Wavelet Analysis of Clock Noise

Don Percival

Applied Physics Laboratory University of Washington, Seattle

Overview

- as a subject, wavelets are
 - relatively new (1983 to present)
 - a synthesis of old/new ideas
 - a keyword in 20,652+ articles since 1990 (a tidal wave!!!)
- wavelets decompose time series over time & different scales
 - time series = sequence of observations collected over time
 - scale = interval (span) of time (e.g., second, day, ...)
- in PTTI applications, wavelets can help in
 - characterization of frequency instability
 - estimation of parameters for statistical models
 - potentially other areas

What is a Wavelet?

• sines & cosines are 'big waves'

• wavelets are 'small waves' (left-hand is Haar wavelet $\psi^{\scriptscriptstyle ({\rm H})}(u)$)

What is Wavelet Analysis?: I

• multiply wavelet & time series x(u) together & integrate:

- $\int_{-\infty}^{\infty} \psi^{(H)}(u) x(u) du = W(1,0)$ is proportional to difference between averages of x(u) over intervals [-1,0] and [0,1]
- defines wavelet coefficient W(1,0) for
 - scale 1 (width of each interval)
 - time 0 (center of combined intervals)

What is Wavelet Analysis?: II

• stretch or shrink wavelet to define $W(\tau, 0)$ for other scales τ :

• relocate to define $W(\tau, t)$ for other times t:

What is Wavelet Analysis?: III

- $W(\tau, t)$ over all scales $\tau > 0$ and all times t called continuous wavelet transform (CWT) for x(u)
- CWT analyzes x(u) into components that are
 - associated with a scale and a time
 - physically related to a difference of averages
- similar interpretation for other wavelets $\psi(u)$
- $W(\tau, t)$ equivalent to x(u) since, given CWT, can recover x(u):

$$x(u) = \frac{1}{C_{\psi}} \int_0^\infty \frac{1}{\tau^2} \left[\int_{-\infty}^\infty W(\tau, t) \frac{1}{\sqrt{\tau}} \psi \left(\frac{u-t}{\tau} \right) \, dt \right] \, d\tau,$$

where C_{ψ} is a constant depending on specific wavelet $\psi(u)$

Maximal Overlap Discrete Wavelet Transform

- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ be observed time series
- can formulate MODWT of **X** as vectors $\widetilde{\mathbf{W}}_1, \ldots, \widetilde{\mathbf{W}}_{J_0} \& \widetilde{\mathbf{V}}_{J_0}$, each of dimension N (number of levels J_0 chosen by user)
- $\widetilde{\mathbf{W}}_j$ contains wavelet coefficients, $j = 1, \ldots, J_0$
 - associated with differences in averages over scale $\tau_j = 2^{j-1}$
 - closely related to $W(\tau_j, t)$ over restricted set of times
- $\widetilde{\mathbf{V}}_{J_0}$ contains scaling coefficients
 - associated with averages over scale $2\tau_{J_0} = 2^{J_0}$
 - summarizes $W(\tau, t)$ over scales $\tau > \tau_{J_0}$
- $\bullet~\mathbf{X}$ & MODWT equivalent: given MODWT, can recover \mathbf{X}

Example: MODWT Coefficients for Clock 55

• can use to track variations across time at a given scale

Wavelet-Based Analysis of Variance: I

• consider 'energy' in time series: $\|\mathbf{X}\|^2 = \mathbf{X}^T \mathbf{X} = \sum_{t=0}^{N-1} X_t^2$

• energy preserved in MODWT coefficients:

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\widetilde{\mathbf{W}}_j\|^2 + \|\widetilde{\mathbf{V}}_{J_0}\|^2$$

• leads to analysis of sample variance:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \hat{\mu}_X)^2 = \frac{1}{N} \Big(\sum_{j=1}^{J_0} \|\widetilde{\mathbf{W}}_j\|^2 + \|\widetilde{\mathbf{V}}_{J_0}\|^2 \Big) - \hat{\mu}_X^2,$$

where $\hat{\mu}_X = \frac{1}{N} \sum_{t=0}^{N-1} X_t$ is sample mean

Wavelet-Based Analysis of Variance: II

- if **X** realization of process with stationary increments, $\|\widetilde{\mathbf{W}}_{j}\|^{2}/N$ is estimator of wavelet variance $\nu_{X}^{2}(\tau_{j})$
- wavelet variance analyzes process variance σ_X^2 across scales τ_j :

$$\sigma_X^2 = \operatorname{var} \{X_t\} = \sum_{j=1}^{\infty} \nu_X^2(\tau_j)$$

(note: σ_X^2 can be infinite for certain processes)

• special case: Haar wavelet variance with fractional frequency deviates \overline{Y}_t essentially same as Allan variance $\sigma_{\overline{Y}}^2(2, \tau_j)$ since

$$\nu_{\overline{Y}}^2(\tau_j) = \frac{1}{2}\sigma_{\overline{Y}}^2(2,\tau_j)$$

• Q: 'old wine in a new bottle,' or something new?

What Wavelets Bring to the Table

- $2\|\widetilde{\mathbf{W}}_j\|^2/N$ gives a previously unknown estimator for $\sigma_{\overline{Y}}^2(2,\tau_j)$
- with addition of 'reflection' boundary conditions, estimator is an improvement over existing estimators (smaller mean square error; Greenhall, Howe & Percival, 1999)
- non-Haar wavelets provide interesting generalizations
 - still provide exact decompositions of sample variance
 - can handle wider range of power laws
 - can handle polynomial trends of certain orders
 - competitive with modified Allan variance
- unified theory provides methods for getting confidence intervals that do not require *a prior* assumption of noise type

Discrete Wavelet Transform (DWT)

- obtain by subsampling and rescaling MODWT
- yields vectors $\mathbf{W}_1, \ldots, \mathbf{W}_{J_0} \& \mathbf{V}_{J_0}$
 - $-\mathbf{W}_j$ has $N/2^j$ wavelet coefficients
 - $-\mathbf{V}_{J_0}$ has $N/2^{J_0}$ scaling coefficients
- total # of DWT coefficients is N, i.e., dimension of **X**
- \bullet X & DWT equivalent: given DWT, can recover X
- DWT acts as a decorrelating transform

Example: DWT Coefficients for Clock 55 X_t

• have approximate within-scale & between-scale decorrelation (non-Haar wavelets offer better between-scale approximation)

Uses for DWT Decorrelating Property

- estimation of parameters for statistical models
 - consider modeling ${\bf X}$ as process with spectrum

$$S_X(f) = C|f|^{\alpha}$$

- power-law model depends on parameters C and α
- consider estimating C and α via maximum likelihood (ML)
- exact ML estimators difficult to obtain
- DWT yields simple, but effective, approximate ML estimator
- testing for homogeneity of **X** at scale τ_j across time
- assessing variability in certain statistics via bootstrapping
- fast simulation of time series

Other Potential Uses for Wavelets in PTTI

- multiresolution analysis (based on wavelet synthesis of \mathbf{X})
- detection of singularities (maximum modulus of CWT)
- data compression
- signal extraction (wavelet shrinkage)

Summary

- wavelets give insight into frequency instability characterization
 - emphasize role of exact analysis of process/sample variance
 - provide estimators with reduced mean square error
- wavelets lead to easily computed approximate maximum likelihood estimators for parameters of power-law processes
- many other potential uses
 - article #20,654 is waiting to be written!
- thanks to conference organizers for invitation to speak!

References

- 1. Greenhall, C. A., Howe, D. A., Percival, D. B., *IEEE Transactions on Ultrasonics*, *Ferroelectrics, and Frequency Control*, 1999, **46**, 1183–1191.
- 2. Percival, D. B., *Metrologia*, 2003, **40**, S289–S304.
- Percival, D. B., Walden, A. T., Wavelet Methods for Time Series Analysis, Cambridge, UK, Cambridge University Press, 2000,