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Introduction

e goal: investigate nature of interdecadal variability in
climate time series

e shortness of series poses major difficulties
e one approach: fit & compare various models

— oscillator
— nonlinear dynamics (chaos)
— stochastic

e models have different implications
(e.g., nature of regime shifts)

e will investigate influence of choice of stochastic mod-
els on representing North Pacific atmospheric data
— short vs. long memory stochastic models
— two different atmospheric data sets

x Fig. 1. average (Nov—Mar) Aleutian low sea
level pressure field (North Pacific index (NPI))

x Fig. 2: temperature record at Sitka, Alaska



Overview of Remainder of Talk

e describe short & long memory stochastic models

e discuss maximum likelihood (ML) estimation of model
parameters

e look at fitted models for NPI & Sitka

e discuss use of goodness of fit tests to assess models
(will find that both models fit equally well)

e discuss how well we can hope to discriminate between
short & long memory models

e look at implications of short & long memory models
with regard to regime shifts

e consider interpretation of long memory models

e state conclusions



Short & Long Memory Models

e will consider two Gaussian stationary models for data

— first order autoregressive process (AR(1))
— fractionally differenced (FD) process
e both processes fully specified by 3 parameters
(and hence both are equally simple)
1. process mean
2. parameter that controls process variance
3. parameter controlling shape of both

— autocovariance sequence (ACVS) and

— spectral density function (SDF)

e cssential difference between processes

— AR(1) ACVS dies down quickly (exponentially),
so process said to have ‘short memory’

— FD ACVS dies down slowly (hyperbolically),
so process said to have ‘long memory” (LM)



Short Memory Stochastic Model

e regard data as realization of portion X, X1, ..., Xy_1
of stationary Gaussian AR(1) process:

Xi— px = Qb(Xt_l — NX) + € = go ¢k€t—k
where

1. px = E{X;} is process mean
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2. € is white noise with mean zero and variance o

3. |¢| <1 (if ¢ =0, then X; is white noise)
e ACVS and SDF given by

SX,T:COV{ ty t+T}_ 1_¢2 X(f)_ 1—|—¢2—2¢COS(27T]C)’

where 7 is an integer & |f] < 3

e related to discretized 1st order differential equation
(has single damping constant (related to ¢))

e can define measure of decorrelation (or integral time

scale):
X SX,r 1+¢
=142 — = ;
D Tzz:l SX’O 1 - ¢
i.e., subseries Xn(TD% n=...,—1,0,1,... is close

to white noise



Long Memory Stochastic Model

e regard data as realization of portion Yy, Y7, ..., Yv_1
of stationary Gaussian F'D process:

S ['(1+9)
e = kz::O Nk+DI'(1+0—k) (_1)k(Yt—k — y)
S ['(1—9)
- kz—:o Pk+1)I(1—6—k) (—1) &4

where

1. py = E{Y;} is process mean

2. g; is white noise with mean zero and variance o>

3. 18] < 5 (if 6 =0, Y is white noise; LM if § > 0)
e ACVS and SDF given by

o? sin(md)L(1 — 26)I(7 + 6) o’
= & Sy(f) = — "¢
o, nl(t+1—9) v(f) |2 sin (7 f)]20
e for 7 > 1 and approximately for large 7 & small f,

Sys =8y,1—= X |T and Sy (f) o< 5=
r—s I 17

e related to aggregation of 1st order differential equa-
tion involving many different damping constants

e integral time scale 7p is infinite
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Estimation of Model Parameters: 1

e AR(1) process X; parameterized by ux, ¢ & o2
e I'D process Y; parameterized by py, § & o?

e given data that can be regarded as realization of

Xo,...,Xy_10rYy,...,Yy_1, can estimate process
mean via sample means:

X 1 N—1 1 1 N—1

px = 2 Xpand py = — > Y

e can form recentered series:
Xi=X,—jx and Y, =Y, — fiy
o regard X; & Y; as zero mean AR(1) & FD processes

e can use to estimate ¢ & o2 or § & ¢ via maximum

likelihood (ML) method
e large sample theory on ML estimators says

— (ﬁ & 62 are approximately normally distributed
: 2 : 1-¢ g, ¢
\imth means ¢ & o7 and variances - & 5%

— 0 & 62 are approximately normally distributed

4
; 2 : 6 Oc
with means § & o2 and variances - & 55

e Monte Carlo experiments: above valid for N > 100



Estimation of Model Parameters: 11

e can use ML theory to form 95% confidence intervals
(ClIs) for unknown parameters

e can adjust ML procedure to handle time series with
missing values (no need to use interpolation)

e can form residuals ¢; and &

e can use residuals to test adequacy of model
(if adequate, residuals should resemble white noise)



Fitted Models for NPI and Sitka

e Tab. 1. parameter estimates & ClIs for NPI & Sitka
— AR(1) & FD models both significantly different
from white noise (i.e., ¢ # 0 and § # 0)
— ¢’s similar for NPI & Sitka (as are §’s)
— interpolation increases estimated qg & & for Sitka

e Fig. 3: estimated autocorrelation sequence (ACS)

and estimated SDF (periodogram) for NPIL, i.e.,
C_Sxr ST XX, : 1 ’

= = = and S = —

§X,O Z,{iﬁl Xt2 (fk) N

Pr =
along with ACSs and SDFs from fitted models

)

N—-1 __ .
Z Xte—l27Tfkt
t=0

— qualitatively, both models seems reasonable
(arguably FD ACS better match to p, than AR(1))

— get similar results for Sitka

e can use goodness of fit tests for quantitative assess-
ment of models



Goodness of Fit Tests: 1

1. compare fitted SDF to periodogram'
N 1
5

RS
T = NAQ, where A = Z (fk) . B = 22: S<fk>A ;
inB =1 \S(fi; 0) k=1 S(fy:0)
S(fw: 0 0) iSAtheoretical SDF depending on 6; and ei-
ther@—[ 2] or@-[d (32]

2. cumulative periodogram test statistic:

]

where P is the normalized cumulative periodogram

for é (likewise for &;):
Zg{::l S@t (fk‘)
55 ¢
=1 Sﬁt(fk)
3. Box—Pierce portmanteau test statistic:
Ko
=N X Péy.r
=1

where pg, ; is estimated ACS for ¢ (likewise for &;)

P =

4. Ljung-Box-Pierce portmanteau test statistic:

K /32
Ty, = N(N + 2 T
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Goodness of Fit Tests: 11

e if T} “too big,” reject ‘model is adequate” hypothesis

e can determine what is ‘too big’ under null hypothesis
that model is correct

e Tab. 2: model goodness of fit tests for NPI

— can reject white noise model

— cannot reject either AR(1) or FD model for NPI
(some very weak hint that FD is better)

— similar results obtained for Sitka

e (): can we really expect to distinguish between AR(1)
and F'D models given just N = 100 values for NPI?
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AR(1) & FD Model Discrimination

e to address question, consider following experiment
e assume FD model with observed ¢ is correct for NPI

e simulate time series of length N’ from FD model

e fit AR(1) model to simulated FD series

evaluated fitted AR(1) model using each T}
e repeat above large # of times (2500)

e can estimate probability that 7j will (correctly) re-
ject null hypothesis that AR(1) model is correct

e gives power of T} in saying AR(1) model is incorrect
e repeat above for variety of sample sizes N’

e can repeat all of the above with roles of FD & AR(1)
processes interchanged

e Fig. 4: power of various test statistics vs. N/

— in best case, need N’ = 500 to have 50% chance
of discriminating between models

— portmanteau tests to be preferred over T and 715
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AR(1) & FD Model Implications: I

e no statistical reason to prefer AR(1) over FD model
for NPI (or vice versa)

e both AR(1) & FD models depend on 3 parameters
& hence are equally simple (i.e., cannot appeal to
Occram’s razor here)

e cven though both describe NPI equally well, models
can have potentially important implications if one is
selected in favor of the other

e as example, will consider extent to which models sup-
port notion of ‘regimes’ in NPI

e regime is time interval over which series is essentially
either > or < its long term average value

e Fig. 1. plot of NPI and 5 year running mean

— data for 1901-23 are essentially > sample mean
(exceptions are 1905 & 1919)

— called positive regime with duration of 23 years

— clearly identified in 5 year running mean

— latter is essentially < sample mean for 192446
(but not strictly so)
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AR(1) & FD Model Implications: II

e ): how do fitted AR(1) & FD models impact distri-

bution of regime sizes?
e to address question, consider following experiment

e generate deviate 0 from normal distribution with mean

6 _ 6
2N T 72100

6 from NPI and variance =
e assume FD model with 4 is correct for NPI
e simulate time series of length 1024 from FD model
e tabulate sizes of observed regimes in

1. simulated series

2. five year running mean of series
e repeat above 1000 times
e also repeat using fitted AR(1) model for NPI

e Fig. 5: plots of empirically determined probabilities
of regime sizes being > specified sizes

e regime size > 23 is 4 times more likely under FD

model than under AR(1)

e similarly, regime size > 35 is 10 times more likely
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Long Memory Model Interpretation

for both NPI & Sitka, fitted FD model has 5~ 0.2

allowable range of ¢ for stationary FD models with
long memory is 0 < § < %

as 0 — 0, FD process — white noise (‘no memory’)
as 0 — %, F'D process has strong long memory effect

Fig. 6: gives some idea how to interpret ¢

1. 6 = 0.02 is lower end of 95% CI for ¢ in NPI case
2. 0 = 0.17 is estimated value for NPI

3. 6 = 0.32 is upper end of 95% CI

4. 6 = 0.45 corresponds to strong LM effect

simulated series in a given column constructed using
same white noise sequences

as 0 increases, average regime sizes increase

increase not linear in 9: cases 0 = 0.32 & 0.17 similar
& substantially different from ¢ = 0.02 case

can thus interpret  as indicator of how much regime-
like structure there is in a time series
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Conclusions

e AR(1) & FD models equally adequate for time series
considered here (NPI & Sitka)

e cannot realistically hope to distinguish between AR(1)
& FD processes given available sample sizes

e both models include white noise as special case
(both lead to rejection of hypothesis of white noise)

e AR(1) model has rapid drop off of ACVS
e 'D model has long tail of small positive correlations

e loose physical considerations might favor FD model
(aggregation of first order differential equations)

e 'D model more supportive of regime-like behavior

than AR(1)
e can use 0 as indicator of regime-like behavior

e for NPI & Sitka, estimated ¢ compatible with notion
of regimes, but neither series has strong long memory
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