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Overview

• as a subject, wavelets are

− relatively new (1983 to present)

− a synthesis of old/new ideas

− a keyword in 20, 652+ articles since 1990 (a tidal wave!!!)

• wavelets decompose time series over time & different scales

− time series = sequence of observations collected over time

− scale = interval (span) of time (e.g., second, day, . . . )

• in PTTI applications, wavelets can help in

− characterization of frequency instability

− estimation of parameters for statistical models

− potentially other areas
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What is a Wavelet?

• sines & cosines are ‘big waves’
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• wavelets are ‘small waves’ (left-hand is Haar wavelet ψ(H)(u))
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What is Wavelet Analysis?: I

• multiply wavelet & time series x(u) together & integrate:
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•
∫ ∞
−∞ψ(H)(u)x(u) du = W (1, 0) is proportional to difference

between averages of x(u) over intervals [−1, 0] and [0, 1]

• defines wavelet coefficient W (1, 0) for

− scale 1 (width of each interval)

− time 0 (center of combined intervals)
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What is Wavelet Analysis?: II

• stretch or shrink wavelet to define W (τ, 0) for other scales τ :
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• relocate to define W (τ, t) for other times t:
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What is Wavelet Analysis?: III

•W (τ, t) over all scales τ > 0 and all times t called
continuous wavelet transform (CWT) for x(u)

• CWT analyzes x(u) into components that are

− associated with a scale and a time

− physically related to a difference of averages

• similar interpretation for other wavelets ψ(u)

•W (τ, t) equivalent to x(u) since, given CWT, can recover x(u):

x(u) =
1

Cψ

∫ ∞

0

1

τ2

[∫ ∞

−∞
W (τ, t)

1√
τ
ψ

(
u− t

τ

)
dt

]
dτ,

where Cψ is a constant depending on specific wavelet ψ(u)
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Maximal Overlap Discrete Wavelet Transform

• let X = [X0, X1, . . . , XN−1]
T be observed time series

• can formulate MODWT of X as vectors W̃1, . . . , W̃J0
& ṼJ0

,
each of dimension N (number of levels J0 chosen by user)

• W̃j contains wavelet coefficients, j = 1, . . . , J0

− associated with differences in averages over scale τj = 2j−1

− closely related to W (τj, t) over restricted set of times

• ṼJ0
contains scaling coefficients

− associated with averages over scale 2τJ0
= 2J0

– summarizes W (τ, t) over scales τ > τJ0

• X & MODWT equivalent: given MODWT, can recover X
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Example: MODWT Coefficients for Clock 55
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• can use to track variations across time at a given scale
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Wavelet-Based Analysis of Variance: I

• consider ‘energy’ in time series: ‖X‖2 = XTX =
∑N−1
t=0 X2

t

• energy preserved in MODWT coefficients:

‖X‖2 =

J0∑
j=1

‖W̃j‖2 + ‖ṼJ0
‖2

• leads to analysis of sample variance:

σ̂2
X =

1

N

N−1∑
t=0

(Xt − µ̂X)2 =
1

N

( J0∑
j=1

‖W̃j‖2 + ‖ṼJ0
‖2

)
− µ̂2

X,

where µ̂X = 1
N

∑N−1
t=0 Xt is sample mean
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Wavelet-Based Analysis of Variance: II

• if X realization of process with stationary increments,
‖W̃j‖2/N is estimator of wavelet variance ν2

X(τj)

• wavelet variance analyzes process variance σ2
X across scales τj:

σ2
X = var {Xt} =

∞∑
j=1

ν2
X(τj)

(note: σ2
X can be infinite for certain processes)

• special case: Haar wavelet variance with fractional frequency
deviates Y t essentially same as Allan variance σ2

Y
(2, τj) since

ν2
Y

(τj) = 1
2σ

2
Y

(2, τj)

• Q: ‘old wine in a new bottle,’ or something new?
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What Wavelets Bring to the Table

• 2‖W̃j‖2/N gives a previously unknown estimator for σ2
Y

(2, τj)

• with addition of ‘reflection’ boundary conditions, estimator is
an improvement over existing estimators (smaller mean square
error; Greenhall, Howe & Percival, 1999)

• non-Haar wavelets provide interesting generalizations

− still provide exact decompositions of sample variance

− can handle wider range of power laws

− can handle polynomial trends of certain orders

− competitive with modified Allan variance

• unified theory provides methods for getting confidence intervals
that do not require a prior assumption of noise type
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Discrete Wavelet Transform (DWT)

• obtain by subsampling and rescaling MODWT

• yields vectors W1, . . . , WJ0
& VJ0

− Wj has N/2j wavelet coefficients

− VJ0
has N/2J0 scaling coefficients

• total # of DWT coefficients is N , i.e., dimension of X

• X & DWT equivalent: given DWT, can recover X

• DWT acts as a decorrelating transform
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Example: DWT Coefficients for Clock 55 Xt
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• have approximate within-scale & between-scale decorrelation
(non-Haar wavelets offer better between-scale approximation)
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Uses for DWT Decorrelating Property

• estimation of parameters for statistical models

− consider modeling X as process with spectrum

SX(f ) = C|f |α

− power-law model depends on parameters C and α

− consider estimating C and α via maximum likelihood (ML)

− exact ML estimators difficult to obtain

− DWT yields simple, but effective, approximate ML estimator

• testing for homogeneity of X at scale τj across time

• assessing variability in certain statistics via bootstrapping

• fast simulation of time series
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Other Potential Uses for Wavelets in PTTI

• multiresolution analysis (based on wavelet synthesis of X)

• detection of singularities (maximum modulus of CWT)

• data compression

• signal extraction (wavelet shrinkage)
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Summary

• wavelets give insight into frequency instability characterization

– emphasize role of exact analysis of process/sample variance

– provide estimators with reduced mean square error

• wavelets lead to easily computed approximate maximum likeli-
hood estimators for parameters of power-law processes

• many other potential uses

− article #20,654 is waiting to be written!

• thanks to conference organizers for invitation to speak!
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