Clock Statistics: A Tutorial

Don Percival

Applied Physics Laboratory University of Washington, Seattle

Motivating Example: I

• consider following measurements:

- − $-\text{top: } X_t = \text{time (phase)}$ difference between clock 55 and USNO time scale at day ^t (adjusted for systematic drift)
- $-$ bottom: $X_t^{(1)}$ $\hat{t}^{\scriptscriptstyle{(1)}}_t = X_t$ $-X_{t-1} \propto$ fractional frequency deviate averaged over one day

Motivating Example: II

• clock statistics used to summarize performance

- $-$ if $X_{t}^{(1)}$ $t_t^{(1)}$ constant, clock 55 agrees with time scale (essentially)
- $-X^{(1)}$ $t_t^{(1)}$ has stochastic (noise-like) fluctuations
- −statistics used to quantify fluctuations
- sample statistics

— mean:
$$
\hat{\mu} = \frac{1}{N} \sum_{t=0}^{N-1} X_t^{(1)}
$$

(here $N = 512 = #$ of measurements)
— variance: $\hat{\sigma}^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t^{(1)} - \hat{\mu})^2$
— $\hat{\sigma}$ (standard deviation) is measure of spread

• easiest to interpret $\hat{\mu}$ & $\hat{\sigma}$ if data taken to be independent samples from Gaussian (i.e., normal) distribution

Motivating Example: III

- Q: is Gaussian assumption reasonable?
- comparison of histogram to probability density function:

−Gaussian assumption seems reasonable

Motivating Example: IV

- Q: is independent assumption reasonable?
- under Gaussianity, uncorrelatedness implies independence
- sample autocorrelation sequence measures uncorrelatedness:

$$
\hat{\rho}_{\tau} = \frac{\sum_{t=0}^{N-\tau-1} (X_t^{(1)} - \hat{\mu})(X_{t+\tau}^{(1)} - \hat{\mu})}{\sum_{t=0}^{N-1} (X_t^{(1)} - \hat{\mu})^2}, \quad \tau = 1, 2, \dots, N-1
$$

• can interpret ρ_{τ} as correlation coefficient:

− $-\text{ since } \hat{\rho}_{\tau} \approx 0$, uncorrelatedness seems reasonable

Conclusions from Motivating Example

- \bullet $X_{\star}^{(1)}$ $t^{(1)}$ well-modeled as uncorrelated Gaussian deviates (sometimes called Gaussian white noise)
- theory says $\hat{\mu} \& \hat{\sigma}^2$ are sufficient statistics for summarizing statistical information about clock 55
- implies 'random walk' model for time difference data X_t
- seems we need little more than what is taught in 'Statistics 101'

Reality Bites!

• alas, other clocks do not have such simple statistical properties

• $\hat{\mu} \& \hat{\sigma}^2$ not sufficient summaries for clock in middle plot

Overview of Remainder of Tutorial

- discussion of models for interpreting clock statistics
	- −models specified via spectrum (spectral density function)
	- −– while white noise & random walk models depend on μ & σ^2 , more comprehensive models depend on μ and spectrum
	- − in simplest case, spectrum itself depends on 2 parameters ∗ σ 2 $\frac{2}{6}$, a parameter setting overall level of spectrum $\star \alpha$, a so-called 'power law' parameter
- look at clock statistics based upon 2 variance decompositions
	- −spectral analysis
	- −wavelet analysis

The Spectrum

- let X_t be a stochastic process, i.e., collection of random variables (RVs) indexed by ^t
- suppose further that X_t is stationary
- implies certain theoretical properties do not change with time
- in particular, its variance $\sigma^2 = \text{var} \{X_t\}$ is the same for all t
- spectrum $S_X(\cdot)$ decomposes σ^2 across frequencies f:

$$
\text{var}\left\{X_t\right\} = \int_{-1/2}^{1/2} S_X(f) \, df
$$

here f is a Fourier frequency with units of cycles per unit time (e.g., cycles per day for process sampled once per day)

Physical Interpretation of Spectrum via Filtering

• let a_u be a filter, and form $Y_t = \sum_{u=1}^{\infty}$ $\sum_{u=-\infty}^{\infty}a_uX_{t-u}$

• Y_t has spectrum $S_Y(f) = \mathcal{A}(f)S_X(f)$, where

$$
\mathcal{A}(f) = \Big| \sum_{u = -\infty}^{\infty} a_u e^{-i2\pi fu} \Big|^2
$$
 is squared gain function

• if a_u narrow-band of bandwidth Δf about f, i.e.,

$$
\mathcal{A}(f') = \begin{cases} \frac{1}{2\Delta f}, & f - \frac{\Delta f}{2} \le |f'| \le f + \frac{\Delta f}{2} \\ 0, & \text{otherwise,} \end{cases}
$$

then have following interpretation for $S_X(f)$:

var
$$
\{Y_t\} = \int_{-1/2}^{1/2} S_Y(f') df' = \int_{-1/2}^{1/2} \mathcal{A}(f') S_X(f') df' \approx S_X(f)
$$

Spectrum for White Noise Process

- simplest stationary process is white noise
- \bullet ϵ_t is white noise process if
	- $-E\{\epsilon_t\}$ $=\mu_{\epsilon}$ for all t (usually take $\mu_{\epsilon}=0$), where $E\{\epsilon_t\}$ denotes expected value of RV ϵ_t

$$
-\operatorname{var}\left\{\epsilon_t\right\} = \sigma_{\epsilon}^2 \text{ for all } t
$$

- $t \epsilon_t$ and $\epsilon_{t'}$ are uncorrelated for all $t \neq t'$
- spectrum for white noise is just $S_{\epsilon}(f) = \sigma$ 2 ϵ
- note that

$$
\int_{-1/2}^{1/2} S_{\epsilon}(f) df = \int_{-1/2}^{1/2} \sigma_{\epsilon}^2 df = \sigma_{\epsilon}^2 = \text{var}\left\{\epsilon_t\right\},\,
$$

as required

First Order Backward Difference of White Noise

• consider first order backward difference of white noise:

$$
X_t = \epsilon_t - \epsilon_{t-1} = \sum_{u = -\infty}^{\infty} a_u \epsilon_{t-u} \& a_u = \begin{cases} 1, & u = 0; \\ -1, & u = 1; \\ 0, & \text{otherwise.} \end{cases}
$$

• squared gain function is

$$
\mathcal{A}(f) = \Big| \sum_{u = -\infty}^{\infty} a_u e^{-i2\pi fu} \Big|^2 = |1 - e^{-i2\pi f}|^2 = |2\sin(\pi f)|^2
$$

• have $S_X(f) = \mathcal{A}(f)S_{\epsilon}(f) = \sigma$ 2 $\frac{2}{\epsilon} |2 \sin(\pi f)|^2$

• note that $S_X(f) \approx \sigma$ 2 $\frac{2}{\epsilon} |2\pi f|^2$ at low frequencies $(\text{using } \sin(x) \approx x \text{ for small } x)$

Higher Order Backward Differences of White Noise

- let B be backward shift operator: $B\epsilon_t = \epsilon_{t-1}$, B^2 $\epsilon_t = \epsilon_{t-2}, \, (1$ $-B)\epsilon_t = \epsilon_t - \epsilon_{t-1}$, etc.
- consider dth order backward difference of white noise:

$$
X_t = (1 - B)^d \epsilon_t = \sum_{k=0}^d \frac{d!}{k!(d-k)!} (-1)^k \epsilon_{t-k}
$$

$$
= \sum_{k=0}^\infty \frac{\Gamma(1 + \frac{\alpha}{2})}{\Gamma(k+1)\Gamma(1 + \frac{\alpha}{2} - k)} (-1)^k \epsilon_{t-k}
$$

with $\alpha = 2d$, i.e., $\alpha = 2, 4, \ldots$

• spectrum given by

$$
S_X(f) = \mathcal{A}(f)S_{\epsilon}(f) = \sigma_{\epsilon}^2 |2\sin(\pi f)|^{\alpha} \approx \sigma_{\epsilon}^2 |2\pi f|^{\alpha}
$$

Fractional Differences of White Noise

• for α not necessary an integer,

$$
X_t = \sum_{k=0}^{\infty} \frac{\Gamma(1+\frac{\alpha}{2})}{\Gamma(k+1)\Gamma(1+\frac{\alpha}{2}-k)} (-1)^k \epsilon_{t-k} = \sum_{k=0}^{\infty} a_k(\alpha) \epsilon_{t-k}
$$

makes sense as long as $\alpha >$ − 1

- X_t is stationary fractionally differenced (FD) process
- note: FD processes introduced in 1980 paper co-authored by C.W.J. Granger, co-winner of 2003 Nobel Prize for economics!
- spectrum is as before:

$$
S_X(f) = \sigma_{\epsilon}^2 |2\sin(\pi f)|^{\alpha} \approx \sigma_{\epsilon}^2 |2\pi f|^{\alpha}
$$

- obeys power law at low frequencies with exponent α
- note: FD process reduces to white noise when $\alpha = 0$

Nonstationary FD Processes: I

• let $X_t^{(1)}$ $t⁽¹⁾$ be FD process with parameter $-1 < \alpha^{(1)} \leq 1$ • define X_t as cumulative sum of $X_t^{(1)}$ $t^{\scriptscriptstyle{(1)}}$: X_t $= \sum_{l}^{t}$ $l=0$ $X_{1}^{\left(1\right) }$ l \bullet since

$$
X_t^{(1)} = X_t - X_{t-1} \& S_{X^{(1)}}(f) = \sigma_{\epsilon}^2 |2\sin(\pi f)|^{\alpha^{(1)}},
$$

filtering theory suggests using relationship

$$
S_{X^{(1)}}(f) = |2\sin(\pi f)|^2 S_X(f)
$$

to *define* spectrum for X_t , i.e.,

$$
S_X(f) = \frac{S_{X^{(1)}}(f)}{|2\sin(\pi f)|^2} = \sigma_{\epsilon}^2 |2\sin(\pi f)|^{\alpha}
$$

with $\alpha = \alpha^{(1)} - 2$

Nonstationary FD Processes: II

- X_t said to have stationary 1st order backward differences
- special case: if $\alpha^{(1)} = 0$ so that $X_t^{(1)}$ $t^{(1)}$ is white noise, then X_t is a random walk process and has spectrum $S_X(f)=\sigma$ 2 $\frac{2}{\epsilon} |2\sin(\pi f)|^{-2}$ $\approx \sigma$ 2 $\frac{2}{\epsilon} |2\pi f|^{-2}$;

i.e., random walk is FD process with $\alpha = -2$

- one cumulative sum defines FD processes for $-3 < \alpha \leq -1$
- two cumulative sums define FD processes for $-5 < \alpha \leq -3$ • special case: if $X_t^{(2)}$ $t^{(2)}$ is white noise and if

$$
X_t^{(1)} = \sum_{l=0}^t X_l^{(2)} \& X_t = \sum_{l=0}^t X_l^{(1)},
$$

 X_t is a random run, and $S_X(f) \approx \sigma$ 2 $\frac{2}{\epsilon}$ $|2\pi f|$ – 4 so $\alpha = -4$

Examples of Spectra for FD Processes

• three examples of clock noise well-modelled by FD processes

• on \log/\log plot, power law spectra appear linear with slope α

Summary of FD Processes

- X_t said to be FD process if its spectrum is given by $S_X(f)=\sigma$ 2 $\frac{2}{\epsilon} |2\sin(\pi f)|^{\alpha}$
- well-defined for any real-valued exponent α
- at low frequencies, have $S_X(f) \approx \sigma$ 2 $\frac{2}{\epsilon} |2\pi f|^{\alpha}$; i.e., FD spectrum is approximately a power law with exponent α
- if $\alpha > -1$, FD process stationary
- if $\alpha \leq -1$, FD process nonstationary but its dth order backward difference is stationary FD process with parameter $\alpha^{(d)}$, where

$$
d = 1 + \left\lfloor \frac{-\alpha - 1}{2} \right\rfloor \text{ and } \alpha^{(d)} = \alpha + 2d
$$

(here $\lfloor x \rfloor$ is largest integer $\leq x$)

Generalization: Composite FD Process

- FD process not always an adequate model, so of interest to consider generalizations
- suppose $X_t(\alpha_m)$ is FD process with power law α_m and σ 2 $\frac{2}{\epsilon} = 1$
- suppose $X_t(\alpha_m) \& X_t(\alpha_{m'})$ are independent when $m \neq m$ I
- form composite FD process $X_t = \sum_{m=0}^{M-1}$ $\sum_{m=0}^{M-1}a_m X_t(\alpha_m)$

• has spectrum given by

$$
S_X(f) = \sum_{m=0}^{M-1} a_m^2 |2 \sin(\pi f)|^{\alpha_m}
$$

Generalization: ARFIMA Process

- autoregressive, fractionally integrated, moving average
- idea is to replace ϵ_t in

$$
X_t = \sum_{k=0}^{\infty} a_k(\alpha) \epsilon_{t-k}
$$

with ARMA process U_t (models high-frequency part of noise):

$$
U_t = \sum_{k=1}^p \phi_k U_{t-k} + \epsilon_t - \sum_{k=1}^q \theta_k \epsilon_{t-k}
$$

• yields process with spectrum

$$
S_X(f) = \sigma_{\epsilon}^2 |2\sin(\pi f)|^{\alpha} \frac{\left|1 - \sum_{k=1}^q \theta_k e^{-i2\pi f k}\right|^2}{\left|1 - \sum_{k=1}^p \phi_k e^{-i2\pi f k}\right|^2}
$$

Generalization: Time-Varying FD Process

• can define time-varying FD (TVFD) process via

$$
X_t = \sum_{k=0}^{\infty} a_k(\alpha_t) \epsilon_{t-k}
$$

as long as $\alpha_t > -1$ for all t

• can use representation

$$
X_t = \sum_{k=0}^{2N-1} c_{t,k}(\alpha_t) \varepsilon_k, \quad t = 0, 1, \dots, N-1,
$$

to extend definition to handle arbitrary α_t

 \bullet can also make σ 2 $\frac{2}{\epsilon}$ time-varying **Examples of Time-Varying FD Processes**

• realizations from four TVFD processes

FD Process Parameter Estimation

- Q: given sample X_0, \ldots, X_{N-1} that is assumed to be realization of FD process, how can we estimate $\alpha \& \sigma$ 2 $\frac{2}{\epsilon}$?
- many different estimators have been proposed! (area of active research)
- will concentrate on estimators based on
	- −spectral analysis (frequency-based)
	- −wavelet analysis (scale-based)

Why Spectral and Wavelet Analysis?

- both physically interpretable
- both are analysis of variance techniques
	- −– useful for more than just estimating $\alpha \& \sigma$ 2 ϵ
	- −provide useful characterizations of clock performance
- can assess need for models more complex than FD process (e.g., composite FD process)
- provide preliminary estimates for more complicated schemes (maximum likelihood estimation)

Estimation via Spectral Analysis

• recall that spectrum for FD process given by

$$
S_X(f) = \sigma_{\epsilon}^2 |2\sin(\pi f)|^{\alpha}
$$

and thus

$$
\log(S_X(f)) = \log(\sigma_{\epsilon}^2) + \alpha \log(|2\sin(\pi f)|);
$$

i.e., plot of $\log(S_X(f))$ vs. $\log(|2\sin(\pi f)|)$ linear with slope α

• for
$$
0 < f < 1/8
$$
, have $\sin(\pi f) \approx \pi f$, so
 $\log (S_X(f)) \approx \log (\sigma_{\epsilon}^2) + \alpha \log (2\pi f)$;

i.e., plot of $\log(S_X(f))$ vs. $\log(2\pi f)$ approximately linear at low frequencies with slope α

Basic Spectral Estimation Scheme

- estimate $S_X(f)$ via $\hat{S}_X(f)$
- fit linear model to $\log(\hat{S}_X(f))$ vs. $\log(2\pi f)$ over low f's
- use estimated slope $\hat{\alpha}$ to estimate α
- manipulate estimated intercept to estimate σ 2 ϵ
- lots of possible estimators $\hat{S}_X(f)$ in the literature
- will consider periodogram & multitaper spectral estimator

The Periodogram: I

• basic estimator of $S_X(f)$ is periodogram:

$$
\hat{S}_{X}^{(p)}(f) = \frac{1}{N} \left| \sum_{t=0}^{N-1} (X_t - \hat{\mu}) e^{-i2\pi ft} \right|^2
$$

• gives decomposition of sample variance:

$$
\int_{-1/2}^{1/2} \hat{S}_X^{(p)}(f) df = \hat{\sigma}^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \hat{\mu})^2
$$

The Periodogram: II

• for stationary processes $\&$ large N , theory says

$$
\hat{S}_X^{(p)}(f) \stackrel{\text{d}}{=} S_X(f) \frac{\chi_2^2}{2}, \quad 0 < f < 1/2,
$$

approximately, implying that

$$
- E\{S_X^{(p)}(f)\} \approx E\{S_X(f)\chi_2^2/2\} = S_X(f)
$$

\n
$$
- \text{var}\{S_X^{(p)}(f)\} \approx \text{var}\{S_X(f)\chi_2^2/2\} = S_X^2(f)
$$

\n
$$
* \stackrel{\text{d}}{=} \text{means 'equal in distribution'}
$$

\n
$$
* \chi_2^2 \text{ is chi-square RV with 2 degrees of freedom}
$$

\n
$$
\hat{S}_X^{(p)}(f_j) \text{ and } \hat{S}_X^{(p)}(f_k) \text{ approximately uncorrelated}
$$

\nfor $f_j = \frac{j}{N}$, $f_k = \frac{k}{N}$ and $0 < f_j < f_k < 1/2$

The Periodogram: III

• taking log transform yields

$$
\log\left(\hat{S}_{X}^{(p)}(f)\right) \stackrel{\text{d}}{=} \log\left(S_{X}(f)\frac{\chi_{2}^{2}}{2}\right) = \log\left(S_{X}(f)\right) + \log\left(\frac{\chi_{2}^{2}}{2}\right)
$$

• Bartlett & Kendall (1946):

$$
E\left\{\log\left(\frac{\chi_{\eta}^{2}}{\eta}\right)\right\} = \psi\left(\frac{\eta}{2}\right) - \log\left(\frac{\eta}{2}\right) \& \text{ var } \left\{\log\left(\frac{\chi_{\eta}^{2}}{\eta}\right)\right\} = \psi'\left(\frac{\eta}{2}\right)
$$

where $\psi(\cdot) \propto \psi'(\cdot)$ are di- $\&$ trigamma functions

• letting $\gamma = 0.57721$ be Euler's constant, yields

$$
E\{\log\left(\hat{S}_X^{(p)}(f)\right)\} = \log\left(S_X(f)\right) + \psi(1) - \log\left(1\right)
$$

$$
= \log\left(S_X(f)\right) - \gamma
$$

$$
\text{var}\{\log\left(\hat{S}_X^{(p)}(f)\right)\} = \psi'(1) = \frac{\pi^2}{6}
$$

The Periodogram: IV

• define
$$
Y^{(p)}(f_j) = \log(\hat{S}_X^{(p)}(f_j)) + \gamma
$$

- •• model $Y^{(p)}(f_j)$ over low frequencies indexed by $0 < j < J$ as $Y^{(p)}(f_j) \approx \log(S_X(f_j)) + \epsilon(f_j)$ $\approx \log(\sigma_{\epsilon}^2) + \alpha \log(2\pi f_j) + \epsilon(f_j)$
- error $\epsilon(f_j)$ in linear regression model such that
	- − $-E\{\epsilon(f_j)\}=0$ & var $\{\epsilon(f_j)\}=\frac{\pi^2}{6}$ (known!)
	- −– can argue that $\epsilon(f_j)$'s approximately pairwise uncorrelated
	- ϵ (f_j) $\stackrel{\text{d}}{=} \log (\chi_2^2) + \gamma - \log(2)$ markedly non-Gaussian
- least squares procedure yields estimates $\hat{\alpha}$ and $\hat{\sigma}_{\epsilon}^2$ for α and σ_{ϵ}^2 , along with estimates of variability in $\hat{\alpha}$ and $\hat{\sigma}_{\epsilon}^2$

Examples of Periodogram-Based Spectral Analysis

• examples of clock noise, periodograms & fitted regression lines

note: 'CI' stands for 'confidence interval'

Bias in Periodogram due to Leakage

- periodogram can be badly biased for certain processes
- example: periodogram for X_t generated from composite FD process $(\alpha_0 = -4 \text{ and } \alpha_1 = -2)$

Alleviation of Leakage via Tapering

• tapering is technique for alleviating leakage:

$$
\hat{S}_{X}^{(d)}(f) = \Big| \sum_{t=0}^{N-1} a_t (X_t - \hat{\mu}) e^{-i2\pi ft} \Big|^2
$$

- $\hat{S}^{(d)}_{Y}$ $\chi^{(u)}(.)$ called direct spectral estimator
- a_t called data taper (typically bell-shaped curve)
- example: Hanning data taper

Example of Alleviation of Leakage

• periodogram & direct spectral estimate for composite FD series

- note: used Hanning data taper in forming $\hat{S}_{\mathbf{X}}^{(d)}$ $X^{(u)}(\cdot)$

Multitaper Spectral Estimation: I

- critique: tapering loses 'information' at end of series (sample size N effectively shortened)
- Thomson (1982): multitapering recovers 'lost info'
- use set of K orthonormal data tapers $a_{k,t}$:

$$
\sum_{t=0}^{N-1} a_{k,t} a_{l,t} = \begin{cases} 1, & \text{if } k = l; \\ 0, & \text{if } k \neq l, \end{cases} \quad 0 \le n, l \le K - 1
$$

• use $a_{k,t}$ to form kth direct spectral estimator:

$$
\hat{S}_{X,k}^{(mt)}(f) = \Big| \sum_{t=0}^{N-1} a_{k,t} (X_t - \hat{\mu}) e^{-i2\pi ft} \Big|^2, \quad k = 0, \dots, K-1
$$

Multitaper Spectral Estimation: II

• simplest form of multitaper spectrum estimator:

$$
\hat{S}_{X}^{(mt)}(f) = \frac{1}{K} \sum_{k=0}^{K-1} \hat{S}_{X,k}^{(mt)}(f)
$$

• sinusoidal tapers are one family of multitapers:

$$
a_{k,t} = \left(\frac{2}{N+1}\right)^{1/2} \sin\left(\frac{(k+1)\pi(t+1)}{N+1}\right)
$$

(Riedel & Sidorenko, 1995)

Example of Sinusoidal Tapers & Tapered Series

•
$$
X_t
$$
 (top); $a_{k,t}$, $k = 0, 1, 2$ (middle); $a_{k,t}X_t$ (bottom)

Example of Multitaper Spectral Estimates

Multitaper Spectral Estimation: III

\n- \n if
$$
S_X(\cdot)
$$
 slowly varying around $S_X(f)$ & if N large, $\hat{S}_X^{(mt)}(f) \stackrel{d}{=} \frac{S_X(f)\chi_{2K}^2}{2K}$ \n approximately for $0 < f < 1/2$, implying\n $\text{var}\{\hat{S}_X^{(mt)}(f)\} \approx \frac{S^2(f)}{4K^2} \text{var}\{\chi_{2K}^2\} = \frac{S^2(f)}{K}$ \n
\n- \n define $Y^{(mt)}(f_j) = \log(\hat{S}_X^{(mt)}(f_j)) - \psi(K) + \log(K)$ \n
\n- \n can model $Y^{(mt)}(f_j)$ as\n $Y^{(mt)}(f_j) \approx \log(S_X(f_j)) + \zeta(f_j)$ \n $\approx \log(\sigma_{\epsilon}^2) + \alpha \log(2\pi f_j) + \zeta(f_j)$ \n
\n- \n over low frequencies indexed by $0 < j < J$ \n
\n

38

Multitaper Spectral Estimation: IV

- error $\zeta(f_j)$ in linear regression model such that
	- $-E\{\zeta(f_j)\}=0$
	- var $\{\zeta(f_j)\}\$ $= \psi'$ (K) , a known constant!
	- − $-$ approximately Gaussian if $K \geq 5$
	- −correlated, but with known simple structure
- generalized least squares procedure yields estimates $\hat{\alpha}$ and $\hat{\sigma}_{\epsilon}^2$ ϵ for α and σ 2 $\hat{\epsilon}$, along with estimates of variability in $\hat{\alpha}$ and $\hat{\sigma}_{\epsilon}^2$ ϵ
- multitaper approach superior to periodogram approach

Discrete Wavelet Transform (DWT): ^I

- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ be observed time series (for convenience, assume N integer multiple of 2^{J_0})
- let $\mathcal W$ be $N \times N$ orthonormal DWT matrix; i.e., inverse of $\mathcal W$ is just its transpose $\mathcal W^T$
- $\mathbf{W} = \mathcal{W} \mathbf{X}$ is vector of DWT coefficients
- orthonormality says $\mathbf{X} = \mathcal{W}^T \mathbf{W}$
- implies **X** & **W** are equivalent (no loss of information in **W**)

Discrete Wavelet Transform (DWT): II

• can partition **W** as follows:

$$
\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \vdots \\ \mathbf{W}_{J_0} \\ \mathbf{V}_{J_0} \end{bmatrix}
$$

 \bullet **W**_j contains N_j = $=N/2^j$ wavelet coefficients

- −- related to changes of averages at 'dyadic' scale $\tau_j = 2^{j-1}$ −- related to times spaced 2^{j} units apart
- \bullet ${\bf V}_{J_0}$ contains N_{J_0} = $=N/2^{J_0}$ scaling coefficients

−– related to averages at scale $\lambda_{J_0} = 2^{J_0}$

−- related to times spaced 2^{J_0} units apart

Example: W for **Haar DWT** with $N = 8$

- rows 0, 1, 2 & 3 ^yield **W**¹ [∝] changes on scale 1
- next 2 rows yield **W**² [∝] changes on scale 2
- row 6 yields **W**³ [∝] change on scale 4
- row 7 yields **V**³ [∝] average on scale 8

DWT in Terms of Filters

• filter $X_0, X_1, \ldots, X_{N-1}$ to obtain

$$
2^{j/2}\widetilde{W}_{j,t} = \sum_{l=0}^{L_j-1} h_{j,l}X_{t-l \bmod N}, \quad t = 0, 1, ..., N-1;
$$

 $h_{j,l}$ is jth level wavelet filter (note: circular filtering)

• subsample to obtain wavelet coefficients:

$$
W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^j(t+1)-1}, \quad t = 0, 1, \dots, N_j - 1,
$$

where $W_{j,t}$ is tth element of \mathbf{W} j

• *j*th wavelet filter is band-pass with pass-band $\left[\frac{1}{2}\right]$ $\frac{1}{2^{j+1}}, \frac{1}{2^{j}}]$ (i.e., scale related to interval of frequencies)

Four Examples of Wavelet Filters

- from left to right, these plots show
	- − $-$ Haar wavelet filters, for which $L_1 = 2$
	- − $-D(4)$ filters, i.e., Daubechies' 'extremal phase' with $L_1 = 4$
	- − $-C(6)$ filters, i.e., Daubechies' 'coiflet' with $L_1 = 6$
	- − $-LA(8)$ filters, i.e., Daubechies' 'least asymmetic' with $L_1 = 8$

Four Examples of Scaling Filters

- above are scaling filters corresponding to wavelet filters
- scaling filters ^yield **V** $J_{\rm 0}$
- J_0 th scaling filter is low-pass with pass-band $[0, \frac{1}{2}$ $\frac{1}{2^{J_0+1}}]$
- as width L_1 of 1st level filter increases, band-pass & low-pass approximations improve

$\bold{Example: D(4) DWT Coefficients for Clock 55 }$ X_t

Variation: Maximal Overlap DWT (MODWT)

• can eliminate downsampling and use

$$
\widetilde{W}_{j,t} = \frac{1}{2^{j/2}} \sum_{l=0}^{L_j - 1} h_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, ..., N - 1,
$$

to define MODWT coefficients $\widetilde{\mathbf{W}}_j$ ($\&$ also $\widetilde{\mathbf{V}}$ $J_0)$

- unlike DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- unlike DWT, MODWT works for all samples sizes N (i.e., power of ² assumption is not required)

Example: D(4) MODWT Coefficients for Clock ⁵⁵

• can use to track, e.g., time-varying FD process

Wavelet-Based Analysis of Variance: I

• consider 'energy' in time series: $\|\mathbf{X}\|^2 = \mathbf{X}^T \mathbf{X} = \sum_{t=0}^{N-1}$ $t{=}0$ X_\star^2 t

• energy preserved in DWT coefficients:

$$
\|\mathbf{W}\|^2 = \|\mathcal{W}\mathbf{X}\|^2 = \mathbf{X}^T \mathcal{W}^T \mathcal{W} \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2
$$

 \bullet since $\mathbf{W}_1,\dots,\mathbf{W}$ J_0 , \mathbf{V} _{J_0} partitions \mathbf{W} , have

$$
\|\mathbf{W}\|^2 = \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_{J_0}\|^2,
$$

leading to analysis of sample variance:

$$
\hat{\sigma}^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \hat{\mu})^2 = \frac{1}{N} \Big(\sum_{j=1}^{J_0} ||\mathbf{W}_j||^2 + ||\mathbf{V}_{J_0}||^2 \Big) - \hat{\mu}^2
$$

Wavelet-Based Analysis of Variance: II

• energy also preserved in MODWT coefficients:

$$
\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\widetilde{\mathbf{W}}_j\|^2 + \|\widetilde{\mathbf{V}}_{J_0}\|^2,
$$

leading to an analogous analysis of sample variance:

$$
\hat{\sigma}^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \hat{\mu})^2 = \frac{1}{N} \Big(\sum_{j=1}^{J_0} ||\widetilde{\mathbf{W}}_j||^2 + ||\widetilde{\mathbf{V}}_{J_0}||^2 \Big) - \hat{\mu}^2
$$

• scale-based decomposition (spectrum is frequency-based)

Wavelet Variance Analysis: I

• for FD and related processes X_t , can define wavelet variance $-\operatorname{run} X_t$ through *j*th level wavelet filter:

$$
\overline{W}_{j,t} = \frac{1}{2^{j/2}} \sum_{l=0}^{L_j - 1} h_{j,l} X_{t-l}, \quad t = \dots, -1, 0, 1, \dots
$$

−wavelet variance is variance of filter output:

$$
\nu_X^2(\tau_j) = \text{var}\left\{\overline{W}_{j,t}\right\}
$$

- −- does not depend on t and has same units as X_t^2 t
- −also called wavelet spectrum
- wavelet variance decomposes σ^2 across scales τ_j :

$$
\text{var}\left\{X_t\right\} = \sum_{j=1}^{\infty} \nu_X^2(\tau_j)
$$

Wavelet Variance Analysis: II

• because $h_{j,l} \approx$ bandpass over $[1/2^{j+1}, 1/2^j]$,

$$
\nu_X^2(\tau_j) \approx 2 \int_{1/2^{j+1}}^{1/2^j} S_X(f) \, df \tag{*}
$$

- if $S_X(\cdot)$ 'featureless', info in ν 2 $S_X^2(\tau_j)$ equivalent to info in $S_X(\cdot)$ 2
- $\bullet \ \nu$ $\chi^2(\tau_j)$ more succinct: only one value per octave band
- recall spectrum for FD process:

$$
S_X(f) = \sigma_{\epsilon}^2 |2\sin(\pi f)|^{\alpha} \approx \sigma_{\epsilon}^2 |2\pi f|^{\alpha}
$$

- \bullet (*) implies ν 2 $\tau_{j}^{2}(\tau_{j}) \propto \tau_{j}^{-\alpha-1}$ approximately
- can deduce α from slope of $\log(\nu)$ 2 $\mathcal{L}_X(\tau_j)$) vs. $\log{(\tau_j)}$

Estimation of Wavelet Variance: I

- can base estimator on MODWT of $X_0, X_1, \ldots, X_{N-1}$
- if we compare

$$
\widetilde{W}_{j,t} = \frac{1}{2^{j/2}} \sum_{l=0}^{L_j - 1} h_{j,l} X_{t-l \bmod N}, \quad t = 0, \dots, N - 1,
$$

with

$$
\overline{W}_{j,t} = \frac{1}{2^{j/2}} \sum_{l=0}^{L_j - 1} h_{j,l} X_{t-l}, \quad t = \dots, -1, 0, 1, \dots
$$

find \widetilde{W} $W_{j,t} =$ $W_{j,t}$ if 'mod' not needed: L $_j-1\leq t < N$

Estimation of Wavelet Variance: II

 \bullet if $N-L$ $j \geq 0$, unbiased estimator of ν 2 $\chi^2(\tau_j)$ is

$$
\hat{\nu}_X^2(\tau_j) = \frac{1}{N - L_j + 1} \sum_{t = L_j - 1}^{N - 1} \widetilde{W}_{j,t}^2 = \frac{1}{M_j} \sum_{t = L_j - 1}^{N - 1} \overline{W}_{j,t}^2,
$$

where M_j $=N-L_j+1$

• can also construct biased estimator of ν 2 $\chi^2(\tau_j)$:

$$
\tilde{\nu}_X^2(\tau_j) = \frac{1}{N} \sum_{t=0}^{N-1} \widetilde{W}_{j,t}^2 = \frac{1}{N} \left(\sum_{t=0}^{L_j-2} \widetilde{W}_{j,t}^2 + \sum_{t=L_j-1}^{N-1} \overline{W}_{j,t}^2 \right)
$$

first sum in parentheses influenced by circularity

Estimation of Wavelet Variance: III

- biased estimator unbiased if X_t white noise
- biased estimator offers exact analysis of $\hat{\sigma}^2$; unbiased estimator need not
- biased estimator can have better mean square error (Greenhall *et al.*, 1999; need to 'reflect' X_t)

Statistical Properties of νˆ 2 $\chi^2(\tau_j)$

- suppose $\{W_{j,t}\}\)$ Gaussian with mean 0 & spectrum $S_j(f)$
- suppose square integrability condition holds:

$$
A_j = \int_{-1/2}^{1/2} S_j^2(f) \, df < \infty \, \& S_j(f) > 0
$$

(holds for FD process if wavelet filter width L_1 large enough)

- can show $\hat{\nu}^2$ $\chi^2(\tau_j)$ asymptotically normal with mean ν 2 $\chi^2(\tau_j)$ & large sample variance $2A_j/M_j$
- can estimate A_j and use with $\hat{\nu}_{\chi}^2$ $\chi^2(\tau_j)$ to construct confidence interval for ν 2 $\chi^2(\tau_j)$

Example: Wavelet Variance Analysis of Clock 55

• use one day average fractional frequency deviates $\overline{Y}_t \propto X_t^{(1)}$ t

 \bullet x's: $\hat{\nu}_{\overline{Y}}(\tau_j)$ using Haar wavelet; related to square root of Allan variance σ $\frac{2}{Y}(2,\tau_j)$ since

$$
\nu_{\overline{Y}}^2(\tau_j) = \frac{1}{2}\sigma_{\overline{Y}}^2(2,\tau_j)
$$

- \bullet ∞ 's: $\hat{\nu}_{\overline{Y}}(\tau_j)$ using D(4) wavelet, along with 95% CIs & weighted linear least squares fit of $\log_{10}(\hat{\nu}_{\overline{Y}}(\tau_j)$ versus $\log_{10}(\tau_j)$
- yields $\hat{\alpha}$ = $\dot{=} -0.06$ (very close to white noise $\alpha = 0$)

Summary

- fractionally differenced processes
	- provide statistically tractable models for clock noise
	- −extensible to composite, ARFIMA & time-varying processes
- spectral and wavelet analysis can provide
	- −estimates of parameters of FD processes
	- − decomposition of sample variance across
		- ∗ frequencies (in case of spectral analysis) ∗ scales (in case of wavelet analysis)
- wavelet variance has some advantages for clock noise
	- −– has same units as $X_t^2 \&$ estimates $\alpha \& \sigma_\epsilon^2$ somewhat better
	- −useful with time-varying noise process & polynomial trends

References

- 1. Bartlett, M. S., Kendall, D. G., Supplement to the Journal of the Royal Statistical Society, 1946, **8**, 128—138.
- 2. Granger, C. W. J., Joyeux, R., Journal of Time Series Analysis, 1980, **1**, 15–29.
- 3. Greenhall, C. A., Howe, D. A., Percival, D. B., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, **46**, 1183–1191.
- 4. Percival, D. B., Metrologia, 2003, **40**, S289–S304.
- 5. Percival, D. B., Walden, A. T., Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge, UK, Cambridge University Press, 1993, 583 p.
- 6. Percival, D. B., Walden, A. T., Wavelet Methods for Time Series Analysis, Cambridge, UK, Cambridge University Press, 2000, 594 p.
- 7. Riedel, K. S., Sidorenko, A., IEEE Transactions on Signal Processing, 1995, **43**, 188– 195.
- 8. Thomson, D. J., Proceedings of the IEEE, 1982, **70**, 1055–1096.