An Introduction to Wavelets with Applications in Environmental Science

Don Percival

Applied Physics Lab, University of Washington Data Analysis Products Division, MathSoft

overheads for talk available at

http://weber.u.washington.edu/~dbp/talks.html

joint work with:

- B. Whitcher, S. Byers & P. Guttorp (UW)
- S. Sardy (UW, MathSoft, EPFL)
- P. Craigmile (UW)

Overview of Talk

- overview of discrete wavelet transform (DWT)
 - wavelet coefficients and their interpretation
 - DWT as a time series decorrelator
- three uses for wavelets
 - 1. testing for variance changes
 - 2. bootstrapping auto/cross-correlation estimates
 - 3. estimating d for stationary/nonstationary fractional difference processes with trend
- warning: results for 2 & 3 are preliminary

Overview of DWT

- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ be observed time series (for convenience, assume N integer multiple of 2^{J_0})
- let \mathcal{W} be $N \times N$ orthonormal DWT matrix (more precisely: partial DWT of level J_0)
- $\mathbf{W} = \mathcal{W} \mathbf{X}$ is vector of DWT coefficients
- can partition **W** as follows:

$$\mathbf{W} = egin{bmatrix} \mathbf{W}_1 \ dots \ \mathbf{W}_{J_0} \ \mathbf{V}_{J_0} \end{bmatrix}$$

- \mathbf{W}_j contains $N_j = N/2^j$ wavelet coefficients
 - related to changes of averages at scale $\tau_j = 2^{j-1}$ (τ_j is *j*th 'dyadic' scale)
 - related to times spaced 2^j units apart
- \mathbf{V}_{J_0} contains $N_{J_0} = N/2^{J_0}$ scaling coefficients
 - related to averages at scale $\lambda_{J_0} = 2^{J_0}$
 - related to times spaced 2^{J_0} units apart

Example: DWT of FDP

• X_t called fractional difference process (FDP) if it has a spectral density function (SDF) given by

$$S_X(f) = \frac{\sigma^2}{|2\sin(\pi f)|^{2d}},$$

where $\sigma^2 > 0$ and $-\frac{1}{2} \le d < \frac{1}{2}$

- note: for small f, have $S_X(f) \approx C/|f|^{2d}$; i.e., '1/f type process'
- if d = 0, FDP is white noise
- if $0 < d < \frac{1}{2}$, FDP stationary with 'long memory'
- can extend definition to $d \ge \frac{1}{2}$
 - nonstationary 1/f type process
 - also called FARIMA(0,d,0) process
- example: DWT of FDP, d = 0.4

Two Consequences of Orthonormality

• multiresolution analysis (MRA)

$$\mathbf{X} = \mathcal{W}^T \mathbf{W} = \sum_{j=1}^{J_0} \mathcal{W}_j^T \mathbf{W}_j + \mathcal{V}_{J_0}^T \mathbf{V}_{J_0} \equiv \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

 $(\mathcal{W}_j \text{ partitions } \mathcal{W} \text{ commensurate with } \mathbf{W}_j)$

- scale-based additive decomposition
- $-\mathcal{D}_j$'s & \mathcal{S}_{J_0} called details & smooth
- example: Nile River minimum flood levels
- analysis of variance:

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \frac{1}{N} \left(\sum_{j=1}^{J_0} \| \mathbf{W}_j \|^2 + \| \mathbf{V}_{J_0} \|^2 \right) - \overline{X}^2$$

- scale-based decomposition (cf. frequency-based)
- can define wavelet variance $\nu_X^2(\tau_j)$
- for FDP, can deduce d from log/log plots since

$$\nu_X^2(\tau_j) \approx C \tau_j^{2d-1}$$

– example: Nile River minimum flood levels

DWT in Terms of Filters

• filter $X_0, X_1, \ldots, X_{N-1}$ to obtain

$$2^{j/2}\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, \dots, N-1$$

where $h_{j,l}$ is *j*th level wavelet filter

- note: circular filtering

• subsample to obtain wavelet coefficients:

 $W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^{j}(t+1)-1}, \quad t = 0, 1, \dots, N_{j} - 1,$

where $W_{j,t}$ is the element of \mathbf{W}_j

- examples: Haar, D(4), C(6) & LA(8) wavelet filters
- *j*th wavelet filter is band-pass with pass-band $\left[\frac{1}{2^{j+1}}, \frac{1}{2^{j}}\right]$
- note: jth scale related to interval of frequencies
- similarly, scaling filters yield \mathbf{V}_{J_0}
- \bullet examples: Haar, D(4), C(6) & LA(8) scaling filters
- J_0 th scaling filter is low-pass with pass-band $[0, \frac{1}{2^{J_0+1}}]$

Wavelets as Whitening Filters

- recall DWT of FDP for d = 0.4
- since FDP is stationary process, \mathbf{W}_j is also (ignoring terms influenced by circularity)
- can compute SDFs for each \mathbf{W}_j see figure
- DWT acts as whitening filter
 - requires SDF of **X** to be \approx flat over pass-band $\left[\frac{1}{2^{j+1}}, \frac{1}{2^j}\right]$
 - if not true, can use 'wavelet packet' transform (DWPT)
 - used by Flandrin, Tewfik & Kim, Wornell, McCoy & Walden
- three examples built on whitening property
 - 1. testing for variance changes
 - 2. bootstrapping auto/cross-correlation estimates
 - 3. estimating d for stationary/nonstationary fractional difference processes with trend
- whitening property should help with other problems

Homogeneity of Variance: I

- claim: DWT approximately 'decorrelates' FDPs
- implication: \mathbf{W}_j should resemble white noise (ignoring coefficients influenced by circularity)
 - $-\cos\{W_{j,t}, W_{j,t'}\} \approx 0$ when $t \neq t'$
 - $\operatorname{var} \{W_{j,t}\}$ should not vary with t (homogeneity of variance)
- can test for homogeneity of variance using \mathbf{W}_{j}
- suppose Y_0, \ldots, Y_{N-1} independent normal RVs with $E\{Y_t\} = 0$ and var $\{Y_t\} = \sigma_t^2$
- want to test null hypothesis

$$H_0: \sigma_0^2 = \sigma_1^2 = \cdots = \sigma_{N-1}^2$$

• can test H_0 versus a variety of alternatives, e.g.,

$$H_1: \sigma_0^2 = \cdots = \sigma_k^2 \neq \sigma_{k+1}^2 = \cdots = \sigma_{N-1}^2$$

using normalized cumulative sum of squares

Homogeneity of Variance: II

• to define test statistic D, start with

$$\mathcal{P}_k \equiv \frac{\sum_{j=0}^k Y_j^2}{\sum_{j=0}^{N-1} Y_j^2}, \quad k = 0, \dots, N-2$$

and then compute

$$D^{+} \equiv \max_{0 \le k \le N-2} \left(\frac{k+1}{N-1} - \mathcal{P}_{k} \right) \& D^{-} \equiv \max_{0 \le k \le N-2} \left(\mathcal{P}_{k} - \frac{k}{N-1} \right)$$

from which we form $D \equiv \max\left(D^{+}, D^{-}\right)$

- can reject H_0 if observed D is 'too large'
- can quantify 'too large' by considering distribution of D under H_0
- need to find critical value x_{α} such that

$$\mathbf{P}[D \ge x_{\alpha}] = \alpha$$

for, e.g., $\alpha = 0.01, 0.05$ or 0.1

- once determined, can perform α level test of H_0 :
 - compute D statistic from data Y_0, \ldots, Y_{N-1}
 - reject H_0 at level α if $D \ge x_{\alpha}$

Homogeneity of Variance: III

- can determine critical values x_{α} in two ways
 - Monte Carlo simulations
 - large sample approximation to distribution of D:

$$\mathbf{P}[(N/2)^{1/2}D \ge x] \approx 1 + 2\sum_{l=1}^{\infty} (-1)^l e^{-2l^2 x^2}$$

(reasonable approximation for $N \ge 128$)

• idea: given time series \mathbf{X} , compute D using

$$W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^{j}(t+1)-1}, \quad \left[(L-2) \left(1 - \frac{1}{2^{j}} \right) \right] \le t \le \left\lfloor \frac{N}{2^{j}} - 1 \right\rfloor,$$

where L is length of j = 1 level wavelet filter and

$$2^{j/2}\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \bmod N}$$

- results in 'level by level' tests
- above formulation allows for general N(i.e., N need not be multiple of 2^{J_0})
- Q: is DWT decorrelation of FDPs good enough?
- Fig. 9 says yes!

Example: Nile River Minima

- recall MRA & wavelet variance plots
- application of homogeneity of variance test:

scale	D	$x_{0.1}$	$x_{0.05}$	$x_{0.01}$
1 year	0.1559	0.0945	0.1051	0.1262
2 years	0.1754	0.1320	0.1469	0.1765
4 years	0.1000	0.1855	0.2068	0.2474
8 years	0.2313	0.2572	0.2864	0.3436

- if H_0 rejected, use 'nondecimated' DWT to detect change point:
 - compute rotated cumulative variance curve
 - look for time of largest excursion from 0
- Fig. 10: change point detection
 - -720 AD for level j = 1
 - -722 AD for level j = 2
 - agrees well with mosque construction in 715 AD
- interpretation differs from Beran & Terrin (1996)

Wavelet-Based Bootstrapping: I

- Davison & Hinkley, 1998, Chapter 8, discusses bootstrapping in context of time series analysis
- whitening allows wavelet-based bootstrapping for certain statistics (but not all)
- first example: lag 1 autocorrelation estimate

$$\hat{r}_1 \equiv \frac{\sum_{t=0}^{N-2} X_t X_{t+1}}{\sum_{t=0}^{N-1} X_t^2}$$

- idea: to get standard error of \hat{r}_1 ,
 - compute DWT of \mathbf{X}
 - sample with replacement from \mathbf{W}_j to form $\mathbf{W}_j^{(b)}$ (do same with \mathbf{V}_{J_0})
 - synthesize $\mathbf{X}^{(b)}$ using $\mathbf{W}_{j}^{(b)}$'s & $\mathbf{V}_{J_{0}}^{(b)}$
 - compute $\hat{r}_1^{(b)}$ for $\mathbf{X}^{(b)}$
 - repeat until computer gets tired
 - use standard error of $\hat{r}_1^{(b)}$'s for $\mathbf{X}^{(b)}$'s to assess standard error of \hat{r}_1 for \mathbf{X}

Wavelet-Based Bootstrapping: II

- to test scheme, did Monte Carlo study involving
 - $\operatorname{AR}(1)$ process: $X_t = 0.9X_{t-1} + \epsilon_t$
 - MA(1) process: $X_t = \epsilon_t + \epsilon_{t-1}$
 - FDP with d = 0.45
- average $\hat{r}_1^{(b)}$'s have negligible bias
- comparison of standard errors, N = 128:

	LA(8) DWT	LA(8) DWPT	true
AR(1)	$0.043_{\pm 0.003}$	$0.057_{\pm 0.005}$	0.039
MA(1)	$0.073_{\pm 0.003}$	$0.068_{\pm 0.002}$	0.063
FDP	$0.107_{\pm 0.005}$	$0.093_{\pm 0.005}$	0.108

• comparison of standard errors, N = 1024:

	LA(0) DW1	LA(0) DW1 1	ue
AR(1)	$0.019_{\pm 0.001}$	$0.018_{\pm 0.001}$	0.014
MA(1)	$0.032_{\pm 0.002}$	$0.024_{\pm 0.001}$	0.022
FDP	$0.054_{\pm 0.004}$	$0.046_{\pm 0.003}$	0.051

LA(8) DWT LA(8) DWPT true

• handles both short & long memory models

Wavelet-Based Bootstrapping: III

• second example: cross-correlation estimate

$$\hat{r}_{0}^{(XY)} \equiv \frac{\sum_{t=0}^{N-1} X_{t} Y_{t}}{\left(\sum_{t=0}^{N-1} X_{t}^{2} \sum_{t=0}^{N-1} Y_{t}^{2}\right)^{1/2}}$$

- to assess null hypothesis $r_0^{(XY)} = 0$,
 - separately generate $\mathbf{X}^{(b)}$ & $\mathbf{Y}^{(b)}$
 - bootstrapped $\hat{r}_0^{(XY)}$ should reflect variability in $\hat{r}_0^{(XY)}$ under null
- example: cross-correlation $\hat{r}_0^{(XY)} = -0.26$ between
 - maximum annual snow-pack level at Mt. Rainier
 - Pacific decadel oscillation index
- can reject null at critical level p = 0.01
- lots of questions to be addressed!
 - what is class of applicable statistics?

Estimation for FDPs: I

- extension of work by Wornell, McCoy & Walden
- problem: estimate d from time series U_t such that

$$U_t = T_t + X_t$$

where

 $-T_t \equiv \sum_{j=0}^r a_j t^j$ is polynomial trend

 $-X_t$ is FDP process, but can have $d \geq \frac{1}{2}$

- DWT wavelet filter of width L has embedded differencing operation of order L/2
- if $\frac{L}{2} \ge r+1$, reduces polynomial trend to 0
- can partition DWT coefficients as

$$\mathbf{W} = \mathbf{W}_s + \mathbf{W}_b + \mathbf{W}_w$$

where

- \mathbf{W}_{s} has scaling coefficients and 0s elsewhere
- $-\mathbf{W}_s$ has boundary-dependent wavelet coefficients
- $-\mathbf{W}_w$ has boundary-independent wavelet coefficients

Estimation for FDPs: II

• since
$$\mathbf{U} = \mathcal{W}^T \mathbf{W}$$
, can write

$$\mathbf{U} = \mathcal{W}^T(\mathbf{W}_s + \mathbf{W}_b) + \mathcal{W}^T\mathbf{W}_w \equiv \widehat{\mathbf{T}} + \widetilde{\mathbf{X}}$$

- example: microbolometric camera data
- can use values in \mathbf{W}_w to form likelihood:

$$L(d,\sigma_{\epsilon}^{2}) \equiv \prod_{j=1}^{J_{0}} \prod_{t=1}^{N'_{j}} \frac{1}{\left(2\pi\sigma_{j}^{2}\right)^{1/2}} e^{-W_{j,t+L'_{j}-1}^{2}/(2\sigma_{j}^{2})}$$

where σ_{ϵ}^2 is innovations variance;

$$\sigma_j^2 \equiv \int_{-1/2}^{1/2} \mathcal{H}_j(f) \frac{\sigma_\epsilon^2}{|2\sin(\pi f)|^{2d}} df;$$

and $\mathcal{H}_j(\cdot)$ is squared gain for $\{h_{j,l}\}$

- works well in Monte Carlo simulations
- for Hansen–Lebedeff series, get $\hat{d} \doteq 0.40 \pm 0.08$
- lots of questions to be addressed!
 - what are properties of $\widehat{\mathbf{T}}$?
 - how to assess significance of $\widehat{\mathbf{T}}$? (extension of Brillinger, 1994)