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Overview of Talk

e overview of discrete wavelet transform (DWT)

— wavelet coefficients and their interpretation

— DWT as a time series decorrelator
e three uses for wavelets

1. testing for variance changes
2. bootstrapping auto/cross-correlation estimates
3. estimating d for stationary/nonstationary

fractional difference processes with trend

e warning: results for 2 & 3 are preliminary



Overview of DWT

o let X = [Xy, X1,..., Xy_1]! be observed time series
(for convenience, assume N integer multiple of 270)

e let YW be N x N orthonormal DW'T matrix
(more precisely: partial DW'T of level J)

e W = WX is vector of DW'T coefficients

e can partition W as follows:
W,
W — :
W,
|V
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e W, contains N; = N/2/ wavelet coefficients

— related to changes of averages at scale 7; = 2771
(75 is gth ‘dyadic’ scale)
— related to times spaced 27 units apart

e V, contains Nj = N/ 270 scaling coefficients

— related to averages at scale \j, = 27

— related to times spaced 27 units apart



Example: DWT of FDP

e X, called fractional difference process (FDP) if it has
a spectral density function (SDF) given by
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e note: for small f, have Sx(f) =~ C/|f]*%;
ie., ‘1/f type process’

e if d =0, FDP is white noise
e if0<d< %, FDP stationary with ‘long memory’
e can extend definition to d > %

— nonstationary 1/f type process

— also called FARIMA(0,d,0) process
e example: DWT of FDP, d = 0.4



Two Consequences of Orthonormality

e multiresolution analysis (MRA)
T Jo 0 1 T J
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(W, partitions W commensurate with W)

— scale-based additive decomposition
— Dj’s & Sy, called details & smooth

— example: Nile River minimum flood levels

e analysis of variance:
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— scale-based decomposition (cf. frequency-based)

— can define wavelet variance 1/%(7']-)

— for FDP, can deduce d from log/log plots since
vy (1)) ~ CTde_l

— example: Nile River minimum flood levels



e jth wavelet filter is band-pass with pass-band [51+

DWT in Terms of Filters

filter X, Xl, ..., Xy_1 to obtain

—1
2PW,, = z hitXi tmodn, t=0,1,...,N—1

where h;; is jth level wavelet filter

— note: circular filtering
subsample to obtain wavelet coeflicients:

Wi =2"W, 55011, t=0,1,...,N; —1,

where W, is tth element of W
examples: Haar, D(4), C(6) & LA(8) wavelet filters
SR
note: jth scale related to interval of frequencies
similarly, scaling filters yield V,
examples: Haar, D(4), C(6) & LA(8) scaling filters

Joth scaling filter is low-pass with pass-band [0, -5 ]



Wavelets as Whitening Filters

e recall DWT of FDP for d = 0.4

e since FDP is stationary process, W; is also
(ignoring terms influenced by circularity)

e can compute SDFs for each W — see figure
e DWT acts as whitening filter

— requires SDF of X to be ~ flat over pass-band
11
— if not true, can use ‘wavelet packet’ transform

(DWPT)
— used by Flandrin, Tewfik & Kim, Wornell,
McCoy & Walden

e three examples built on whitening property

1. testing for variance changes
2. bootstrapping auto/cross-correlation estimates
3. estimating d for stationary /nonstationary

fractional difference processes with trend

e whitening property should help with other problems



Homogeneity of Variance: 1

claim: DW'T" approximately ‘decorrelates’ FDPs

implication: W should resemble white noise
(ignoring coefficients influenced by circularity)

—cov{Ws, W;p} = 0 when t #t'

— var {W;;} should not vary with ¢
(homogeneity of variance)

can test for homogeneity of variance using W

suppose Yy, ..., Yy_1 independent normal RVs with
E{Y;} =0 and var {Y;} = o7

want to test null hypothesis
Hy:o5=0f{=""=0y,

can test Hy versus a variety of alternatives, e.g.,

L2 2 2 _ 2
Hi:op=- =0 #0j 1= =0y,

using normalized cumulative sum of squares



Homogeneity of Variance: Il

e to define test statistic D, start with
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and then compute
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from which we form D = max (D%, D)

e can reject Hy if observed D is ‘too large’

e can quantify ‘too large’ by considering
distribution of D under Hy

e need to find critical value z,, such that
PD>z,)=0«a
for, e.g., a = 0.01, 0.05 or 0.1
e once determined, can perform « level test of Hy:

— compute D statistic from data Yy, ..., Ynv_1

— reject Hy at level a it D > x,,



Homogeneity of Variance: III

e can determine critical values z,, in two ways

— Monte Carlo simulations

— large sample approximation to distribution of D:

P[(N/Q)l/QD > x} ~1+2 %(_1)%—21%2
=1

(reasonable approximation for N > 128)

e idea: given time series X, compute D using
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where L is length of j = 1 level wavelet filter and

e 1
Wj,t = 2]/2Wj,2j(t+1)—17 I(L — 2) (1 — 27)
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— results in ‘level by level’ tests

— above formulation allows for general N
(i.e., N need not be multiple of 2%)

e (): is DW'T decorrelation of FDPs good enough?

e Fig. 9 says yes!



Example: Nile River Minima

recall MRA & wavelet variance plots

application of homogeneity of variance test:

scale

D

Z0.1

Z0.05

Z0.01

1 year

0.1559

0.0945

0.1051

0.1262

2 years

0.1754

0.1320

0.1469

0.1765

4 years

0.1000

0.1855

0.2068

0.2474

8 years

0.2313

0.2572

0.2864

0.3436

it Hy rejected, use ‘nondecimated” DW'T to detect
change point:

— compute rotated cumulative variance curve
— look for time of largest excursion from 0

Fig. 10: change point detection

— 720 AD for level j =1
— 722 AD for level j =2

— agrees well with mosque construction in 715 AD

interpretation differs from Beran & Terrin (1996)



Wavelet-Based Bootstrapping: 1

e Davison & Hinkley, 1998, Chapter 8, discusses
bootstrapping in context of time series analysis

e whitening allows wavelet-based bootstrapping
for certain statistics (but not all)

e first example: lag 1 autocorrelation estimate

e idea: to get standard error of 7,

— compute DWT of X

— sample with replacement from W to form W
(do same with V)

— synthesize X (®) using W & VS?

J

(b)

J

— compute f’%b) for X

— repeat until computer gets tired

(b)

— use standard error of 7”’s for X®)’s to assess
standard error of 7y for X



Wavelet-Based Bootstrapping: 11

e to test scheme, did Monte Carlo study involving

— AR(1) process: X; =0.9X; 1+ ¢
— MA(1) process: X; = € + €1
— FDP with d = 0.45

(b)

e average 77 's have negligible bias
e comparison of standard errors, N = 128:

LA(8) DWT LA(8) DWPT true
AR(1) | 0.04350003 | 0.05710.005 | 0.039
MA(1) | 0.073x0003 | 0.06819002 | 0.063
FDP | 0.107+0005 | 0.09310005 |0.108

e comparison of standard errors, N = 1024:

LA(8) DWT LA(8) DWPT true
AR | 0.01950001 | 0.0182000 | 0.014
MA(1)| 0.032:0002 | 0.02400001 | 0.022
FDP | 005410000 | 0.046.0003 |0.051

e handles both short & long memory models



Wavelet-Based Bootstrapping: 111

e second example: cross-correlation estimate

(XY Yot XY

Ty = 1/2
—1 —1
(Zt o' X2oity Y?)

e to assess null hypothesis r(()XY) =0,

— separately generate X & Y

— bootstrapped r(() Y) should reflect variability in

L(XY)

7o under null
: . aXY)
e example: cross-correlation ry" ~’ = —0.26 between

— maximum annual snow-pack level at Mt. Rainier

— Pacific decadel oscillation index
e can reject null at critical level p = 0.01
e lots of questions to be addressed!

— what is class of applicable statistics?



Estimation for FDPs: 1

extension of work by Wornell, McCoy & Walden

problem: estimate d from time series U; such that
U=1T + Xy

where

-1 =5 a;t’ is polynomial trend

— X; is FDP process, but can have d > %

DWT wavelet filter of width L has embedded differ-
encing operation of order L /2

if % > r + 1, reduces polynomial trend to 0

can partition DW'T coefficients as
W=W,+W;,+W,
where

— W has scaling coefficients and Os elsewhere
— W, has boundary-dependent wavelet coefficients

— W, has boundary-independent wavelet coefficients



Estimation for FDPs: 11

o since U = W!'W, can write
U=W (W, + W)+ W'W,=T+X
e cxample: microbolometric camera data

e can use values in W, to form likelihood:

N e
Ld,od) = I T e 7570
j=1t=1 (27r0?)
where ¢ is innovations variance;
2
2 __ [1/2 T
= H; df;
O'j _1/2 ](f>‘QSiH(7Tf)|2d f;

and H;(-) is squared gain for {h,,}
e works well in Monte Carlo simulations
e for Hansen—Lebedeft series, get d = 0.40 £ 0.08
e lots of questions to be addressed!

— what are properties of T?

— how to assess significance of T
(extension of Brillinger, 1994)



