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Introduction

• goal: investigate nature of interdecadal variability in

climate time series

• shortness of series poses major difficulties

• one approach: fit & compare various models

– oscillator

– nonlinear dynamics (chaos)

– stochastic

• models have different implications

(e.g., nature of regime shifts)

• will investigate influence of choice of stochastic mod-

els on representing North Pacific atmospheric data

– short vs. long memory stochastic models

– two different atmospheric data sets

∗ Fig. 1: average (Nov–Mar) Aleutian low sea

level pressure field (North Pacific index (NPI))

∗ Fig. 2: temperature record at Sitka, Alaska
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Overview of Remainder of Talk

• describe short & long memory stochastic models

• discuss maximum likelihood (ML) estimation of model

parameters

• look at fitted models for NPI & Sitka

• discuss use of goodness of fit tests to assess models

(will find that both models fit equally well)

• discuss how well we can hope to discriminate between

short & long memory models

• look at implications of short & long memory models

with regard to regime shifts

• consider interpretation of long memory models

• state conclusions
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Short & Long Memory Models

• will consider two Gaussian stationary models for data

– first order autoregressive process (AR(1))

– fractionally differenced (FD) process

• both processes fully specified by 3 parameters

(and hence both are equally simple)

1. process mean

2. parameter that controls process variance

3. parameter controlling shape of both

– autocovariance sequence (ACVS) and

– spectral density function (SDF)

• essential difference between processes

– AR(1) ACVS dies down quickly (exponentially),

so process said to have ‘short memory’

– FD ACVS dies down slowly (hyperbolically),

so process said to have ‘long memory’ (LM)
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Short Memory Stochastic Model

• regard data as realization of portionX0, X1, . . . , XN−1

of stationary Gaussian AR(1) process:

Xt − µX = φ(Xt−1 − µX) + εt =
∞∑
k=0
φkεt−k

where

1. µX = E{Xt} is process mean

2. εt is white noise with mean zero and variance σ2
ε

3. |φ| < 1 (if φ = 0, then Xt is white noise)

• ACVS and SDF given by

sX,τ ≡ cov{Xt,Xt+τ} =
σ2
ε φ

|τ |

1 − φ2
& SX(f ) =

σ2
ε

1 + φ2 − 2φ cos(2πf )
,

where τ is an integer & |f | ≤ 1
2

• related to discretized 1st order differential equation

(has single damping constant (related to φ))

• can define measure of decorrelation (or integral time

scale):

τD ≡ 1 + 2
∞∑
τ=1

sX,τ
sX,0

=
1 + φ

1 − φ;

i.e., subseries Xn
τD�, n = . . . ,−1, 0, 1, . . . is close

to white noise
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Long Memory Stochastic Model

• regard data as realization of portion Y0, Y1, . . . , YN−1

of stationary Gaussian FD process:

Yt − µY =
∞∑
k=0

Γ(1 + δ)

Γ(k + 1)Γ(1 + δ − k)(−1)k(Yt−k − µY )

=
∞∑
k=0

Γ(1 − δ)
Γ(k + 1)Γ(1 − δ − k)(−1)kεt−k

where

1. µY = E{Yt} is process mean

2. εt is white noise with mean zero and variance σ2
ε

3. |δ| < 1
2 (if δ = 0, Yt is white noise; LM if δ > 0)

• ACVS and SDF given by

sY,τ =
σ2
ε sin(πδ)Γ(1 − 2δ)Γ(τ + δ)

πΓ(τ + 1 − δ) & SY (f ) =
σ2
ε

|2 sin(πf )|2δ

• for τ ≥ 1 and approximately for large τ & small f ,

sY,τ = sY,τ−1
τ + δ − 1

τ − δ ∝ |τ |2δ−1 and SY (f ) ∝ 1

|f |2δ

• related to aggregation of 1st order differential equa-

tion involving many different damping constants

• integral time scale τD is infinite
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Estimation of Model Parameters: I

• AR(1) process Xt parameterized by µX , φ & σ2
ε

• FD process Yt parameterized by µY , δ & σ2
ε

• given data that can be regarded as realization of

X0, . . . , XN−1 or Y0, . . . , YN−1, can estimate process

mean via sample means:

µ̂X =
1

N

N−1∑
t=0
Xt and µ̂Y =

1

N

N−1∑
t=0
Yt

• can form recentered series:

X̃t ≡ Xt − µ̂X and Ỹt ≡ Yt − µ̂Y
• regard X̃t & Ỹt as zero mean AR(1) & FD processes

• can use to estimate φ & σ2
ε or δ & σ2

ε via maximum

likelihood (ML) method

• large sample theory on ML estimators says

– φ̂ & σ̂2
ε are approximately normally distributed

with means φ & σ2
ε and variances 1−φ2

N & σ4
ε

2N

– δ̂ & σ̂2
ε are approximately normally distributed

with means δ & σ2
ε and variances 6

π2N
& σ4

ε
2N

• Monte Carlo experiments: above valid for N ≥ 100
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Estimation of Model Parameters: II

• can use ML theory to form 95% confidence intervals

(CIs) for unknown parameters

• can adjust ML procedure to handle time series with

missing values (no need to use interpolation)

• can form residuals ε̂t and ε̂t

• can use residuals to test adequacy of model

(if adequate, residuals should resemble white noise)
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Fitted Models for NPI and Sitka

• Tab. 1: parameter estimates & CIs for NPI & Sitka

– AR(1) & FD models both significantly different

from white noise (i.e., φ �= 0 and δ �= 0)

– φ̂’s similar for NPI & Sitka (as are δ̂’s)

– interpolation increases estimated φ̂ & δ̂ for Sitka

• Fig. 3: estimated autocorrelation sequence (ACS)

and estimated SDF (periodogram) for NPI, i.e.,

ρ̂τ ≡
ŝX,τ
ŝX,0

=
∑N−τ−1
t=0 X̃tX̃t+τ∑N−1

t=0 X̃2
t

and Ŝ(fk) ≡
1

N

∣∣∣∣∣∣
N−1∑
t=0
X̃te

−i2πfkt
∣∣∣∣∣∣
2

,

along with ACSs and SDFs from fitted models

– qualitatively, both models seems reasonable

(arguably FD ACS better match to ρ̂τ than AR(1))

– get similar results for Sitka

• can use goodness of fit tests for quantitative assess-

ment of models
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Goodness of Fit Tests: I

1. compare fitted SDF to periodogram:

T1 ≡
NA

4πB2
, where A ≡

�N−1
2 �∑
k=1



Ŝ(fk)

S(fk; θ̂)




2

; B ≡
�N−1

2 �∑
k=1

Ŝ(fk)

S(fk; θ̂)
;

S(fk; θ̂) is theoretical SDF depending on θ̂; and ei-

ther θ̂ = [φ̂, σ̂2
ε ]
T or θ̂ = [δ̂, σ̂2

ε ]
T

2. cumulative periodogram test statistic:

T2 = max


max

l


 l

�N−1
2 � − 1

− Pl

 ,max

l


Pl −

l − 1

�N−1
2 � − 1





 ,

where Pl is the normalized cumulative periodogram

for ε̂t (likewise for ε̂t):

Pl ≡
∑l
k=1 Ŝε̂t(fk)

∑�N−1
2 �

k=1 Ŝε̂t(fk)

3. Box–Pierce portmanteau test statistic:

T3 = N
K∑
τ=1
ρ̂2
ε̂t,τ

where ρε̂t,τ is estimated ACS for ε̂t (likewise for ε̂t)

4. Ljung–Box–Pierce portmanteau test statistic:

T4 = N(N + 2)
K∑
τ=1

ρ̂2
ε̂t,τ

N − τ
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Goodness of Fit Tests: II

• if Tj ‘too big,’ reject ‘model is adequate’ hypothesis

• can determine what is ‘too big’ under null hypothesis

that model is correct

• Tab. 2: model goodness of fit tests for NPI

– can reject white noise model

– cannot reject either AR(1) or FD model for NPI

(some very weak hint that FD is better)

– similar results obtained for Sitka

• Q: can we really expect to distinguish between AR(1)

and FD models given just N = 100 values for NPI?
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AR(1) & FD Model Discrimination

• to address question, consider following experiment

• assume FD model with observed δ̂ is correct for NPI

• simulate time series of length N ′ from FD model

• fit AR(1) model to simulated FD series

• evaluated fitted AR(1) model using each Tj

• repeat above large # of times (2500)

• can estimate probability that Tj will (correctly) re-

ject null hypothesis that AR(1) model is correct

• gives power of Tj in saying AR(1) model is incorrect

• repeat above for variety of sample sizes N ′

• can repeat all of the above with roles of FD & AR(1)

processes interchanged

• Fig. 4: power of various test statistics vs. N ′

– in best case, need N ′ ≈ 500 to have 50% chance

of discriminating between models

– portmanteau tests to be preferred over T1 and T2
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AR(1) & FD Model Implications: I

• no statistical reason to prefer AR(1) over FD model

for NPI (or vice versa)

• both AR(1) & FD models depend on 3 parameters

& hence are equally simple (i.e., cannot appeal to

Occram’s razor here)

• even though both describe NPI equally well, models

can have potentially important implications if one is

selected in favor of the other

• as example, will consider extent to which models sup-

port notion of ‘regimes’ in NPI

• regime is time interval over which series is essentially

either > or < its long term average value

• Fig. 1: plot of NPI and 5 year running mean

– data for 1901–23 are essentially > sample mean

(exceptions are 1905 & 1919)

– called positive regime with duration of 23 years

– clearly identified in 5 year running mean

– latter is essentially < sample mean for 1924–46

(but not strictly so)
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AR(1) & FD Model Implications: II

• Q: how do fitted AR(1) & FD models impact distri-

bution of regime sizes?

• to address question, consider following experiment

• generate deviate δ̃ from normal distribution with mean

δ̂ from NPI and variance 6
π2N

= 6
π2100

• assume FD model with δ̃ is correct for NPI

• simulate time series of length 1024 from FD model

• tabulate sizes of observed regimes in

1. simulated series

2. five year running mean of series

• repeat above 1000 times

• also repeat using fitted AR(1) model for NPI

• Fig. 5: plots of empirically determined probabilities

of regime sizes being ≥ specified sizes

• regime size ≥ 23 is 4 times more likely under FD

model than under AR(1)

• similarly, regime size ≥ 35 is 10 times more likely
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Long Memory Model Interpretation

• for both NPI & Sitka, fitted FD model has δ̂ ≈ 0.2

• allowable range of δ for stationary FD models with

long memory is 0 < δ < 1
2

• as δ → 0, FD process → white noise (‘no memory’)

• as δ → 1
2, FD process has strong long memory effect

• Fig. 6: gives some idea how to interpret δ

1. δ = 0.02 is lower end of 95% CI for δ in NPI case

2. δ = 0.17 is estimated value for NPI

3. δ = 0.32 is upper end of 95% CI

4. δ = 0.45 corresponds to strong LM effect

• simulated series in a given column constructed using

same white noise sequences

• as δ increases, average regime sizes increase

• increase not linear in δ: cases δ = 0.32 & 0.17 similar

& substantially different from δ = 0.02 case

• can thus interpret δ as indicator of how much regime-

like structure there is in a time series
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Conclusions

• AR(1) & FD models equally adequate for time series

considered here (NPI & Sitka)

• cannot realistically hope to distinguish between AR(1)

& FD processes given available sample sizes

• both models include white noise as special case

(both lead to rejection of hypothesis of white noise)

• AR(1) model has rapid drop off of ACVS

• FD model has long tail of small positive correlations

• loose physical considerations might favor FD model

(aggregation of first order differential equations)

• FD model more supportive of regime-like behavior

than AR(1)

• can use δ as indicator of regime-like behavior

• for NPI & Sitka, estimated δ compatible with notion

of regimes, but neither series has strong long memory
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