical information about clock 55

• implies ‘random walk’ model for time difference data Xt

• seems we need little more than what is taught in ‘Statistics 101’
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Reality Bites!

• alas, other clocks do not have such simple statistical properties
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• µ̂ & σ̂2 not sufficient summaries for clock in middle plot
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Overview of Remainder of Tutorial

• discussion of models for interpreting clock statistics

− models specified via spectrum (spectral density function)

− while white noise & random walk models depend on µ & σ2,
more comprehensive models depend on µ and spectrum

− in simplest case, spectrum itself depends on 2 parameters

∗ σ2
ε , a parameter setting overall level of spectrum

∗ α, a so-called ‘power law’ parameter

• look at clock statistics based upon 2 variance decompositions

− spectral analysis

− wavelet analysis
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The Spectrum

• let Xt be a stochastic process, i.e., collection of random vari-
ables (RVs) indexed by t

• suppose further that Xt is stationary

• implies certain theoretical properties do not change with time

• in particular, its variance σ2 = var {Xt} is the same for all t

• spectrum SX(·) decomposes σ2 across frequencies f :

var {Xt} =

∫ 1/2

−1/2
SX(f ) df

here f is a Fourier frequency with units of cycles per unit time
(e.g., cycles per day for process sampled once per day)
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Physical Interpretation of Spectrum via Filtering

• let au be a filter, and form Yt =
∑∞

u=−∞ auXt−u

• Yt has spectrum SY (f ) = A(f )SX(f ), where

A(f ) =
∣∣∣ ∞∑
u=−∞

aue
−i2πfu

∣∣∣2 is squared gain function

• if au narrow-band of bandwidth ∆f about f , i.e.,

A(f ′) =

{
1

2∆f , f − ∆f
2 ≤ |f ′| ≤ f + ∆f

2

0, otherwise,

then have following interpretation for SX(f ):

var {Yt} =

∫ 1/2

−1/2
SY (f ′) df ′ =

∫ 1/2

−1/2
A(f ′)SX(f ′) df ′ ≈ SX(f )
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Spectrum for White Noise Process

• simplest stationary process is white noise

• εt is white noise process if

− E{εt} = µε for all t (usually take µε = 0),
where E{εt} denotes expected value of RV εt

− var {εt} = σ2
ε for all t

− εt and εt′ are uncorrelated for all t �= t′

• spectrum for white noise is just Sε(f ) = σ2
ε

• note that∫ 1/2

−1/2
Sε(f ) df =

∫ 1/2

−1/2
σ2
ε df = σ2

ε = var {εt},

as required
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First Order Backward Difference of White Noise

• consider first order backward difference of white noise:

Xt = εt − εt−1 =

∞∑
u=−∞

auεt−u & au =


1, u = 0;
−1, u = 1;
0, otherwise.

• squared gain function is

A(f ) =
∣∣∣ ∞∑
u=−∞

aue
−i2πfu

∣∣∣2 =
∣∣1 − e−i2πf

∣∣2 = |2 sin(πf )|2

• have SX(f ) = A(f )Sε(f ) = σ2
ε |2 sin(πf )|2

• note that SX(f ) ≈ σ2
ε |2πf |2 at low frequencies

(using sin(x) ≈ x for small x)
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Higher Order Backward Differences of White Noise

• let B be backward shift operator: Bεt = εt−1,
B2εt = εt−2, (1 −B)εt = εt − εt−1, etc.

• consider dth order backward difference of white noise:

Xt = (1 −B)dεt =

d∑
k=0

d!

k!(d− k)!
(−1)kεt−k

=

∞∑
k=0

Γ(1 + α
2 )

Γ(k + 1)Γ(1 + α
2 − k)

(−1)kεt−k

with α = 2d, i.e., α = 2, 4, . . .

• spectrum given by

SX(f ) = A(f )Sε(f ) = σ2
ε |2 sin(πf )|α ≈ σ2

ε |2πf |α
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Fractional Differences of White Noise

• for α not necessary an integer,

Xt =

∞∑
k=0

Γ(1 + α
2 )

Γ(k + 1)Γ(1 + α
2 − k)

(−1)kεt−k =

∞∑
k=0

ak(α)εt−k

makes sense as long as α > −1

•Xt is stationary fractionally differenced (FD) process

• note: FD processes introduced in 1980 paper co-authored by
C.W.J. Granger, co-winner of 2003 Nobel Prize for economics!

• spectrum is as before:

SX(f ) = σ2
ε |2 sin(πf )|α ≈ σ2

ε |2πf |α

• obeys power law at low frequencies with exponent α

• note: FD process reduces to white noise when α = 0
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Nonstationary FD Processes: I

• let X
(1)
t be FD process with parameter −1 < α(1) ≤ 1

• define Xt as cumulative sum of X
(1)
t : Xt =

∑t
l=0 X

(1)
l

• since

X
(1)
t = Xt −Xt−1 & S

X(1)(f ) = σ2
ε |2 sin(πf )|α(1)

,

filtering theory suggests using relationship

S
X(1)(f ) = |2 sin(πf )|2SX(f )

to define spectrum for Xt, i.e.,

SX(f ) =
S
X(1)(f )

|2 sin(πf )|2 = σ2
ε |2 sin(πf )|α

with α = α(1) − 2
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Nonstationary FD Processes: II

•Xt said to have stationary 1st order backward differences

• special case: if α(1) = 0 so that X
(1)
t is white noise,

then Xt is a random walk process and has spectrum

SX(f ) = σ2
ε |2 sin(πf )|−2 ≈ σ2

ε |2πf |−2;

i.e., random walk is FD process with α = −2

• one cumulative sum defines FD processes for −3 < α ≤ −1

• two cumulative sums define FD processes for −5 < α ≤ −3

• special case: if X
(2)
t is white noise and if

X
(1)
t =

t∑
l=0

X
(2)
l & Xt =

t∑
l=0

X
(1)
l ,

Xt is a random run, and SX(f ) ≈ σ2
ε |2πf |−4 so α = −4
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Examples of Spectra for FD Processes

• three examples of clock noise well-modelled by FD processes
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• on log/log plot, power law spectra appear linear with slope α
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Summary of FD Processes

•Xt said to be FD process if its spectrum is given by

SX(f ) = σ2
ε |2 sin(πf )|α

• well-defined for any real-valued exponent α

• at low frequencies, have SX(f ) ≈ σ2
ε |2πf |α; i.e., FD spectrum

is approximately a power law with exponent α

• if α > −1, FD process stationary

• if α ≤ −1, FD process nonstationary but its dth order back-
ward difference is stationary FD process with parameter α(d),
where

d = 1 +
⌊−α− 1

2

⌋
and α(d) = α + 2d

(here �x� is largest integer ≤ x)
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Generalization: Composite FD Process

• FD process not always an adequate model, so of interest to
consider generalizations

• suppose Xt(αm) is FD process with power law αm and σ2
ε = 1

• suppose Xt(αm) & Xt(αm′) are independent when m �= m′

• form composite FD process Xt =
∑M−1

m=0 amXt(αm)

• has spectrum given by

SX(f ) =

M−1∑
m=0

a2
m |2 sin(πf )|αm
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Generalization: ARFIMA Process

• autoregressive, fractionally integrated, moving average

• idea is to replace εt in

Xt =

∞∑
k=0

ak(α)εt−k

with ARMA process Ut (models high-frequency part of noise):

Ut =

p∑
k=1

φkUt−k + εt −
q∑

k=1

θkεt−k

• yields process with spectrum

SX(f ) = σ2
ε |2 sin(πf )|α

∣∣∣1 − ∑q
k=1 θke

−i2πfk
∣∣∣2∣∣1 − ∑p

k=1 φke
−i2πfk

∣∣2
19



Generalization: Time-Varying FD Process

• can define time-varying FD (TVFD) process via

Xt =

∞∑
k=0

ak(αt)εt−k

as long as αt > −1 for all t

• can use representation

Xt =

2N−1∑
k=0

ct,k(αt)εk, t = 0, 1, . . . , N − 1,

to extend definition to handle arbitrary αt

• can also make σ2
ε time-varying
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Examples of Time-Varying FD Processes

• realizations from four TVFD processes
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FD Process Parameter Estimation

• Q: given sample X0, . . . , XN−1 that is assumed to be realiza-
tion of FD process, how can we estimate α & σ2

ε?

• many different estimators have been proposed!
(area of active research)

• will concentrate on estimators based on

− spectral analysis (frequency-based)

− wavelet analysis (scale-based)
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Why Spectral and Wavelet Analysis?

• both physically interpretable

• both are analysis of variance techniques

− useful for more than just estimating α & σ2
ε

− provide useful characterizations of clock performance

• can assess need for models more complex than FD process
(e.g., composite FD process)

• provide preliminary estimates for more complicated schemes
(maximum likelihood estimation)
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Estimation via Spectral Analysis

• recall that spectrum for FD process given by

SX(f ) = σ2
ε |2 sin(πf )|α

and thus

log (SX(f )) = log (σ2
ε ) + α log (|2 sin(πf )|);

i.e., plot of log (SX(f )) vs. log (|2 sin(πf )|) linear with slope α

• for 0 < f < 1/8, have sin(πf ) ≈ πf , so

log (SX(f )) ≈ log (σ2
ε ) + α log (2πf );

i.e., plot of log (SX(f )) vs. log (2πf ) approximately linear at
low frequencies with slope α

24



Basic Spectral Estimation Scheme

• estimate SX(f ) via ŜX(f )

• fit linear model to log (ŜX(f )) vs. log (2πf ) over low f ’s

• use estimated slope α̂ to estimate α

• manipulate estimated intercept to estimate σ2
ε

• lots of possible estimators ŜX(f ) in the literature

• will consider periodogram & multitaper spectral estimator
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The Periodogram: I

• basic estimator of SX(f ) is periodogram:

Ŝ
(p)
X (f ) =

1

N

∣∣∣N−1∑
t=0

(Xt − µ̂)e−i2πft
∣∣∣2

• gives decomposition of sample variance:∫ 1/2

−1/2
Ŝ

(p)
X (f ) df = σ̂2 =

1

N

N−1∑
t=0

(Xt − µ̂)2
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The Periodogram: II

• for stationary processes & large N , theory says

Ŝ
(p)
X (f )

d
= SX(f )

χ2
2

2
, 0 < f < 1/2,

approximately, implying that

− E{Ŝ(p)
X (f )} ≈ E{SX(f )χ2

2/2} = SX(f )

− var {Ŝ(p)
X (f )} ≈ var {SX(f )χ2

2/2} = S2
X(f )

∗ ‘
d
=’ means ‘equal in distribution’

∗ χ2
2 is chi-square RV with 2 degrees of freedom

• Ŝ(p)
X (fj) and Ŝ

(p)
X (fk) approximately uncorrelated

for fj = j
N , fk = k

N and 0 < fj < fk < 1/2
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The Periodogram: III

• taking log transform yields

log (Ŝ
(p)
X (f ))

d
= log

(
SX(f )

χ2
2

2

)
= log (SX(f )) + log

(χ2
2

2

)
• Bartlett & Kendall (1946):

E
{

log
(χ2

η

η

)}
= ψ

(η
2

)
− log

(η
2

)
& var

{
log

(χ2
η

η

)}
= ψ′

(η
2

)
where ψ(·) & ψ′(·) are di– & trigamma functions

• letting γ
.
= 0.57721 be Euler’s constant, yields

E{log (Ŝ
(p)
X (f ))} = log (SX(f )) + ψ(1) − log (1)

= log (SX(f )) − γ

var{log (Ŝ
(p)
X (f ))} = ψ′(1) =

π2

6

28



The Periodogram: IV

• define Y (p)(fj) = log (Ŝ
(p)
X (fj)) + γ

• model Y (p)(fj) over low frequencies indexed by 0 < j < J as

Y (p)(fj) ≈ log (SX(fj)) + ε(fj)

≈ log (σ2
ε ) + α log (2πfj) + ε(fj)

• error ε(fj) in linear regression model such that

− E{ε(fj)} = 0 & var {ε(fj)} = π2

6 (known!)

− can argue that ε(fj)’s approximately pairwise uncorrelated

− ε(fj)
d
= log (χ2

2) + γ − log(2) markedly non-Gaussian

• least squares procedure yields estimates α̂ and σ̂2
ε for α and σ2

ε ,
along with estimates of variability in α̂ and σ̂2

ε
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Examples of Periodogram-Based Spectral Analysis

• examples of clock noise, periodograms & fitted regression lines
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= −1.83

95% CI
.
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α̂
.
= −0.85

95% CI
.
= [−1.01,−0.69]

α̂
.
= −0.11

95% CI
.
= [−0.28, 0.06]

− note: ‘CI’ stands for ‘confidence interval’
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Bias in Periodogram due to Leakage

• periodogram can be badly biased for certain processes

• example: periodogram for Xt generated from composite FD
process (α0 = −4 and α1 = −2)
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Alleviation of Leakage via Tapering

• tapering is technique for alleviating leakage:

Ŝ
(d)
X (f ) =

∣∣∣N−1∑
t=0

at(Xt − µ̂)e−i2πft
∣∣∣2

• Ŝ(d)
X (·) called direct spectral estimator

• at called data taper (typically bell-shaped curve)

• example: Hanning data taper
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Example of Alleviation of Leakage

• periodogram & direct spectral estimate for composite FD series

10-3 10-2 10-1 100 

f (cycles/day)

10-5

10-4

10-3

10-2

10-1

100 

101 

102 

103 

104 

105 

10-3 10-2 10-1 100 

f (cycles/day)

− note: used Hanning data taper in forming Ŝ
(d)
X (·)
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Multitaper Spectral Estimation: I

• critique: tapering loses ‘information’ at end of series
(sample size N effectively shortened)

• Thomson (1982): multitapering recovers ‘lost info’

• use set of K orthonormal data tapers ak,t:

N−1∑
t=0

ak,tal,t =

{
1, if k = l;

0, if k �= l,
0 ≤ n, l ≤ K − 1

• use ak,t to form kth direct spectral estimator:

Ŝ
(mt)
X,k (f ) =

∣∣∣N−1∑
t=0

ak,t(Xt − µ̂)e−i2πft
∣∣∣2, k = 0, . . . , K − 1
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Multitaper Spectral Estimation: II

• simplest form of multitaper spectrum estimator:

Ŝ
(mt)
X (f ) =

1

K

K−1∑
k=0

Ŝ
(mt)
X,k (f )

• sinusoidal tapers are one family of multitapers:

ak,t =

(
2

N + 1

)1/2

sin

(
(k + 1)π(t + 1)

N + 1

)
(Riedel & Sidorenko, 1995)
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Example of Sinusoidal Tapers & Tapered Series

•Xt (top); ak,t, k = 0, 1, 2 (middle); ak,tXt (bottom)
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Example of Multitaper Spectral Estimates

• Ŝ(mt)
X,k (·), k = 0, 1, 2 (top); Ŝ

(mt)
X (·), K = 1, 2, 3 (bottom)

10-5

10-4

10-3

10-2

10-1

100 

101 

102 

103 

104 

105 

10-3 10-2 10-1 100 

f
10-3 10-2 10-1 100 

f
10-3 10-2 10-1 100 

f

10-5

10-4

10-3

10-2

10-1

100 

101 

102 

103 

104 

105 

37



Multitaper Spectral Estimation: III

• if SX(·) slowly varying around SX(f ) & if N large,

Ŝ
(mt)
X (f )

d
=

SX(f )χ2
2K

2K
approximately for 0 < f < 1/2, implying

var {Ŝ(mt)
X (f )} ≈ S2(f )

4K2
var {χ2

2K} =
S2(f )

K

• define Y (mt)(fj) = log (Ŝ
(mt)
X (fj)) − ψ(K) + log (K)

• can model Y (mt)(fj) as

Y (mt)(fj) ≈ log (SX(fj)) + ζ(fj)

≈ log (σ2
ε ) + α log (2πfj) + ζ(fj)

over low frequencies indexed by 0 < j < J
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Multitaper Spectral Estimation: IV

• error ζ(fj) in linear regression model such that

− E{ζ(fj)} = 0

− var {ζ(fj)} = ψ′(K), a known constant!

− approximately Gaussian if K ≥ 5

− correlated, but with known simple structure

• generalized least squares procedure yields estimates α̂ and σ̂2
ε

for α and σ2
ε , along with estimates of variability in α̂ and σ̂2

ε

• multitaper approach superior to periodogram approach
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Discrete Wavelet Transform (DWT): I

• let X = [X0, X1, . . . , XN−1]
T be observed time series

(for convenience, assume N integer multiple of 2J0)

• let W be N ×N orthonormal DWT matrix;
i.e., inverse of W is just its transpose WT

• W = WX is vector of DWT coefficients

• orthonormality says X = WTW

• implies X & W are equivalent (no loss of information in W)
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Discrete Wavelet Transform (DWT): II

• can partition W as follows:

W =


W1

...
WJ0
VJ0


• Wj contains Nj = N/2j wavelet coefficients

− related to changes of averages at ‘dyadic’ scale τj = 2j−1

− related to times spaced 2j units apart

• VJ0
contains NJ0

= N/2J0 scaling coefficients

− related to averages at scale λJ0
= 2J0

− related to times spaced 2J0 units apart
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Example: W for Haar DWT with N = 8
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• rows 0, 1, 2 & 3 yield W1 ∝ changes on scale 1

• next 2 rows yield W2 ∝ changes on scale 2

• row 6 yields W3 ∝ change on scale 4

• row 7 yields V3 ∝ average on scale 8
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DWT in Terms of Filters

• filter X0, X1, . . . , XN−1 to obtain

2j/2W̃j,t =

Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N − 1;

hj,l is jth level wavelet filter (note: circular filtering)

• subsample to obtain wavelet coefficients:

Wj,t = 2j/2W̃j,2j(t+1)−1, t = 0, 1, . . . , Nj − 1,

where Wj,t is tth element of Wj

• jth wavelet filter is band-pass with pass-band [ 1
2j+1,

1
2j

]

(i.e., scale related to interval of frequencies)
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Four Examples of Wavelet Filters

j=7

j=6

j=5

j=4

j=3

j=2

j=1

• from left to right, these plots show

− Haar wavelet filters, for which L1 = 2

− D(4) filters, i.e., Daubechies’ ‘extremal phase’ with L1 = 4

− C(6) filters, i.e., Daubechies’ ‘coiflet’ with L1 = 6

− LA(8) filters, i.e., Daubechies’ ‘least asymmetic’ with L1 = 8
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Four Examples of Scaling Filters

J0=7

J0=6

J0=5

J0=4

J0=3

J0=2

J0=1

• above are scaling filters corresponding to wavelet filters

• scaling filters yield VJ0

• J0th scaling filter is low-pass with pass-band [0, 1
2J0+1]

• as width L1 of 1st level filter increases, band-pass & low-pass
approximations improve

45



Example: D(4) DWT Coefficients for Clock 55 Xt
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Variation: Maximal Overlap DWT (MODWT)

• can eliminate downsampling and use

W̃j,t =
1

2j/2

Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N − 1,

to define MODWT coefficients W̃j (& also ṼJ0
)

• unlike DWT, MODWT is not orthonormal
(in fact MODWT is highly redundant)

• unlike DWT, MODWT works for all samples sizes N
(i.e., power of 2 assumption is not required)
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Example: D(4) MODWT Coefficients for Clock 55
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• can use to track, e.g., time-varying FD process
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Wavelet-Based Analysis of Variance: I

• consider ‘energy’ in time series: ‖X‖2 = XTX =
∑N−1

t=0 X2
t

• energy preserved in DWT coefficients:

‖W‖2 = ‖WX‖2 = XTWTWX = XTX = ‖X‖2

• since W1, . . . ,WJ0
,VJ0

partitions W, have

‖W‖2 =

J0∑
j=1

‖Wj‖2 + ‖VJ0
‖2,

leading to analysis of sample variance:

σ̂2 =
1

N

N−1∑
t=0

(Xt − µ̂)2 =
1

N

( J0∑
j=1

‖Wj‖2 + ‖VJ0
‖2

)
− µ̂2
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Wavelet-Based Analysis of Variance: II

• energy also preserved in MODWT coefficients:

‖X‖2 =

J0∑
j=1

‖W̃j‖2 + ‖ṼJ0
‖2,

leading to an analogous analysis of sample variance:

σ̂2 =
1

N

N−1∑
t=0

(Xt − µ̂)2 =
1

N

( J0∑
j=1

‖W̃j‖2 + ‖ṼJ0
‖2

)
− µ̂2

• scale-based decomposition (spectrum is frequency-based)
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Wavelet Variance Analysis: I

• for FD and related processes Xt, can define wavelet variance

− run Xt through jth level wavelet filter:

Wj,t =
1

2j/2

Lj−1∑
l=0

hj,lXt−l, t = . . . ,−1, 0, 1, . . .

− wavelet variance is variance of filter output:

ν2
X(τj) = var {Wj,t}

− does not depend on t and has same units as X2
t

− also called wavelet spectrum

• wavelet variance decomposes σ2 across scales τj:

var {Xt} =

∞∑
j=1

ν2
X(τj)
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Wavelet Variance Analysis: II

• because hj,l ≈ bandpass over [1/2j+1, 1/2j],

ν2
X(τj) ≈ 2

∫ 1/2j

1/2j+1
SX(f ) df (∗)

• if SX(·) ‘featureless’, info in ν2
X(τj) equivalent to info in SX(·)

• ν2
X(τj) more succinct: only one value per octave band

• recall spectrum for FD process:

SX(f ) = σ2
ε |2 sin(πf )|α ≈ σ2

ε |2πf |α

• (∗) implies ν2
X(τj) ∝ τ−α−1

j approximately

• can deduce α from slope of log (ν2
X(τj)) vs. log (τj)
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Estimation of Wavelet Variance: I

• can base estimator on MODWT of X0, X1, . . . , XN−1

• if we compare

W̃j,t =
1

2j/2

Lj−1∑
l=0

hj,lXt−l mod N, t = 0, . . . , N − 1,

with

Wj,t =
1

2j/2

Lj−1∑
l=0

hj,lXt−l, t = . . . ,−1, 0, 1, . . .

find W̃j,t = Wj,t if ‘mod’ not needed: Lj − 1 ≤ t < N
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Estimation of Wavelet Variance: II

• if N − Lj ≥ 0, unbiased estimator of ν2
X(τj) is

ν̂2
X(τj) =

1

N − Lj + 1

N−1∑
t=Lj−1

W̃ 2
j,t =

1

Mj

N−1∑
t=Lj−1

W
2
j,t,

where Mj = N − Lj + 1

• can also construct biased estimator of ν2
X(τj):

ν̃2
X(τj) =

1

N

N−1∑
t=0

W̃ 2
j,t =

1

N

(Lj−2∑
t=0

W̃ 2
j,t +

N−1∑
t=Lj−1

W
2
j,t

)
first sum in parentheses influenced by circularity
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Estimation of Wavelet Variance: III

• biased estimator unbiased if Xt white noise

• biased estimator offers exact analysis of σ̂2;
unbiased estimator need not

• biased estimator can have better mean square error
(Greenhall et al., 1999; need to ‘reflect’ Xt)
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Statistical Properties of ν̂2
X(τj)

• suppose {Wj,t} Gaussian with mean 0 & spectrum Sj(f )

• suppose square integrability condition holds:

Aj =

∫ 1/2

−1/2
S2
j (f ) df < ∞ & Sj(f ) > 0

(holds for FD process if wavelet filter width L1 large enough)

• can show ν̂2
X(τj) asymptotically normal with mean ν2

X(τj) &
large sample variance 2Aj/Mj

• can estimate Aj and use with ν̂2
X(τj) to construct confidence

interval for ν2
X(τj)
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Example: Wavelet Variance Analysis of Clock 55

• use one day average fractional frequency deviates Y t ∝ X
(1)
t
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x x

x

• x’s: ν̂Y (τj) using Haar wavelet; related to square root of Allan

variance σ2
Y

(2, τj) since

ν2
Y

(τj) = 1
2σ

2
Y

(2, τj)

• o’s: ν̂Y (τj) using D(4) wavelet, along with 95% CIs & weighted
linear least squares fit of log10(ν̂Y (τj) versus log10(τj)

• yields α̂
.
= −0.06 (very close to white noise α = 0)
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Summary

• fractionally differenced processes

− provide statistically tractable models for clock noise

− extensible to composite, ARFIMA & time-varying processes

• spectral and wavelet analysis can provide

− estimates of parameters of FD processes

− decomposition of sample variance across

∗ frequencies (in case of spectral analysis)

∗ scales (in case of wavelet analysis)

• wavelet variance has some advantages for clock noise

− has same units as X2
t & estimates α & σ2

ε somewhat better

− useful with time-varying noise process & polynomial trends
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