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Overview of Talk

• overview of discrete wavelet transform (DWT)

– wavelet coefficients and their interpretation

– DWT as a time series decorrelator

• three uses for wavelets (many more!)

1. testing for variance changes

2. bootstrapping auto/cross-correlation estimates

3. estimating δ for stationary/nonstationary

fractional difference processes with trend

2



Overview of DWT

• let X = [X0, X1, . . . , XN−1]
T be observed time series

(for convenience, assume N integer multiple of 2J0)

• let W be N ×N orthonormal DWT matrix

(more precisely: partial DWT of level J0)

• W = WX is vector of DWT coefficients

• can partition W as follows:

W =




W1
...

WJ0

VJ0




• Wj contains Nj = N/2j wavelet coefficients

– related to changes of averages at scale τj = 2j−1

(τj is jth ‘dyadic’ scale)

– related to times spaced 2j units apart

• VJ0 contains NJ0 = N/2J0 scaling coefficients

– related to averages at scale λJ0 = 2J0

– related to times spaced 2J0 units apart
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Example: DWT of FD Process

• Xt called fractional difference (FD) process if it has

a spectral density function (SDF) given by

SX(f ) =
σ2

|2 sin(πf )|2δ ,

where σ2 > 0 and −1
2 ≤ δ < 1

2

• note: for small f , have SX(f ) ≈ C/|f |2δ;
i.e., ‘1/f type process’

• if δ = 0, FD process is white noise

• if 0 < δ < 1
2, process stationary with ‘long memory’

• can extend definition to δ ≥ 1
2

– nonstationary 1/f type process

– also called ARFIMA(0,δ,0) process

• Fig. 1: DWT of FD time series with δ = 0.4
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Two Consequences of Orthonormality

• multiresolution analysis (MRA)

X = WTW =
J0∑
j=1

WT
j Wj + VT

J0
VJ0 ≡

J0∑
j=1

Dj + SJ0

(Wj partitions W commensurate with Wj)

– scale-based additive decomposition

– Dj’s & SJ0 called details & smooth

– Fig. 2: Nile River minimum flood levels

• analysis of variance:

σ̂2
X ≡ 1

N

N−1∑
t=0

(Xt −X)
2

=
1

N


 J0∑
j=1

‖Wj‖2 + ‖VJ0‖2


−X

2

– scale-based decomposition (cf. frequency-based)

– can define wavelet variance ν2
X(τj)

– for FD process, can deduce δ from log/log plots

since

ν2
X(τj) ≈ Cτ 2δ−1

j

– Fig. 3: Nile River minimum flood levels
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DWT in Terms of Filters

• filter X0, X1, . . . , XN−1 to obtain

2j/2W̃j,t ≡
Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N − 1

where hj,l is jth level wavelet filter

– note: circular filtering

• subsample to obtain wavelet coefficients:

Wj,t = 2j/2W̃j,2j(t+1)−1, t = 0, 1, . . . , Nj − 1,

where Wj,t is tth element of Wj

• Figs. 4 & 5: Haar, D(4), C(6) & LA(8) wavelet filters

• jth wavelet filter is band-pass with pass-band [ 1
2j+1 ,

1
2j ]

• note: jth scale related to interval of frequencies

• similarly, scaling filters yield VJ0

• Figs. 6 & 7: Haar, D(4), C(6) & LA(8) scaling filters

• J0th scaling filter is low-pass with pass-band [0, 1
2J0+1 ]
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Wavelets as Whitening Filters

• recall Fig. 1: DWT of FD time series with δ = 0.4

• since FD process is stationary, Wj is also

(ignoring terms influenced by circularity)

• Fig. 8: SDFs for each Wj

• DWT acts as whitening filter

– requires SDF of X to be ≈ flat over pass-band

[ 1
2j+1 ,

1
2j ]

– if not true, can use ‘wavelet packet’ transform

(DWPT)

– used by Flandrin, Tewfik & Kim, Wornell,

McCoy & Walden

• three examples built on whitening property

1. testing for variance changes

2. bootstrapping auto/cross-correlation estimates

3. estimating δ for stationary/nonstationary

fractional difference processes with trend

• whitening property should help with other problems
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Homogeneity of Variance: I

• claim: DWT approximately ‘decorrelates’ FD pro-

cesses

• implication: Wj should resemble white noise

(ignoring coefficients influenced by circularity)

– cov {Wj,t,Wj,t′} ≈ 0 when t �= t′

– var {Wj,t} should not vary with t

(homogeneity of variance)

• can test for homogeneity of variance using Wj

• suppose Y0, . . . , YN−1 independent normal RVs with

E{Yt} = 0 and var {Yt} = σ2
t

• want to test null hypothesis

H0 : σ2
0 = σ2

1 = · · · = σ2
N−1

• can test H0 versus a variety of alternatives, e.g.,

H1 : σ2
0 = · · · = σ2

k �= σ2
k+1 = · · · = σ2

N−1

using normalized cumulative sum of squares
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Homogeneity of Variance: II

• to define test statistic D, start with

Pk ≡
∑k
j=0 Y

2
j∑N−1

j=0 Y 2
j

, k = 0, . . . , N − 2

and then compute

D+ ≡ max
0≤k≤N−2


 k + 1

N − 1
− Pk


 & D− ≡ max

0≤k≤N−2


Pk −

k

N − 1




from which we form D ≡ max (D+, D−)

• can reject H0 if observed D is ‘too large’

• can quantify ‘too large’ by considering

distribution of D under H0

• need to find critical value xα such that

P[D ≥ xα] = α

for, e.g., α = 0.01, 0.05 or 0.1

• once determined, can perform α level test of H0:

– compute D statistic from data Y0, . . . , YN−1

– reject H0 at level α if D ≥ xα
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Homogeneity of Variance: III

• can determine critical values xα in two ways

– Monte Carlo simulations

– large sample approximation to distribution of D:

P[(N/2)1/2D ≥ x] ≈ 1 + 2
∞∑
l=1

(−1)le−2l2x2

(reasonable approximation for N ≥ 128)

• idea: given time series X, compute D using

Wj,t = 2j/2W̃j,2j(t+1)−1,


(L− 2)


1 − 1

2j





 ≤ t ≤

N
2j

− 1

 ,
where L is length of j = 1 level wavelet filter and

2j/2W̃j,t ≡
Lj−1∑
l=0

hj,lXt−l mod N

– results in ‘level by level’ tests

– above formulation allows for general N

(i.e., N need not be multiple of 2J0)

• Q: is DWT decorrelation of FD processes good enough?

• Fig. 9: yes!
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Example: Nile River Minima

• recall MRA & wavelet variance plots

• application of homogeneity of variance test:

scale D x0.1 x0.05 x0.01

1 year 0.1559 0.0945 0.1051 0.1262

2 years 0.1754 0.1320 0.1469 0.1765

4 years 0.1000 0.1855 0.2068 0.2474

8 years 0.2313 0.2572 0.2864 0.3436

• if H0 rejected, use ‘nondecimated’ DWT to detect

change point:

– compute rotated cumulative variance curve

– look for time of largest excursion from 0

• Fig. 10: change point detection

– 720 AD for level j = 1

– 722 AD for level j = 2

– agrees well with mosque construction in 715 AD

• interpretation differs from Beran & Terrin (1996)
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Wavelet-Based Bootstrapping: I

• Davison & Hinkley, 1998, Chapter 8, discusses

bootstrapping in context of time series analysis

• whitening allows wavelet-based bootstrapping

for certain statistics (but not all)

• first example: lag 1 autocorrelation estimate

r̂1 ≡
∑N−2
t=0 XtXt+1∑N−1

t=0 X2
t

• idea: to get standard error of r̂1,

– compute DWT of X

– sample with replacement from Wj to form W
(b)
j

(do same with VJ0)

– synthesize X(b) using W
(b)
j ’s & V

(b)
J0

– compute r̂
(b)
1 for X(b)

– repeat until computer gets tired

– use standard error of r̂
(b)
1 ’s for X(b)’s to assess

standard error of r̂1 for X
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Wavelet-Based Bootstrapping: II

• to test scheme, did Monte Carlo study involving

– AR(1) process: Xt = 0.9Xt−1 + εt

– MA(1) process: Xt = εt + εt−1

– FD process with δ = 0.45

• average r̂
(b)
1 ’s have negligible bias

• comparison of standard errors, N = 128:

LA(8) DWT LA(8) DWPT true

AR(1) 0.057 0.052 0.048

MA(1) 0.071 0.068 0.063

FD 0.094 0.083 0.107

• comparison of standard errors, N = 1024:

LA(8) DWT LA(8) DWPT true

AR(1) 0.016 0.015 0.014

MA(1) 0.026 0.024 0.022

FD 0.044 0.042 0.053

• handles both short & long memory models
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Wavelet-Based Bootstrapping: III

• second example: cross-correlation estimate

r̂
(XY )
0 ≡

∑N−1
t=0 XtYt(∑N−1

t=0 X2
t

∑N−1
t=0 Y 2

t

)1/2

• to assess null hypothesis r
(XY )
0 = 0,

– separately generate X(b) & Y(b)

– bootstrapped r̂
(XY )
0 should reflect variability in

r̂
(XY )
0 under null

• Fig. 11: two time series

– maximum annual snow-pack level at Mt. Rainier

– Pacific decadel oscillation index

• cross-correlation estimate is r̂
(XY )
0 = −0.26

• Q: is this significantly different from 0?

• Fig. 12: yes, can reject null at critical level p = 0.01
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Estimation for FD Processes: I

• extension of work by Wornell, McCoy & Walden

• problem: estimate δ from time series Ut such that

Ut = Tt + Xt

where

– Tt ≡ ∑r
j=0 ajt

j is polynomial trend

– Xt is FD process, but can have δ ≥ 1
2

• DWT wavelet filter of width L has embedded differ-

encing operation of order L/2

• if L
2 ≥ r + 1, reduces polynomial trend to 0

• can partition DWT coefficients as

W = Ws + Wb + Ww

where

– Ws has scaling coefficients and 0s elsewhere

– Ws has boundary-dependent wavelet coefficients

– Ww has boundary-independent wavelet coefficients
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Estimation for FD Processes: II

• since U = WTW, can write

U = WT (Ws + Wb) + WTWw ≡ T̂ + X̃

• Fig. 13: Hansen–Lebedeff global temperature index

• can use values in Ww to form likelihood:

L(δ, σ2
ε ) ≡

J0∏
j=1

N ′
j∏

t=1

1(
2πσ2

j

)1/2
e
−W 2

j,t+L′j−1
/(2σ2

j )

where σ2
ε is innovations variance;

σ2
j ≡

∫ 1/2

−1/2
Hj(f )

σ2
ε

|2 sin(πf )|2δ df ;

and Hj(·) is squared gain for {hj,l}
• works well in Monte Carlo simulations

• for Hansen–Lebedeff series, get δ̂ .= 0.40 ± 0.08

• can also test for significance of T̂
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