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Overview

• examples of time series to motivate discussion

• wavelet filters, wavelet coefficients & their interpretation

• decomposition of sample variance using wavelets

• theoretical wavelet variance for stochastic processes

− stationary processes

− nonstationary processes with stationary differences

• sampling theory for Gaussian processes with an example

• sampling theory for non-Gaussian processes with an example

• use on time series with time-varying statistical properties

• extensions: covariances, biased estimators, gappy series, fields

• summary
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Examples: Time Series Xt Versus Time Index t

 
 

 
 

  

(a) (b)

(c) (d)

Xt

Xt

t t

(a) subtidal sea levels (2 observations each day, N = 192)

(b) Nile River minima (annual, N = 663)

(c) surface albedo of arctic ice (25 meters, N = 8428)

(d) vertical shear in the ocean (0.1 meters, N = 4096)

• four series are visually different

• goal of time series analysis is to quantify these differences
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Decomposing Sample Variance of Time Series

• one approach: quantify differences by analysis of variance

• let X0, X1, . . . , XN−1 represent time series with N values

• let X denote sample mean of Xt’s: X ≡ 1
N

∑N−1
t=0 Xt

• let σ̂2
X denote sample variance of Xt’s:

σ̂2
X ≡ 1

N

N−1∑
t=0

(
Xt −X

)2

• idea is to decompose (analyze, break up) σ̂2
X into pieces that

quantify how time series are different

• wavelet variance does analysis based upon differences between
(possibly weighted) adjacent averages over ‘scales’
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Examples Revisited: Notion of Scale

 
 

 
 

  

Xt

Xt

t t

• scale τ refers to the width of a time interval

• scale-based analysis looks at averages over intervals of width τ :

Xt(τ ) ≡
1

τ

τ−1∑
l=0

Xt−l

(variation: replace simple average above with weighted average)

•Xt(1) = Xt is scale 1 ‘average’, while XN−1(N) = X
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Wavelet Coefficients and Filters

• wavelet coefficients tell us about variations in adjacent averages

• use wavelet filter to create wavelet coefficients

• given X0, X1, . . . , XN−1, define wavelet coefficients via

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l modN, t = 0, 1, . . . , N − 1,

where h̃j,l is a wavelet filter with Lj coefficients, and

Xt−l modN = Xt, 0 ≤ t− l ≤ N − 1

X−1 modN = XN−1

X−2 modN = XN−2 etc (‘circularity’)

• index j specifies associated scale as τj ≡ 2j−1, j = 1, 2, . . . ;
i.e., scales are powers of two (1, 2, 4, 8, . . . )
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Daubechies Wavelet Filters

• analysis of variance requires filter h̃1,l of unit scale to satisfy
certain conditions

• will use Daubechies wavelet filters withL1 coefficients, for which

–
∑L1−1
l=0 h̃1,l = 0

–
∑L1−1
l=0 h̃2

1,l = 1/2

–
∑L1−1
l=0 h̃1,lh̃1,l+2k = 0 for nonzero integers k

• h̃j,l’s for j > 1 are ‘stretched out’ versions of h̃1,l

• L1 must be even integer (2, 4, 6, . . . )

• when L1 = 2, filter is known as the Haar wavelet filter
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Example: Haar Wavelet Filters

• Haar wavelet filters h̃j,l for scales indexed by j = 1, . . . , 7

1

2

3

4

5

6

7

j

1 positive & 1 negative coefficient

2 positive & 2 negative coefficients

4 & 4

8 & 8

16 & 16

32 & 32

64 & 64
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Haar Wavelet Coefficients: I

• consider how W̃1,1 =
∑
l h̃1,lX1−l modN is formed (N = 16):

.
.
..............

.......
.....

.... ................
h̃1,l

Xt

product sum ∝ X1(1) −X0(1)

• similar interpretation for W̃1,15 =
∑
l h̃1,lX15−l modN :

.
.

..............
.........

.....
.. ................h̃1,l

Xt

product sum ∝ X15(1) −X14(1)
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Haar Wavelet Coefficients: II

• now consider form of W̃2,3 =
∑
l h̃2,lX3−l modN :

..
..............

....
................

...
.....

....
h2,l

Xt

product sum ∝ X3(2) −X1(2)

• similar interpretation for W̃2,4, W̃2,5, . . . , W̃2,15

• note: W̃2,0, W̃2,1 and W̃2,2 aren’t proportional to differences of
adjacent averages (called ‘boundary’ coefficients)
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Haar Wavelet Coefficients: III

• W̃3,7 =
∑
l h̃3,lX7−l modN takes the following form:

....
............

.......
.....

.... ................
h̃3,l

Xt

product sum ∝ X7(4) −X3(4)

• Haar wavelet coefficients W̃j,t for scale τj = 2j−1 proportional

to Xt(τj) −Xt−τj(τj). i.e., to change in adjacent τj averages

− change measured by simple first difference

− average is localized sample mean

− if W̃ 2
j,t small, not much variation over scale τj

− if W̃ 2
j,t large, lot of variation over scale τj
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Second Example: LA(8) Wavelet Filters

• as example of another wavelet filter, consider the Daubechies
‘least asymmetric’ filter of width 8 (denoted as LA(8))

1

2

3

4

5

6

7

j

• LA(8) wavelet coefficients proportional to difference between
central weighted average and 2 surrounding weighted averages
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Empirical Wavelet Variance

• define empirical wavelet variance for scale τj as

ν̃2
X(τj) ≡

1

N

N−1∑
t=0

W̃ 2
j,t

• if N = 2J , obtain analysis (decomposition) of sample variance:

σ̂2
X =

1

N

N−1∑
t=0

(
Xt −X

)2
=

J∑
j=1

ν̃2
X(τj)

(if N not a power of 2, can still obtain an analysis of variance
to a given level J0, but have component due to ‘scaling’ filter)

• interpretation: ν̃2
X(τj) is portion of σ̂2

X due to changes in av-
erages over scale τj; i.e., ‘scale by scale’ analysis of variance
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Example of Empirical Wavelet Variance

• wavelet variances for time series Xt and Yt of length N = 16,
each with zero sample mean and same sample variance
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Second Example of Empirical Wavelet Variance

• top: subtidal sea level series Xt (blue line shows scale of 16)

-50
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O

O O

• bottom: empirical wavelet variances ν̃2
X(τj)

• note: each W̃j,t associated with a portion of Xt, so W̃ 2
j,t versus

t offers time-based decomposition of ν̃2
X(τj)
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Theoretical Wavelet Variance: I

• now assume Xt is a real-valued random variable (RV)

• let Xt, t ∈ Z denote a stochastic process, i.e., collection of RVs
indexed by ‘time’ t (here Z denotes the set of all integers)

• filter Xt to create new stochastic process:

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z,

which should be contrasted with

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1
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Theoretical Wavelet Variance: II

• if Y is any RV, let E{Y } denote its expectation

• let var {Y } denote its variance: var {Y } ≡ E{(Y − E{Y })2}
• definition of time dependent wavelet variance:

ν2
X,t(τj) ≡ var {Wj,t},

with conditions on Xt so that var {Wj,t} exists and is finite

• ν2
X,t(τj) depends on τj and t

• will focus on time independent wavelet variance

ν2
X(τj) ≡ var {Wj,t}

(can adapt theory to handle time varying situation)

• ν2
X(τj) well-defined for stationary & related processes, so let’s

review concept of stationarity
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Definition of a Stationary Process

• if U and V are two RVs, denote their covariance by

cov {U, V } = E{(U − E{U})(V − E{V })}

• stochastic process Xt called stationary if

− E{Xt} = µX for all t, i.e., constant independent of t

− cov{Xt,Xt+τ} = sX,τ , i.e., depends on lag τ , but not t

• sX,τ , τ ∈ Z, is autocovariance sequence (ACVS)

• sX,0 = cov{Xt,Xt} = var{Xt}; i.e., variance same for all t
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Example of a Stationary Process: White Noise

• simplest example of a stationary process is ‘white noise’

• process Xt said to be white noise if

− it has a constant mean E{Xt} = µX
− it has a constant variance var {Xt} = σ2

X
– cov {Xt,Xt+τ} = 0 for all t and nonzero τ ; i.e., distinct RVs

in the process are uncorrelated

• ACVS for white noise takes a very simple form:

sX,τ = cov {Xt,Xt+τ} =

{
σ2
X, τ = 0;

0, otherwise.
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Wavelet Variance for Stationary Processes

• for stationary processes, wavelet variance decomposes var {Xt}:
∞∑
j=1

ν2
X(τj) = var {Xt}

(above result similar to one for sample variance)

• ν2
X(τj) is thus contribution to var {Xt} due to scale τj

• example: for a white noise process, have

ν2
X(τj) =

var {Xt}
2j

=
var {Xt}

2τj
,

so largest contribution to var {Xt} is at smallest scale τ1

• note: νX(τj) has same units as Xt, which is important for
interpretability
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Generalization to Certain Nonstationary Processes

• if L1 is properly chosen, ν2
X(τj) well-defined for processes with

stationary backward differences

• first order backward difference of Xt is process defined by

X
(1)
t = Xt −Xt−1

• second order backward difference of Xt is process defined by

X
(2)
t = X

(1)
t −X(1)

t−1 = Xt − 2Xt−1 +Xt−2

•Xt has dth order stationary backward differences if

Yt ≡
d∑
k=0

(
d

k

)
(−1)kXt−k

forms a stationary process (d is a nonnegative integer)
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Examples of Processes with Stationary Increments

  
 

  
 

  
 

Xt X
(1)
t X

(2)
t

(a)

(b)

(c)

0

0

0

0 256 0 256 0 256

t t t

• 1st column shows, from top to bottom, realizations from

(a) random walk: Xt =
∑t
u=1 εt, & εt is zero mean white noise

(b) like (a), but now εt has mean of −0.2

(c) random run: Xt =
∑t
u=1 Yt, where Yt is a random walk

• 2nd & 3rd columns show 1st & 2nd differences X
(1)
t and X

(2)
t
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Wavelet Variance for Processes with

Stationary Backward Differences

• suppose Xt nonstationary with dth order stationary differences

• if L1 ≥ 2d, then ν2
X(τj) is well-defined & finite for all τj, but

now we have
∞∑
j=1

ν2
X(τj) = ∞

• example: for a random walk process Xt =
∑t
u=1 εt, have

ν2
X(τj) =

var {εt}
6

(
τj +

1

2τj

)
with Haar wavelet, so ν2

X(τj) increases as j increases
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Fractionally Differenced (FD) Processes: I

• as an example, consider wavelet variance for FD processes
(Granger & Joyeux, 1980; Hosking, 1981)

• FD processes determined by 2 parameters −∞ < δ < ∞ &
σ2
ε > 0 (relatively unimportant)

• let FD(δ) refer to FD process with parameter δ

• if δ < 1/2, FD process Xt is stationary, and, in particular,

− reduces to white noise if δ = 0

− has ‘long memory’ if δ > 0

− is ‘antipersistent’ if δ < 0 (i.e., cov {Xt,Xt+1} < 0)
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Fractionally Differenced (FD) Processes: II

• if δ ≥ 1/2, FD process Xt is nonstationary with dth order
stationary backward differences Yt

− here d = �δ + 1/2�, where �x� is integer part of x

− Yt is stationary FD(δ − d) process

• if δ = 1, FD process is the same as a random walk process

• at large scales, have

ν2
X(τj) ≈ Cτ2δ−1

j

• thus

log (ν2
X(τj)) ≈ log (C) + (2δ − 1) log (τj),

so a log/log plot of ν2
X(τj) vs. τj looks approximately linear

with slope 2δ − 1 for τj large enough
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LA(8) Wavelet Variance for 2 FD Processes
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10-1 100 101 102 103 

τ
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δ = 1
4

δ = 1
2

• left-hand column: ν2
X(τj) versus τj based upon LA(8) wavelet

• right-hand: realization of lengthN = 256 from each FD process
(created via circulant embedding – details in Craigmile, 2003)
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LA(8) Wavelet Variance for 2 More FD Processes
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δ = 5
6

δ = 1

• δ = 5
6 is Kolmogorov turbulence; δ = 1 is random walk

• note: positive slope indicates nonstationarity, while negative
slope indicates stationarity
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Unbiased Estimator of Wavelet Variance: I

• given a realization of X0, X1, . . . , XN−1 from a process with
dth order stationary differences, want to estimate ν2

X(τj)

• for wavelet filter such that L1 ≥ 2d and E{Wj,t} = 0, have

ν2
X(τj) = var {Wj,t} = E{W 2

j,t}
• can base estimator on squares of

W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

• recall that

Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z
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Unbiased Estimator of Wavelet Variance: II

• comparing

W̃j,t =

Lj−1∑
l=0

h̃j,lXt−l mod N with Wj,t ≡
Lj−1∑
l=0

h̃j,lXt−l

says that W̃j,t = Wj,t if ‘mod N ’ not needed; this happens
when Lj − 1 ≤ t < N

• if N − Lj ≥ 0, unbiased estimator of ν2
X(τj) is

ν̂2
X(τj) ≡

1

N − Lj + 1

N−1∑
t=Lj−1

W̃ 2
j,t =

1

Mj

N−1∑
t=Lj−1

W
2
j,t,

where Mj ≡ N − Lj + 1
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Statistical Properties of ν̂2
X(τj) (Gaussian)

• suppose {Wj,t} Gaussian with mean zero & ACVS sj,τ
(note: filtering tends to yield normality)

• suppose square summability condition holds:

Aj ≡
∞∑

τ=−∞
s2j,τ <∞.

• can show ν̂2
X(τj) asymptotically normal with mean ν2

X(τj) &
large sample variance 2Aj/Mj

• Aj finite if ACVS damps quickly to 0

• if Aj infinite, can usually correct by increasing L1

• conclusion: square integrability easy to satisfy

• Monte Carlo studies: large sample theory good if Mj ≥ 128
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Estimation of Aj

• in practical applications, need to estimate

Aj =

∞∑
τ=−∞

s2j,τ

• for large Mj, an approximately unbiased estimator is

Âj ≡
ŝ2j,0
2

+

Mj−1∑
τ=1

ŝ2j,τ ,

where

ŝj,τ ≡
1

Mj

N−1−|τ |∑
t=Lj−1

W̃j,tW̃j,t+|τ |

• Monte Carlo results: Âj reasonably good for Mj ≥ 128
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Confidence Intervals (CIs) for ν2
X(τj)

• for finite Mj, Gaussian-based CIs problematic: lower limit of
CI can very well be negative

• can avoid by basing CIs on the assumption that

ν̂2
X(τj) =

1

Mj

N−1∑
t=Lj−1

W̃ 2
j,t

has the same distrubution as aχ2
η, i.e., a constant times a chi-

square RV with η equivalent degrees of freedom (EDOF)

• moment matching yields

η =
2
(
E{ν̂2

X(τj)}
)2

var {ν̂2
X(τj)}
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Three Ways to Set η

1. use large sample theory with appropriate estimates:

η̂1 =
Mjν̂

4
X(τj)

Âj

2. assume nominal shape for spectral density function of Xt:

SX(f ) = hC(f ), where C(f ) is known, but h is not;

though questionable, get acceptable CIs using

η2 =

2

(∑�(Mj−1)/2�
k=1 Cj(fk)

)2

∑�(Mj−1)/2�
k=1 C2

j (fk)

3. make an assumption about the effect of wavelet filter on Xt to
obtain simple (but effective!) approximation

η3 = max{Mj/2j, 1}
33



Example: Vertical Shear in the Ocean: I

 

6

0

−6
0.25

0

−0.25

Xt

X
(1)
t

450 600 750 900

depth (meters)

• top plot: vectical shear measurements Xt

• bottom: backward differences X
(1)
t
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Example: Vertical Shear in the Ocean: II

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

101

100

10−1

10−2

10−3

10−4

100 102 100 102 100 102

η̂1 η2 η3

τj ∆t (meters)

• wavelet variance estimates based upon Daubechies wavelet with
L1 = 6, along with 95% confidence intervals for true wavelet
variance with EDOFs determined by η̂1 estimated from data,
η2 using a nominal model for SX(·) and η3 = max{Mj/2j, 1}
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Statistical Properties of ν̂2
X(τj) (Non-Gaussian)

• assume {Wj,t} strictly stationary process satisfying

− E{Wj,t} = 0 and E{|Wj,t|4+2δ} <∞ for some δ > 0

− mixing condition αWj,t
= O(1/nχ), where

αWj,t
≡ sup
A∈M0

−∞, B∈M∞
t

|P(A ∩B) − P(A)P(B)|,

Mn
m is σ-algebra for Wj,m, . . . ,Wj,n and χ > (2 + δ)/δ

• let Zj,t ≡ W
2
j,t have spectral density function (SDF) SZj(·)

such that 0 < SZj(0) <∞
• ν̂2
X(τj) asymptotically normal with mean ν2

X(τj) & large sam-
ple variance SZj(0)/Mj (can be estimated using standard SDF

estimators such as multitaper or autoregressive estimators)
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Example: Surface Albedo of Spring Pack Ice: I

0.0
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0.6
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0 3000 6000 9000

observation index

• data from Beaufort Sea (N = 8428, sampled every 25 meters)

37



Example: Surface Albedo of Spring Pack Ice: II

0
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101 102 103 104 

scale (meters)

• upper plot: estimated LA(8) wavelet variance (blue curve),
along with upper and lower 90% confidence intervals based
upon Gaussian (thin dotted curves) and non-Gaussian theory
(thin solid)

• lower plot: ratio of estimated non-Gaussian versus Gaussian
large sample standard deviations
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Wavelet Variance Analysis of Time Series
with Time-Varying Statistical Properties

• each wavelet coefficient W̃j,t formed using portion of Xt

• suppose Xt associated with actual time t0 + t∆t

∗ t0 is actual time of first observation X0

∗ ∆t is spacing between adjacent observations

• suppose h̃j,l is least asymmetric Daubechies wavelet

• can associate W̃j,t with an interval of width 2τj ∆t centered at

t0 + (2j(t + 1) − 1 − |ν(H)
j | mod N) ∆t,

where, e.g., |ν(H)
j | = [7(2j − 1) + 1]/2 for LA(8) wavelet

• can thus form ‘localized’ wavelet variance analysis (implicitly
assumes stationarity or stationary increments locally)
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Example: Annual Minima of Nile River

10-2

10-1

100 

1 2 4 8
scale  (years)

x

x

x

x

o
o

o
o

9

11

13

15

600 1300

year

• left plot: annual minima of Nile River

• bottom: Haar ν̂2
X(τj) before (x’s) and after (o’s) year 715.5,

with 95% confidence intervals based upon χ2
η3 approximation
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Some Extensions and Ongoing Work

• wavelet cross-covariance and cross-correlation (see references)

• biased estimators of wavelet variance

• unbiased estimator of wavelet variance for ‘gappy’ time series

• extension of notion and estimators to random fields
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Summary

• wavelet variance gives scale-based analysis of variance

• statistical theory worked out for

− Gaussian processes with stationary backward differences

− non-Gaussian processes satisfying a mixing condition

• applications include analysis of

− genome sequences

− frequency fluctuations in atomic clocks

− changes in variance of soil properties

− accumulation of snow fields in polar regions

− turbulence in atmosphere and ocean

− regular and semiregular variables stars

• thanks for invitation to speak!!!
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