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Abstract The wavelet variance is a scale-based decomposition of the pro-
cess variance for a time series and has been used to analyze, for example,
time deviations in atomic clocks, variations in soil properties in agricultural
plots, accumulation of snow fields in the polar regions and marine atmospheric
boundary layer turbulence. We propose two new unbiased estimators of the
wavelet variance when the observed time series is ‘gappy,’ i.e., is sampled at
regular intervals, but certain observations are missing. We deduce the large
sample properties of these estimators and discuss methods for determining
an approximate confidence interval for the wavelet variance. We apply our
proposed methodology to series of gappy observations related to atmospheric
pressure data and Nile River minima.

Keywords Cumulant · Fractionally differenced process · Local stationarity ·
Nile River minima · Semi-variogram · TAO data

1 Introduction

In recent years, there has been great interest in using wavelets to analyze data
arising from various scientific fields. The pioneering work of Donoho, Johnstone
and co-workers on wavelet shrinkage sparked this interest, and wavelet meth-
ods have been used to study a large number of problems in signal and image
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processing including density estimation, deconvolution, edge detection, non-
parametric regression and smooth estimation of evolutionary spectra. See, for
example, Candès and Donoho (2002), Donoho et al. (1995), Donoho and John-
stone (1998), Genovese and Wasserman (2005), Hall and Penev (2004), Kalifa
and Mallat (2003), Neumann and von Sachs (1997) and references therein.
Wavelets also give rise to the concept of the wavelet variance (also called the
wavelet power spectrum), which decomposes the sample variance of a time
series on a scale by scale basis and provides a time- and scale-based analysis
of variance. Here ‘scale’ refers to a fixed interval or span of time (Percival,
1995). The wavelet variance is particularly useful as an exploratory tool to
identify important scales, to assess properties of long memory processes, to
detect inhomogeneity of variance in time series and to estimate time-varying
power spectra (thus complementing classical Fourier analysis). Applications
include the analysis of time series related to electroencephalographic sleep
state patterns of infants (Chiann and Morettin, 1998), the El Niño–Southern
Oscillation (Torrence and Compo, 1998), soil variations (Lark and Webster,
2001), solar coronal activity (Rybák and Dorotovič, 2002), the relationship
between rainfall and runoff (Labat et al., 2001), ocean surface waves (Massel,
2001), surface albedo and temperature in desert grassland (Pelgrum et al.,
2000), heart rate variability (Pichot et al., 1999) and the stability of the time
kept by atomic clocks (Greenhall et al, 1999).

1.1 Variance decomposition

If Xt (t ∈ Z) is a second-order stationary process, a fundamental property of
the wavelet variance is that it breaks up the process variance into pieces, each
of which represents the contribution to the overall variance due to variablity
on a particular scale. In mathematical notation,

var (Xt) =
∞∑

j=1

ν2
X(τj),

where ν2
X(τj) is the wavelet variance associated with dyadic scale τj = 2j−1;

see equation (2.5) for the precise definition. Roughly speaking, ν2
X(τj) is a

measure of how much a weighted average of Xt over an interval of τj differs
from a similar average in an adjacent interval. A plot of ν2

X(τj) against τj

thus reveals which scales are important contributors to the process variance.
The wavelet variance is also well-defined if Xt is intrinsically stationary, which
means that Xt is nonstationary but its backward differences of a certain order
d are stationary. For such a process the wavelet variance at individual scales
τj exists and serves as a meaningful description of variablity of the process.



Wavelet Variance Analysis for Gappy Data 3

1.2 Scalogram

If Xt is intrinsically stationary and has an associated spectral density function
(SDF) SX , the wavelet variance provides a simple regularization of SX in the
sense that

ν2
X(τj) ≈ 2

∫ 2−j

2−j−1

SX(f) df.

The wavelet variance thus summarizes the information in the SDF using just
one value per octave band f ∈ [2−j−1, 2−j] and is particularly useful when the
SDF is relatively featureless within each octave band. Suppose for example that
Xt is a pure power law process, which means that its SDF is proportional to
|f |α. Then, with a suitable choice of the wavelet filter, ν2

X(τj) is approximately
proportional to τ−α−1

j . The scalogram is a plot of log{ν2
X(τj)} versus log(τj).

If it is approximately linear, a power law process is indicated, and the exponent
α of the power law can be determined from the slope of the line. Thus for this
and other simple models there is no loss in using the summary given by the
wavelet variance.

1.3 Local Stationarity

Wavelet analysis is particularly useful to handle data that exhibit inhomo-
geneities. For example if the assumption of stationarity is in question, an
alternative assumption is that the time series is locally stationary and can be
divided into homogenous blocks (see Section 7.2 for an example of a time series
for which the homogeneity assumption is questionable). The wavelet variance
can be used to check the need for this more complicated approach. Moreover,
when stationarity is questionable, as an alternative to dividing the time series
into disjoint blocks, we can compute wavelet power spectra within a data win-
dow and compare its values as the window slides through the time series. The
typical situation is geophysics is that more observations are collected with the
passage of time rather than by, e.g., sampling more finely over a fixed finite
interval, so we do not consider procedures where more data are entertained
via an in-fill mechanism.

1.4 Gappy series

In practice, time series collected in various fields often deviate from regular
sampling by having missing values (‘gaps’) amongst otherwise regularly sam-
pled observations. As is also the case with the classical Fourier transform, the
usual discrete wavelet transform is designed for regularly sampled observations
and cannot be applied directly to time series with gaps. In geophysics, gaps
are often handled by interpolating the data, see e.g., Vio et al. (2000), but
such schemes are faced with the problem of bias and of deducing what effect
interpolation has had on any resulting statistical inference. There are various
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definitions for nonstandard wavelet transforms that could be applied to gappy
data, with the ‘lifting’ scheme being a prominent example (Sweldens, 1997).
The general problem with this approach is that the wavelet coefficients are
not truly associated with particular scales of interest, thus making it hard
to draw meaningful scale-dependent inferences. The methodologies developed
here overcome these problems. Wavelet analysis has also been discussed in the
context of irregular time series (Foster, 1996), and in the context of signals
with continuous gaps (Frick and Tchamitchian, 1998). Related works address
the problem of the spectral analysis of gappy data (Stoica et al., 2000). The
statistical properties of some of these methodologies are unknown and not
easy to derive. We return to this in Section 8 and indicate how we can use our
wavelet variance estimator to estimate the SDF for gappy data.

This paper is laid out as follows. In Section 2 we discuss estimation of
the wavelet variance for gap-free time series. In Section 3 and 4 we describe
estimation and construction of confidence intervals for the wavelet variance
based upon gappy time series. In Section 5 we compare various estimates and
perform some simulation studies on autoregressive and fractionally differenced
processes, while Section 6 describes schemes for estimating wavelet variance
for time series with stationary dth order backward differences. We consider two
examples involving gappy time series related to atmospheric pressure and Nile
River minima in Section 7. Finally we end with some discussion in Section 8.

2 Wavelet variance estimation for non-gappy time series

Let h1,l denote a unit level Daubechies wavelet filter of width L normalized
such that

∑
l h

2
1,l = 1

2 (Daubechies, 1992). The transfer function for this filter,
i.e., its discrete Fourier transform (DFT)

H1(f) =
L−1∑

l=0

h1,le
−i2πfl,

has a corresponding squared gain function by definition satisfying

H1(f) ≡ |H1(f)|2 = sinL(πf)

L
2
−1∑

l=0

(L
2 − 1 + l

l

)
cos2l(πf). (2.1)

We note that h1,l can be expressed as the convolution of L
2 first difference filters

and a single averaging filter that can be obtained by performing L
2 cumulative

summations on h1,l. The jth level wavelet filter hj,l is defined as the inverse
DFT of

Hj(f) = H(2j−1f)

j−2∏

l=0

e−i2π2lf(L−1)H(1
2 − 2lf). (2.2)
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The width of this filter is given by Lj ≡ (2j − 1)(L − 1) + 1. We denote the
corresponding squared gain function by Hj . Since Hj(0) = 0, it follows that

Lj−1∑

l=0

hj,l = 0. (2.3)

For a nonnegative integer d, let Xt (t ∈ Z) be a process with dth order
stationary increments, which implies that

Yt ≡
d∑

k=0

(
d

k

)
(−1)kXt−k (2.4)

is a stationary process. Let SX and SY represent the SDFs for Xt and Yt.
These SDFs are defined over the Fourier frequencies f ∈ [− 1

2
, 1

2
] and are

related by SY (f) = [2 sin(πf)]2dSX(f). We can take the wavelet variance at
scale τj = 2j−1 to be defined as

ν2
X(τj) ≡

∫ 1/2

−1/2

Hj(f)SX(f) df. (2.5)

By virtue of (2.1) and (2.2), the wavelet variance is well defined for L ≥ 2d.
When d = 0 so that Xt is a stationary process with autocovariance sequence
(ACVS) sX,k ≡ cov {Xt, Xt+k}, then we can rewrite the above as

ν2
X(τj) =

Lj−1∑

l=0

Lj−1∑

l′=0

hj,lhj,l′sX,l−l′ . (2.6)

When d = 1, the increment process Yt = Xt − Xt−1 rather than Xt itself is
stationary, in which case the above equation can be replaced by one involving
the ACVS for Yt and the cumulative sum of hj,l (Craigmile and Percival,
2005). Alternatively, let γX,k = 1

2
var (X0 − Xk) denote the semi-variogram of

Xt. Then the wavelet variance can be expressed as

ν2
X(τj) = −

Lj−1∑

l=0

Lj−1∑

l′=0

hj,lhj,l′γX,l−l′ . (2.7)

The above equation also holds when Xt is stationary.

Given an observed time series that can be regarded as a realization of
X0, . . . , XN−1 and assuming the sufficient condition L > 2d, an unbiased es-
timator of ν2

X(τj) is given by

ν̂2
X(τj) ≡

1

Mj

N−1∑

t=Lj−1

W 2
j,t,
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where Mj ≡ N − Lj + 1, and

Wj,t ≡

Lj−1∑

l=0

hj,lXt−l.

The wavelet coefficient process Wj,t is stationary with mean zero, an SDF given
by Hj(f)SX(f) and an ACVS to be denoted by sj,k. The following theorem
holds (Percival, 1995).

Theorem 2.1 Let Wj,t be a mean zero Gaussian stationary process satisfying
the square integrable condition

Aj ≡

∫ 1/2

−1/2

H2
j (f)S2

X(f) df =

∞∑

k=−∞

s2
j,k < ∞.

Then ν̂2
X(τj) is asymptotically normal with mean ν2

X(τj) and large sample
variance 2Aj/Mj.

In practical applications, Aj is estimated by

Âj = 1
2
ŝ2

j,0 +

Mj−1∑

k=1

ŝ2
j,k,

where

ŝj,k =
1

Mj

N−1−|k|∑

t=Lj−1

Wj,tWj,t+|k|

is the usual biased estimator of the ACVS for a process whose mean is known
to be zero. Theorem 2.1 provides a simple basis for constructing confidence
intervals for the wavelet variance ν2

X(τj).

3 Wavelet variance estimation for gappy time series

We consider first the case d = 0, so that Xt itself is stationary with ACVS sX,k

and variogram γX,k. Consider a portion X0, . . . , XN−1 of this process. Let δt be
the corresponding gap pattern, assumed to be a portion of a binary stationary
process independent of Xt. The random variable δt assumes the values of 0
or 1 with nonzero probabilities, with zero indicating that the corresponding
realization for Xt is missing. Define

β−1
k = Pr (δt = 1 and δt+k = 1),

which is necessarily greater than zero. For 0 ≤ l, l′ ≤ Lj − 1, let

β̂−1
l,l′ ≡

1

Mj

N−1∑

t=Lj−1

δt−lδt−l′ .
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We assume that β̂−1
l,l′ > 0 for all l and l′. For a fixed j, this condition will hold

asymptotically almost surely, but it can fail for finite N for a time series with
too many gaps, a point that we return to in Section 8. By the weak law of
large numbers, β̂−1

l,l′ is a consistent estimator of β−1
l−l′ as N → ∞.

Consider the following two statistics:

ûX(τj) ≡
1

Mj

N−1∑

t=Lj−1

Lj−1∑

l=0

Lj−1∑

l′=0

hj,lhj,l′ β̂l,l′Xt−lXt−l′δt−lδt−l′ (3.1)

and

v̂X(τj) ≡ −
1

2Mj

N−1∑

t=Lj−1

Lj−1∑

l=0

Lj−1∑

l′=0

hj,lhj,l′ β̂l,l′ (Xt−l − Xt−l′)
2 δt−lδt−l′ . (3.2)

When δt = 1 for all t (the gap-free case), both statistics collapse to ν̂2
X(τj).

Conditioning on the observed gap pattern δ = (δ0, . . . , δN−1), it follows that

E{ûX(τj) | δ} = E{v̂X(τj) | δ} = ν2
X(τj)

and hence that both statistics are unconditionally unbiased estimators of
ν2

X(τj); however, whereas ν̂2
X(τj) ≥ 0 necessarily in the gap-free case, these

two estimators can be negative.

Remark 3.1 In the gappy case, the covariance type estimator ûX(τj) does not
remain invariant if we add a constant to the original process Xt, whereas
the variogram type estimator v̂X(τj) does. In practical applications, this fact
becomes important if the sample mean of the time series is large compared
to its sample standard deviation, in which case it is important to use ûX(τj)
only after centering the series by subtracting off the sample mean.

4 Large sample properties of ûX(τj) and v̂X(τj)

For a fixed j, define the following stochastic processes:

Zu,j,t ≡

Lj−1∑

l=0

Lj−1∑

l′=0

hj,lhj,l′βl−l′Xt−lXt−l′δt−lδt−l′ , (4.1)

and

Zv,j,t ≡ − 1
2

Lj−1∑

l=0

Lj−1∑

l′=0

hj,lhj,l′βl−l′(Xt−l − Xt−l′)
2δt−lδt−l′ . (4.2)

The processes Zu,j,t and Zv,j,t are both stationary with mean ν2
X(τj), and both

collapse to W 2
j,t in the gap-free case. Our estimators ûX(τj) and v̂X(τj) are

essentially sample means of Zu,j,t or Zv,j,t, with βl−l′ replaced by β̂l,l′ . At this
point we assume the following technical condition about our gap process.
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Assumption 4.1 For fixed j, let Vp,t = δt−lδt−l′ for p = (l, l′) and l, l′ =
0, . . . , Lj − 1. We assume that the covariances of Vp1,t and Vp2,t are absolutely
summable and the higher order cumulants satisfy

N−1∑

t1=0

· · ·

N−1∑

tn=0

|cum(Vp1,t1 , . . . , Vpn,tn
)| = o(Nn/2) (4.3)

for n = 3, 4, . . . and for fixed p1, . . . , pn.

Remark 4.1 Assumption 4.1 holds for a wide range of binary processes. For
example, if δt is derived by thresholding a stationary Gaussian process whose
covariances are absolutely summable, then the higher order cumulants of Vp,t

are absolutely summable. Note that Assumption 4.1 is weaker than the as-
sumption that the cumulants are absolutely summable. This latter assump-
tion has been used to prove central limit theorems in other contexts; see, e.g.,
Assumption 2.6.1 of Brillinger (1981).

The following central limit theorems (Theorem 4.2 and 4.4) provide the
basis for inference about the wavelet variance using the estimators ûX(τj) and
v̂X(τj). We defer proofs to the Appendix, but we note that they are based
on calculating mixed cumulants and require a technique sometimes called a
diagram method. This method has been used widely to prove various central
and non-central limit theorems involving functionals of Gaussian random vari-
ables; see e.g., Breuer and Major (1983), Giraitis and Surgailis (1985), Giraitis
and Taqqu (1998), Fox and Taqqu (1987), Ho and Sun (1987) and the refer-
ences therein. While building upon previous works, the proofs involve some
unique and significantly different arguments that can be used to strengthen
asymptotic results in other contexts, e.g., wavelet covariance estimation.

Theorem 4.2 Suppose Xt is a stationary Gaussian process whose SDF is
square integrable, and suppose δt is a strictly stationary binary process (inde-
pendent of Xt) such that Assumption 4.1 holds. Then ûX(τj) is asymptotically
normal with mean ν2

X(τj) and large sample variance Su,j(0)/Mj, where Su,j

is the SDF for Zu,j,t, with a formula stated in the Appendix.

Remark 4.3 The Gaussian assumption on Xt can be dropped if we add ap-
propriate mixing conditions, an approach that has been taken in the gap-free
case (Serroukh et al., 2000). Since our estimators are essentially averages of
stationary processes (4.1) and (4.2), asymptotic normality for the estimators
(3.1) and (3.2) will follow if both Xt and the gap process δt possess appropri-
ate mixing conditions. Moreover, construction of confidence intervals for the
wavelet variance when Xt is non-Gaussian and the asymptotic normality of
the estimators holds is same as what is described below. This incorporates
robustness into the methods developed in this paper.

Given a consistent estimator of Su,j(0), the above theorem can be used to
construct an asymptotically correct confidence interval for ν2

X(τj). We use a
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multitaper spectral approach (Serroukh et al., 2000). Let

Z̃u,j,t ≡

Lj−1∑

l=0

Lj−1∑

l′=0

hj,lhj,l′ β̂l,l′Xt−lXt−l′δt−lδt−l′ , t = Lj − 1, . . . , N − 1.

Let λk,t, t = 0, . . . , Mj − 1, for k = 0, . . . , K − 1 be the first K orthonormal
Slepian tapers, where K is an odd integer. Define

Ju,j,k =

Mj−1∑

t=0

λk,tZ̃u,j,t+Lj−1, λk,+ =

Mj−1∑

t=0

λk,t

and

ũj =

∑K−1
k=0,2,... Ju,j,kλk,+
∑K−1

k=0,2,... λ
2
k,+

.

We estimate Su,j(0) by

Ŝu,j(0) =
1

K

K−1∑

k=0

(Ju,j,k − ũjλk,+)2.

Following the recommendation of Serroukh et al. (2000), we choose K = 5
and set the bandwidth parameter so that the Slepian tapers are band-limited
to the interval [− 7

2Mj
, 7

2Mj
]. Previous Monte Carlo studies show that Ŝu,j(0)

performs well (Serroukh et al., 2000).

We now turn to the large sample properties of the second estimator v̂X(τj),
which closely resemble those for ûX(τj).

Theorem 4.4 Suppose Xt or its increments is a stationary Gaussian process
whose SDF is such that sin2(πf)SX(f) is square integrable. Assume the same
conditions on δt as in Theorem 4.2. Then v̂X(τj) is asymptotically normal with
mean v2

X(τj) and large sample variance Sv,j(0)/Mj, where Sv,j is the SDF for
Zv,j,t, with a formula stated in the Appendix.

Based upon

Z̃v,j,t ≡ − 1
2

Lj−1∑

l=0

Lj−1∑

l′=0

hj,lhj,l′ β̂l,l′(Xt−l − Xt−l′)
2δt−lδt−l′ ,

we can estimate Sv,j(0) using the same multitaper approach as before.



10 Mondal and Percival

4.1 Efficiency study

The estimators ûX(τj) and v̂X(τj) both work for stationary processes, whereas
the latter can also be used for nonstationary processes with stationary incre-
ments. If v̂X(τj) performed better than ûX(τj) in the stationary case, then
the latter would be an unattractive estimator because it is restricted to just
stationary processes. To address this issue, consider the asymptotic relative ef-
ficiency of the two estimators, which is given by the ratio of Sv,j(0) to Su,j(0).
For selected cases, this ratio can be computed to sufficient accuracy using the
relationships

Su,j(0) =

∞∑

k=−∞

su,j,k and Sv,j(0) =

∞∑

k=−∞

sv,j,k,

where su,j,k and sv,j,k are the ACVSs corresponding to SDFs Su,j and Sv,j .
We consider two cases, in both of which we use a level j = 3 Haar wavelet filter
and assume that δt is a sequence of independent and identically distributed
Bernoulli random variables with Pr(δt = 1) = 0.9. In the first case, we let
Xt to be a first order autoregressive (AR(1)) process with sX,k = φ|k|. The
left-hand plot of Figure 1 shows the asymptotic relative efficiency as a function
of φ. Except for φ close to unity, ûX(τj) outperforms v̂X(τj). When φ is close
to unity, the differencing inherent in v̂X(τj) makes it a more stable estimator
than ûX(τj), which is inituitively reasonable because the AR(1) process starts
to resemble a random walk. For the second case, let Xt to be a stationary
fractionally differenced (FD) process with sX,k satisfying

sX,0 =
Γ (1 − 2α)

Γ (1 − α)Γ (1 − α)
and sX,k = sX,k−1

k + α − 1

k − α

for k = 1, 2, . . .; see, e.g., Granger and Joyeux (1980) and Hosking (1981).
Here α < 1

2 is the long memory parameter, with α = 0 corresponding to white
noise and α close to 1

2 corresponding to a highly correlated process whose
ACVS damps down to zero very slowly. The right-hand plot of Figure 1 shows
the asymptotic relative efficiency as a function of α. As α approaches 1

2 , the
variogram-based estimator v̂X(τj) outperforms ûX(τj). These two cases tell us
that ûX(τj) is not uniformily better than v̂X(τj) for stationary processes and
that, even for these processes, differencing can help stabilize the variance. Ex-
perimentation with other Daubechies filters leads us to the same conclusions.

5 Monte Carlo study

The purpose of this Monte Carlo study is to access the adequacy of the normal
approximation in Theorem 4.2 and 4.4 for simple situations. We also look at
the performance of the estimates of Su,j(0) and Sv,j(0).



Wavelet Variance Analysis for Gappy Data 11

5.1 Autoregressive process of order 1

In the first example, we simulate 1000 time series of length 1024 from an
AR(1) process with φ = 0.9. For each time series, we simulate δt independent
and identically from a Bernoulli distribution with Pr(δt = 1) = p = 0.9. For
each simulated gappy series, we estimate wavelet variances at scales indexed
by j = 1, . . . , 6 using ûX(τj) and v̂X(τj) with the Haar wavelet filter. We also
estimate the variance of the wavelet variances by using the multitaper method
described in Section 4 and also from the sample variance of the Monte Carlo
estimates. We then compare estimated values with the corresponding large
sample approximations. Table A.1 summarizes this experiment. Let ûX,r(τj)
and v̂X,r(τj) be the wavelet variance estimates for the rth realization, and let

Ŝu,j,r(0) and Ŝv,j,r(0) be the corresponding multitaper estimates of Su,j(0)
and Sv,j(0). We note from Table A.1 that the sample means of ûX,r(τj) and
v̂X,r(τj) are in excellent agreement with the true wavelet variance ν2

X(τj). The
sample standard deviations of ûX,r(τj) and v̂X,r(τj) are also in good agreement

with M
− 1

2

j S
1
2

u,j(0) and M
− 1

2

j S
1
2

v,j(0). In particular, the ratios of the standard de-
viation of the ûX,r(τj)’s to their large sample approximations are quite close to
unity, ranging between 0.884 and 1.005. The corresponding ratios for v̂X,r(τj)
range between 0.926 and 1.002. We also consider the performance of the mul-

titaper estimates. In particular, we find the sample means of M
− 1

2

j Ŝ
1
2

u,j,r(0)

and M
− 1

2

j Ŝ
1
2

v,j,r(0) to be close to their respective theoretical values, but with
a slight downward bias. Figure 2 plots the realization of the time series for
which the sum of squares of errors

∑
j{ûX,r(τj) − ν2

X(τj)}
2 is closest to the

average sum of squares of errors, namely, 1000−1
∑

r

∑
j{ûX,r(τj)− ν2

X(τj)}
2.

For this typical realization, we also plot the estimated and theoretical wavelet
variances with corresponding 95% confidence intervals. The black (gray) solid
line in Figure 2 gives the estimated (theoretical) confidence intervals based on
ûX(τj), with the dotted lines indicating corresponding intervals based upon
v̂X(τj). We see reasonable agreement between the theoretical and estimated
values.

5.2 Kolmogrov turbulence

In the second example, we generate 1000 time series of length 1024 from an
FD(5

6 ) process, which is a nonstationary process that has properties very sim-
ilar to Kolmogorov turbulence and hence is of interest in atmospheric science
and oceanography. For each time series, we simulate the gaps δt as before.
In this example increments of Xt rather Xt itself are stationary. Therefore
we employ only v̂X(τj) and consider how well its variance is approximated
by the large sample result stated in Theorem 4.4. Table A.2 summarizes the
results of this experiment using the Haar wavelet filter. Again we find that,
for each level j, the average v̂X,r(τj) is in excellent agreement with the true
ν2

X(τj); the sample standard deviation of v̂X,r(τj) is in good argeement with
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its large sample approximation; and the sample mean of M
− 1

2

j Ŝ
1
2

v,j(0) is close

to M
− 1

2

j S
1
2

v,j(0), with a slight downward bias. Figure 3 has the same format
as Figure 2 and again indicates reasonable agreement between theoretical and
estimated values.

6 Generalization of basic theory

6.1 Gappy dth order stationary increment process

In this subsection, we extend the basic theory developed in Section 3 and Sec-
tion 4 to handle estimation of the wavelet variance for dth order stationary
increment processes. First we note that Theorems 4.2 and 4.4 hold for a wider
class of wavelet filters than just the Daubchies filters. In particular, both theo-
rems continue to hold for any filter hj,l that has finite width and sums to zero
(if the original process Xt has mean zero, Theorem 4.2 only requires hj,l to be
of finite width). This provides us with an estimation theory for wavelet vari-
ances other than those defined by a Daubechies wavelet filter. For example, at
the unit scale, we can entertain the filter {− 1

4
, 1

2
,− 1

4
}, which can be considered

to be a discrete approximation of the Mexican hat wavelet. Moreover, as use-
ful byproducts, we obtain the following schemes that deal with estimation of
the Daubechies wavelet variance for a general dth order backward stationary
increment process.

Assume as in (2.4) that Xt for t ∈ Z is a process with dth order sta-
tionary increments Yt. Let µY be the mean, sY,k the ACVS and γY,k the
semi-variogram of Yt. For L ≥ 2d, an expression for the Daubechies wavelet
variance that is analogous to (2.6) is

ν2
X(τj) =

Lj−d−1∑

l=0

Lj−d−1∑

l′=0

bj,l,dbj,l′,dsY,l−l′ , (6.1)

where bj,l,r is the rth order cumulative summation of the Daubechies wavelet
filter hj,l, i.e.,

bj,l,0 = hj,l, bj,l,k =
l∑

r=0

bj,r,k−1,

for l = 0, . . . , Lj−k−1 (see Craigmile and Percival, 2005). Moreover, if L > 2d,
we obtain the alternative expression

ν2
X(τj) = −

Lj−d−1∑

l=0

Lj−d−1∑

l′=0

bj,l,dbj,l′,dγY,l−l′ . (6.2)

We can now proceed to estimate ν2
X(τj) as follows. First we carry out

dth order differencing of the observed Xt to obtain an observed Yt. This will
generate a new gap pattern that has more gaps than the old gap structure,
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but the new gap pattern will still be stationary and independent of Yt. We
then mimic the stationary (d = 0) case described as in Section 3 with bj,l,d

replacing hj,l, the new gap pattern replacing δt, and Yt replacing Xt in the
estimators (3.1) and (3.2). As a simple illustration of this scheme, consider
the case d = 2. For t = 2, 3, . . ., compute Yt = Xt − 2Xt−1 + Xt−2 whenever
δt = δt−1 = δt−2 = 1. Let ηt = 1 if δt = δt−1 = δt−2 = 1 and = 0 otherwise.
Let

ρ̂−1
l,l′ =

1

Mj

N−1∑

t=Lj−3

ηt−lηt−l′ ,

where now Mj is redefined to be N−Lj+3. Again ρ̂−1
l,l is a consistent estimator

of ρ−1
l−l′ = Pr(ηt−l = 1, ηt−l′ = 1). As before, assume ρ̂−1

l,l′ > 0 for l, l′ =

0, . . . , Lj − 3. The new versions of the estimators of ν2
X(τj) are then given by

ˆ̂uX(τj) =
1

Mj

N−1∑

t=Lj−3

Lj−3∑

l=0

Lj−3∑

l′=0

bj,l,2bj,l′,2ρ̂l,l′Yt−lYt−l′ηt−lηt−l′ ,

and

ˆ̂vX(τj) = −
1

2Mj

N−1∑

t=Lj−3

Lj−3∑

l′=0

Lj−3∑

l′=0

bj,l,2bj,l′,2ρ̂l,l′(Yt−l − Yt−l′)
2ηt−lηt−l′ .

The large sample properties of these estimators are given by obvious analogs
to Theorems 4.2 and 4.4.

Theorem 6.1 Suppose Xt is a process whose dth order increments Yt are a
stationary Gaussian process with square integrable SDF, and suppose δt is a
strictly stationary binary process (independent of Xt) such that the derived

binary process ηt satisfies Assumption 4.1. Then, if L ≥ 2d, ˆ̂uX(τj) is asymp-
totically normal with mean ν2

X(τj) and large sample variance Sd,u,j(0)/Mj.
where Sd,u,j is the SDF for

∑
l

∑
l′ bj,l,dbj,l′,dρl,l′Yt−lYt−l′ηt−lηt−l′ .

Theorem 6.2 Suppose Xt is a process whose increments of order d + 1 are
a stationary Gaussian process with square integrable SDF, and suppose δt is
as in the previous theorem. Then, if L > 2d, ˆ̂vX(τj) is asymptotically normal
with mean ν2

X(τj) and large sample variance Sd,v,j(0)/Mj. where Sd,v,j is the
SDF for − 1

2

∑
l

∑
l′ bj,l,dbj,l′,dρl,l′(Yt−l − Yt−l′)

2ηt−lηt−l′ .

The proofs of Theorems 6.1 and 6.2 are similar to those of, respectively,
Theorems 4.2 and 4.4 and thus are omitted.

Remark 6.3 Since each extra differencing produces more gaps, an estimate
that requires less differencing will be more efficient. This is where the semi-
variogram estimator v̂X(τj) comes in handy. Let Ct denote the backward dif-
ferences of order d − 1 Xt. Then Ct is not stationary but its increments are.
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Let the semi-variogram of Ct be denoted by γC,k. Then by virtue of (6.2), we
can write for L ≥ 2d

ν2
X(τj) = −

Lj−d∑

l=0

Lj−d∑

l′=0

bj,l,d−1bj,l′,d−1γC,l−l′ . (6.3)

Thus alternatively we can proceed as follows. We carry out d − 1 successive
differences of Xt to obtain Ct and then use the semi-variogram estimator with
the new gap structure and with the Daubechies filter replaced by bj,l,d−1.
Unlike the stationary case, this estimator often outperforms the covariance-
type estimator that requires one more order of differencing.

6.2 Systematic gaps

We have focused on geophysical applications which tend to have gaps that are
stochastic in nature. When systematic gaps occur, e.g., in financial time series
when no trading takes place on weekends, we note that our estimates (3.1)
and (3.2) produce valid unbiased estimate of the true wavelet variance as long

as β̂−1
l,l′ > 0 for l, l′ = 0, . . . , Lj − 1 (for the financial example, this condition

on β̂ holds when the length of the time series N is sufficiently large); more-
over, our large sample theory can be readily adjusted to handle those gaps.
First, we redefine the theoretical β by taking the deterministic limit of β̂ as N
tends to infinity. Next we observe that the processes Zu,j,t and Zv,j,t defined
via (4.1) and (4.2) are no longer stationary under this systematic gap pat-
tern. To see this consider j = 2 and the Haar wavelet filter for which L2 = 4.
Then Zu,2,t for a Friday depends on the observations obtained from Tuesday
to Friday while Zu,2,t for a Monday depends only on values of the time se-
ries observed on Monday and the previous Friday. As a consequence we can
not invoke Theorem 4.2 or 4.4 directly. However, because the gaps have a pe-
riod of a week, we can retrieve stationarity by summing Zu,j,t and Zv,j,t over

7 days; i.e.,
∑6

m=0 Zu,j,t+m and
∑6

m=0 Zv,j,t+m are stationary processes. For
large Mj the summations of t in estimators (3.1) and (3.2) are essentially sums
over these stationary processes, plus terms that are asymptotically negligible.
Thus we can prove asymptotic normality of (3.1) and (3.2) from the respective

asymptotic normality of the averages of
∑6

m=0 Zu,j,t+m and
∑6

m=0 Zv,j,t+m.
The proofs are similar to those for Theorems 4.2 and 4.4, with some simpli-
fication because the gaps are deterministic (an alternative approach is to use
Theorem 1 of Ho and Sun, 1987). Large sample confidence intervals can be
constructed using the multitaper procedure described in Section 4.
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7 Examples

7.1 Analysis of TAO data

We apply our techniques to daily atmospheric pressure data (Figure 4) col-
lected over a period of 578 days by the Tropical Atmospheric Ocean (TAO)
buoy array operated by the National Oceanic and Atmospheric Administra-
tion. There were 527 days of observed values and 51 days during which no
observations were made. Shorts gaps in this time series are mainly due to
satellite transmission problems. Equipment malfunctions that require buoy
repairs result in longer gaps. It is reasonable to assume that the gaps are in-
dependent of the pressure values and are a realization of a stationary process.
Of particular interest are contributions to the overall variability due to differ-
ent dynamical phenomena, including an annual cycle, interseasonal oscillations
and a menagerie of tropical waves and disturbances associated with small time
scales. We employ wavelet variance estimators (3.1) and (3.2) using the Haar
wavelet filter.

Estimated wavelet variances for levels j = 1, . . . 8 are plotted in Figure 4
along with the 95% confidence intervals (solid and dotted lines for, respectively,
ûX(τj) and v̂X(τj)). We see close agreement between these two estimation
procedures. Note that the wavelet variance is largest at scales τ7 and τ8, which
correspond to periods of, respectively, 128–256 days and 256–512 days. Large
variability at these scales is due to a strong yearly cycle in the data. Apart
from this, we also see a much weaker peak at scale τ5, which corresponds to a
period of 32–64 days and captures the interseasonal variability. Note also that
there is hardly any variability at scale τ1, although there is some at scales τ2,
τ3 and τ4, indicating relatively important contributions to the variance due to
disturbances at all but the very smallest scale. (We obtained similar results
using the Daubechies L = 4 extremal phase and L = 8 least asymmetric
wavelet filters.)

7.2 Nile River minima

This time series (Figure 5) consists of measurements of minimum yearly water
level of the Nile River over the years 622–1921, with 622–1284 representing the
longest segment without gaps (Toussoun, 1925). The rate of gaps is about 43%
after year 1285. Several authors have previously analyzed the initial gap free
segment (see, e.g., Beran, 1994, and Percival and Walden, 2000). The entire
series, including the gappy part, has been analyzed based on a parametric state
space model (Palma and Del Pino, 1999), in contrast to our nonparametric
approach. Historical records indicate a change around 715 in the way the series
was measured. For the gap free segment, there is more variability at scales τ1

and τ2 before 715 than after (Whitcher et al., 2002). Therefore we restrict
ourselves to the period 716–1921. Figure 5 plots wavelet variance estimates
up to scale τ8 along with 95% confidence intervals using v̂X(τj) with the Haar
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wavelet filter. Here solid lines stand for the gap free segment 716–1284, and
dotted lines for the gappy segment 1286–1921. Except at scales τ1, τ6 and τ8,
we see reasonably good agreement between estimates from the two segments.
Substantial uncertainties due to the large number of gaps are reflected in the
larger confidence intervals for the gappy segment. Under the assumption that
the statistical properties of the Nile River were the same throughout 716–1921,
we could combine the two segments to produce overall estimates and confidence
intervals for the wavelet variances; however, this assumption is questionable
at certain scales. Over the years 1286–1470, there are only six gaps. Separate
analysis of this segment suggests more variability at scales τ1 and τ2 than what
was observed in 716–1284. In addition, construction of the first Aswan Dam
starting in 1899 changed the nature of the Nile River in the subsequent years.
However, a wavelet variance analysis over 1286–1898 (omitting the years after
the dam was built) does not differ much from that of 1286–1921. Thus the
apparent increase in variability at the largest scales from segment 716–1284
to 1286–1921 cannot be attributed just to the influence of the dam.

8 Discussion

In Section 3 we made the crucial assumption that, for a fixed j, β̂−1
l,l′ > 0

when l, l′ = 0, . . . , Lj − 1. For small sample sizes, this condition might fail
to hold. This situation arises mainly when half or more of the observations
are missing and can be due to systematic periodic patterns in the gaps. For
example, if δt alternates between zero and one, then β̂−1

0,1 is zero, reflecting
the fact that the observed time series does not contain relevant information
about ν2

X(τ1). A methodology different from what we have discussed might be

able to handle some gap patterns for which β̂−1
l,l′ = 0. In particular, generalized

prolate spheroidal sequences have been used to handle spectral estimation of
irregularly sampled processes (Bronez, 1988). This approach in essence cor-
responds to the construction of special filters and could be used to construct
approximations to the Daubechies filters when β̂−1

l,l′ = 0.
Estimation of the SDF for gappy time series is a long-standing difficult

problem. In Section 1 we noted that the wavelet variance provides a simple
and useful estimator of the integral of the SDF over a certain octave band. In
particular, the Blackman–Tukey pilot spectrum (Blackman and Tukey, 1958,
Sec. 18) coincides with the Haar wavelet variance. Recently Tsakiroglou and
Walden (2002) generalized this pilot spectrum by utilising the (maximal over-
lap) discrete wavelet packet transform. The result is an SDF estimator that
is competitive with existing estimators. With a similar generalization, our
wavelet variance estimator for gappy time series can be adapted to serve as
an SDF estimator. Moreover, Nason et al. (2000) used shrinkage of squared
wavelet coefficients to estimate spectra for locally stationary processes. In the
same vein, we can apply wavelet shrinkage to the Zu,j,t or Zv,j,t processes to
estimate time-varying spectra when the original time series is observed with
gaps.
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Finally we note a generalization of interest in the analysis of multivariate
gappy time series. Given two time series X1,t and X2,t, the wavelet cross
covariance yields a scale-based analysis of the cross covariance between the
two series in a manner similar to wavelet variance analysis (for estimation
of the wavelet cross covariance, see Whitcher et al., 2000, and the references
therein). The methodology described in this paper can be readily adapted to
estimate the wavelet cross covariance for multivariate time series with gaps.

A Proofs

We first need the followings propositions and lemmas. To avoid a triviality, we assume
throughout that var {Xt} > 0.

Proposition A.1 Let Xt be a real-valued zero mean Gaussian process with ACVS sX,k

and with SDF SX that is square integrable over [− 1
2
, 1
2
]. Then the bivariate process Ut ≡

ˆ

Xt−kXt−k′ ,Xt−lXt−l′
˜T

, for any choice of k, k′, l and l′, has a spectral matrix SU that
is continuous.

Proof Using the Isserlis theorem, we have

cov
“

Xt−kXt−k′ ,Xt−l+τXt−l′+τ

”

= sX,k−l+τsX,k′−l′+τ + sX,k−l′+τsX,k′−l+τ .

By the Fourier transform we obtain

Sk,k′,l,l′ (f) = ei2πf(k′−l′)
Z 1/2

−1/2
ei2πf ′(k−l−k′+l′)SX(f ′)SX(f − f ′) df ′

+ei2πf(k′−l)

Z 1/2

−1/2
ei2πf ′(k+l−k′−l′)SX(f ′)SX(f − f ′) df ′.

Because exp{i2πf(k′ − l′)} is a continuous function of f , we can establish the continuity of
the first term above if we can show that

Ak,k′,l,l′ (f) ≡

Z 1/2

−1/2
ei2πf ′(k−l−k′+l′)SX(f ′)SX(f − f ′) df ′

is a continuous function, from which the continuity of the second term – and hence of
Sk,k′,l,l′ itself – follows immediately. The Chauchy–Schwarz inequality says that

˛

˛Ak,k′,l,l′ (f + ρ) −Ak,k′,l,l′(f)
˛

˛

=

˛

˛

˛

˛

˛

Z 1/2

−1/2
ei2πf ′(k−l−k′+l′)SX(f ′)

ˆ

SX(f + ρ− f ′) − SX(f − f ′)
˜

df ′

˛

˛

˛

˛

˛

≤

 

Z 1/2

−1/2
S2

X(f ′) df ′
Z 1/2

−1/2

˛

˛SX(f + ρ− f ′) − SX(f − f ′)
˛

˛

2
df ′

!1/2

.

By hypothesis
R 1/2
−1/2

S2
X(f ′) df ′ is finite, while

Z 1/2

−1/2

˛

˛SX(f + ρ− f ′) − SX(f − f ′)
˛

˛

2
df ′ → 0 as ρ → 0

by Lemma 1.11, p. 37 of Zygmund (1978). Hence Ak,k′,l,l′ and Sk,k′,l,l′ are continuous. ⊓⊔
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Proposition A.2 Let hj,l be any filter of finite width Lj with squared gain function Hj.
Define Sk,k′,l,l′ as in Proposition A.1 in terms of a squared integrable SX . Then we must
have

X

k,k′

X

l,l′

hj,khj,k′hj,lhj,l′Sk,k′,l,l′(0) > 0.

Proof Using the definition of Sk,k′,l,l′ , it follows that

X

k,k′

X

l,l′

hj,khj,k′hj,lhj,l′Sk,k′,l,l′ (0) = 2

Z 1/2

−1/2
H2

j (f ′)S2
X(f ′) df ′,

which is strictly positive because Hj is zero only on a set of Lebesgue measure zero and
varXt > 0. ⊓⊔

Proposition A.3 Let Xt be a real-valued zero mean Gaussian process with ACVS sX,k

and SDF SX satisfying
Z 1/2

−1/2
sin4(2πf)S2

X (f) df <∞.

Then the bivariate process Ut =
ˆ

1
2
(Xt−k −Xt−k′ )2, 1

2
(Xt−l −Xt−l′)

2
˜T

, for any choice
of k, k′, l and l′, has a spectral matrix SU that is continuous.

Proof The proof is similar to that of Proposition A.1. ⊓⊔

Proposition A.4 Let hj,l be as in Proposition A.2. Assume the conditions of Proposi-
tion A.3, and let Sk,k′,l,l′ be the (k, k′, l, l′) component of SU in that proposition. Then

X

k,k′

X

l,l′

hj,khj,k′hj,lhj,l′Sk,k′,l,l′(0) > 0.

Proof The proof is similar to that of Proposition A.2. ⊓⊔

Lemma A.5 Let Ul,l′,t and Vl,l′,t be stationary processes that are independent of each
other for any choice of k, k′, l and l′. Let

Ul,l′,t = ψl,l′ +

Z 1/2

−1/2
ei2πftdUl,l′ (f)

Vl,l′,t = ωl,l′ +

Z 1/2

−1/2
ei2πftdVl,l′ (f)

be their respective spectral representations. For any k, k′, l and l′, let Sk,k′,l,l′ and Gk,k′,l,l′

denote the respective cross spectrum between Uk,k′,t and Ul,l′,t and between Vk,k′,t and
Vl,l′,t. Let al,l′ be fixed real numbers. Define

Qt =
X

l,l′

al,l′ (Ul,l′,tVl,l′,t − ψl,l′ωl,l′ ).

Then Qt is a second order stationary process whose spectral density function is given by

SQ(f) ≡
X

k,k′

X

l,l′

ak,k′al,l′
ˆ

ψk,k′ψl,l′Gk,k′,l,l′(f) + ωk,k′ωl,l′Sk,k′,l,l′ (f)(A.1)

+ S ∗Gk,k′,l,l′(f)
˜

,

where

S ∗Gk,k′,l,l′(f) ≡

Z 1/2

−1/2
Gk,k′,l,l′(f − f ′)Sk,k′,l,l′ (f

′) df ′.
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Proof A full proof is straightforward, but tedious. The key steps are to note that

cov {Qt, Qt+m} =
X

k,k′,l,l′

ak,k′al,l′cov {Uk,k′,tVk,k′,t, Ul,l′,t+mVl,l′,t+m}, (A.2)

to use the spectral representations of Ul,l′,t and Vl,l′,t and the independence assumption to
obtain

cov {Uk,k′,tVk,k′,t, Ul,l′,t+mVl,l′,t+m}

=

Z 1/2

−1/2
ei2πfm

"

ψk,k′ψl,l′Gk,k′,l,l′(f) + ωk,k′ωl,l′Sk,k′,l,l′(f)

+

Z 1/2

−1/2
Gk,k′,l,l′ (f − f ′)Sk,k′,l,l′(f

′) df ′

#

df,

and to plug the above formula into equation (A.2). ⊓⊔

Proposition A.6 Let Xt be a real-valued zero mean Gaussian stationary process with
ACVS sX,m and SDF SX that is square integrable over [− 1

2
, 1

2
]. Let δt be a binary-valued

strictly stationary process that is independent of Xt and satisfies Assumption 4.1. Let Zu,j,t

be as in equation (4.1). Then Zu,j,t is a second order stationary process whose SDF at zero
is strictly positive.

Proof Let Ul,l′,t = Xt−lXt−l′ , Ut =
ˆ

Uk,k′,t, Ul,l′,t

˜T
, Vl,l′,t = δt−lδt−l′ and al,l′ =

hj,lhj,l′βl−l′ . By Proposition A.1, Ut has a continuous cross spectrum Sk,k′,l,l′ . Then by
Lemma A.5, the SDF Su,j(f) of Zu,j,t is given by the right-hand side of equation (A.2),

where ψl,l′ = EXt−lXt−l′ , ωl,l′ = E δt−lδt−l′ = β−1
l−l′

and Gk,k′,l,l′ is the cross spectrum

between δt−kδt−k′ and δt−lδt−l′ . Since al,l′ωl,l′ = hj,lhj,l′ , by Proposition A.2

X

k,k′

X

l,l′

ak,k′al,l′ωk,k′ωl,l′Sk,k′,l,l′ (0) =
X

k,k′

X

l,l′

hj,khj,k′hj,lhj,l′Sk,k′,l,l′(0) > 0.

Now
P

k,k′

P

l,l′ ak,k′al,l′ψk,k′ψl,l′Gk,k′,l,l′ (f) and
P

k,k′

P

l,l′ ak,k′al,l′S∗Gk,k′,l,l′ (f) are
nonnegative because Gk,k′,l,l′ and Sk,k′,l,l′ are entries of spectral density matrices. Hence
Su,j(0) > 0. ⊓⊔

Proposition A.7 Let Xt be a real-valued Gaussian stationary process with zero mean, and
SDF SX that satisfies

Z 1/2

−1/2
sin4(πf)S2

X (f) df < ∞.

Let δt be a binary-valued strictly stationary process that is independent of Xt and satisfies
Assumption 4.1. Let Zv,j,t be as in equation (4.2). Then Zv,j,t is a second order stationary
process whose SDF at zero is strictly positive.

Proof The proof closely parallels that of Proposition A.6. Here we take Ul,l′,t = − 1
2
(Xt−l−

Xt−l′)
2 and use Propositions A.3 and A.4 instead of Propositions A.1 and A.2. ⊓⊔

Next we state the following theorem from Brillinger (1981), p. 21.

Theorem A.8 Consider a two way array of random variables (RVs) Θi,j, j = 1, . . . , Ji

and i = 1, . . . , n. Consider the n RVs Υi =
QJi

j=1 Θi,j for i = 1, . . . , n. Then the joint
cumulant of Υ1, . . . , Υn is given by the formula

cum(Υ1, . . . , Υn) =
X

χ

cum(Θi,j : (i, j) ∈ χ1) · · · cum(Θi,j : (i, j) ∈ χr)
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where the summation is over all indecomposable partitions χ = χ1 ∪ · · · ∪ χr of the (not
necessarily rectangular) two way table

(1, 1) · · · (1, J1)
...

...
(n, 1) · · · (n, Jn).

(A.3)

Next we need the following lemmas.

Lemma A.9 Assume that Xt satisfies the conditions stated in Theorem 4.2. Let Up,t =
Xt−lXt−l′ and EUp,t = ψp, where p = (l, l′). Then for n ≥ 3 and fixed p1, . . . , pn,

X

t1,...tn

|cum(Up1,t1 − ψp1
, . . . , Upn,tn − ψpn )| = o(Mn/2), (A.4)

where each ti ranges from 0 to M − 1 (here and below M is shorthand for Mj in the main
text).

Proof Since a cumulant is invariant under the addition of constants,

cum(Up1,t1 − ψp1
, . . . , Upn,tn − ψpn ) = cum(Up1,t1 , . . . , Upn,tn).

Consider the n× 2 table of RVs given by

Θ1,1 = Xt1−l1 Θ1,2 = Xt1−l′
1

.

..
.
..

Θn,1 = Xtn−ln Θn,2 = Xtn−l′n
.

As Up,t is the product of the two Gaussian RVs in row p of the table, we invoke Theorem A.8
to break up cum(Up1,t1 , . . . , Upn,tn). Moreover, because all cumulants of order r ≥ 3 are zero
due to Gaussianity, we can restrict ourselves to indecomposable partitions χ = χ1 ∪ · · ·∪χn

of the two way table (A.3) with J1 = · · · = Jm = 2 so that |χk| = 2 for all k. Let
P

t1,...,tn
cum(Up1,t1 , . . . , Upn,tn ) ≡

P

χ IU,M(χ) with

IU,M (χ) =
X

t1,...,tn

cum(Θi,j : (i, j) ∈ χ1) · · · cum(Θi,j : (i, j) ∈ χn).

Since n is fixed and the number of indecomposable partitions depends only on n, it then
suffices to show that IU,M (χ) = o(Mn/2) for any fixed χ. As χ is an indecomposable
partition, without loss of generality (WLOG), we can properly order the index of table
(A.3) so that χk = {(k, ηk), (k + 1, ξk+1)} for k = 1, . . . , n − 1 and χn = {(n, ηn), (1, ξ1)},
where ηk takes values of 1 or 2 for k = 1, . . . , n and ξk = 3 − ηk . We set, for k = 1, . . . , n,

ek =

8

>

>

>

>

<

>

>

>

>

:

l(k+1) mod n − lk , if ξ(k+1) mod n = ηk = 1

l′
(k+1) mod n

− lk , if ξ(k+1) mod n = 2, ηk = 1

l(k+1) mod n − l′k , if ξ(k+1) mod n = 1, ηk = 2

l′
(k+1) mod n

− l′k , if ξ(k+1) mod n = ηk = 2

Then we can write
cum(Θi,j : (i, j) ∈ χk) = sX,tk+1−tk−ek

for k = 1, . . . , n− 1 and cum(Θi,j : (i, j) ∈ χn) = sX,t1−tn−en
. Hence

IU,M(χ) ≡
X

t1,...,tn

sX,t1−tn−en

n−1
Y

i=1

sX,ti+1−ti−ei
. (A.5)
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For a fixed K, write IU,M (χ) = I′U,M(χ) + I′′U,M (χ), where I′U,M (χ) is the sum of (A.5)

taken over ti, i = 1, . . . , n, such that |ti+1 − ti| ≤ K for i = 1, . . . , n− 1 and |t1 − tn| ≤ K.
Set qi = ti+1−ti for i = 1, . . . , n−1. Since sX,τ is bounded in magnitute by sX,0, we obtain

|I′U,M(χ)| ≤ sX,0

X

|qi|≤K, i=1,...,n−1

X

tn

1 ≤ sX,0K
n−1M.

The rest of the proof runs parallel to that of Lemma 6 of Giraitis and Surgailis (1985). Thus
we show that I′′U,M (χ) ≤ ǫ(K)Mn/2 where ǫ(K) → 0 as K → ∞. We repeatedely use the
Cauchy–Schwartz inequality to obain

I′′U,M(χ)

=
X

t1,...,tn

sX,t1−tn−en

n−1
Y

i=1

sX,ti+1−ti−ei

=
X

t1,...,tn−1

n−2
Y

i=1

sX,ti+1−ti−ei

X

tn

sX,t1−tn−en
sX,tn−tn−1−en−1

≤
X

t1,...,tn−1

n−2
Y

i=1

sX,ti+1−ti−ei

“

X

tn

s2X,t1−tn−en

” 1
2
“

X

tn

s2X,tn−tn−1−en−1

” 1
2

=
X

t1,...,tn−2

n−3
Y

i=1

sX,ti+1−ti−ei

“

X

tn

s2X,t1−tn−en

” 1
2
X

tn−1

sX,tn−1−tn−2−en−2

“

X

tn

s2X,tn−tn−1−en−1

” 1
2

≤
X

t1,...,tn−2

n−3
Y

i=1

sX,ti+1−ti−ei

“

X

tn

s2X,t1−tn−en

” 1
2
“

X

tn−1

s2X,tn−1−tn−2−en−2

” 1
2

“

X

tn−1,tn

s2X,tn−tn−1−en−1

” 1
2

..

.

≤
“

X

t1,tn

s2X,t1−tn−en

” 1
2

n
Y

i=2

“

X

ti−1,ti

s2X,ti−ti−1−ei−1

” 1
2

Now use the fact that ti ranges from 0 to M − 1 and |ti+1 − ti| > K for i = 1, . . . , n− 1 and
|t1 − tn| > K. Thus for example

X

ti−1,ti

s2X,ti−ti−1−ei−1
≤ constant

X

|τ |>K

X

ti

s2X,τ = constant M
X

|τ |>K

s2X,τ ,

where
P

|τ |>K s2X,τ goes to zero as K → ∞ because of the square integrability assumption.

Hence we have

I′′U,M(χ) ≤ constant M
1
2

n
“

X

|τ |>K

s2X,τ

” 1
2

n
= ǫ(K)M

1
2

n,

and the required result follows by choosing K = ⌊log(M)⌋. ⊓⊔

Lemma A.10 Assume that Xt satisfies the conditions stated in Theorem 4.4. Let Up,t =
− 1

2
(Xt−l − Xt−l′)

2 and EUp,t = ψp, in which p = (l, l′). Then for n ≥ 3 and fixed
p1, . . . , pn,

X

t1,...tn

|cum(Up1,t1 − ψp1
, . . . , Upn,tn − ψpn )| = o(Mn/2),
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where each ti ranges from 0 to M − 1.

Proof The proof goes as that of Lemma A.9 with the modification that Up,t can be written as
the product ofXt−l−Xt−l′ and − 1

2
(Xt−l−Xt−l′), where the Gaussian process Xt−l−Xt−l′

has a squared integrable SDF. ⊓⊔

Lemma A.11 Let Up,t be either as in Lemma A.9 or as in Lemma A.10. Assume

κn(p1, . . . , pn, t1, . . . , tn) = cum(Up1,t1 − ψp1
, . . . , Upn,tn − ψpn ).

Define for i = 1, 2, . . . , n− 1

κn(p1, . . . , pn, t1, . . . , ti) =
X

ti+1,...,tn

M− 1
2
(n−i−1)κn(p1, . . . , pn, t1, . . . , tn),

where the summation in tj ranges from 0 to M−1. Then κn(p1, . . . , pn, t1, . . . , ti) is bounded
and satisfies

X

t1,...,ti

κn(p1, . . . , pn, t1, . . . , ti) = o
“

M
1
2
(i+1)

”

, i = 1, 2, . . . , n. (A.6)

Proof We retain all the notation of Lemma A.9. Thus

κn(p1, . . . , pn, t1, . . . , tn) =
X

χ

sX,t1−tn−en

n−1
Y

i=1

sX,ti+1−ti−ei

Since equation (A.6) follows from (A.4), it suffices to show that for any fixed χ

X

tλ1
,...,tλi

M− 1
2
(i−1)sX,t1−tn−en

n−1
Y

i=1

sX,ti+1−ti−ei
(A.7)

is bounded for any distinct choice of λ1, . . . , λi that belong to {1, . . . , n} and i < n.
Consider i = 1. WLOG assume λ1 = n. Then

X

tn

sX,t1−tn−en

n−1
Y

i=1

sX,ti+1−ti−ei

≤

n−2
Y

i=1

sX,ti+1−ti−ei

“

X

tn

s2X,t1−tn−en

” 1
2
“

X

tn

s2X,tn−tn−1−en−1

” 1
2
,

which is bounded because of the square integrability assumption. Thus (A.7) is bounded.
Now consider i = 2. WLOG assume λ1 = n. Now we have two cases. In the first case

λ2 = 1 or n − 1 so that the pair tλ1
, tλ2

appears together in a single term involving sX in
(A.7). If we assume WLOG λ2 = n− 1 we obtain

X

tn−1,tn

M− 1
2 sX,t1−tn−en

n−1
Y

i=1

sX,ti+1−ti−ei

≤
X

tn−1

M− 1
2

n−2
Y

i=1

sX,ti+1−ti−ei

“

X

tn

s2X,t1−tn−en

” 1
2
“

X

tn

s2X,tn−tn−1−en−1

” 1
2

≤

n−3
Y

i=1

sX,ti+1−ti−ei

“

X

tn

s2X,t1−tn−en

” 1
2
“

X

tn−1

s2X,tn−1−tn−2−en−2

” 1
2

“

M−1
X

tn−1,tn

s2X,tn−tn−1−en−1

” 1
2
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Clearly the above expression is bounded because
P

t s
2
X,t is so and therefore

lim
M→∞

M−1
X

tn−1,tn

s2X,tn−tn−1−en−1
=
X

τ

s2X,τ−en−1
<∞.

Thus (A.7) is bounded. In the second case assume λ2 = n− 2. Thus tλ1
, tλ2

appear in two
distinct terms involving sX in (A.7). Hence

X

tn−2,tn

sX,t1−tn−en

n−1
Y

i=1

sX,ti+1−ti−ei

≤
X

tn−2

n−2
Y

i=1

sX,ti+1−ti−ei

“

X

tn

s2X,t1−tn−en

” 1
2
“

X

tn

s2X,tn−tn−1−en−1

” 1
2

≤

n−4
Y

i=1

sX,ti+1−ti−ei

“

X

tn

s2X,t1−tn−en

” 1
2
“

X

tn

s2X,tn−tn−1−en−1

” 1
2

“

X

tn−1

s2X,tn−1−tn−2−en−2

” 1
2
“

X

tn−2

s2X,tn−2−tn−3−en−3

” 1
2

Clearly this is bounded. Note that we do not need to use the M− 1
2 factor. Thus boundedness

of (A.7) holds.
The pattern for the general proof is now clear. Note that, because χ is an indecomposable

partition, there can be at most i − 1 pairs of λi, namely (λj , λj+1) for j = 1, . . . , i − 1
such that each of (i − 1) pairs (tλj

, tλj+1
) appears in distinct i − 1 terms involving sX

in the equation (A.7). Thus summing over tλj
for j = 1, . . . , i in the left hand side of

(A.7) and repeated use of Cauchy–Schwartz inequality will give rise to the (i − 1) terms
M−1

P

tλj
,tλj+1

s2X,tλj+1
−tλj

−eλj

, j = 1, . . . , i− 1. Note that all these terms are bounded

and hence boundedness of (A.7) follows. Of course, if there are less than (i− 1) such pairs

(λj , λj+1), we no longer need to use the factor M− 1
2
(i−1) (in fact in the exponent we just

need half the number of such pairs). This completes the proof. ⊓⊔

Proof (of Theorem 4.2) Take Up,t = Xt−lXt−l′ , Vp,t = δt−lδt−l′ and ap = hj,lhj,l′βl−l′ ,
where p = (l, l′). Take Qt =

P

p ap(Up,tVp,t −ψpωp) as in Lemma A.5. Note that ûX(τj)−

ν2
X(τj) is the average of Qt over Lj − 1 ≤ t ≤ N − 1 with βl−l′ replaced by its consistent

estimate β̂l,l′ . Since Qt is stationary, we first prove a CLT for R = M− 1
2
PM−1

t=0 Qt and
then invoke Slutsky’s theorem to complete the proof that ûX(τj ) is asymptotically normal.
We use Žurbenko (1986), p. 2, to write the log of the characteristic function of R as

logF (λ) =
∞
X

n=1

inλn

n!

X

t1,...,tn

Bn(t1, . . . , tn)

Mn/2
,

where Bn is the nth order cumulant of Qt, and each ti ranges from 0 to M − 1. Since Qt

is centered, B1(t1) = 0. By Proposition A.6, the autocovariances sQ,τ of Qt are absolutely
summable and M−1

P

t1

P

t2
B2(t1, t2) →

P

τ sQ,τ = SQ(0) > 0. In order to prove the

CLT for R, it suffices to show that
P

t1,...,tn
M−n/2Bn(t1, . . . , tn) → 0 for n = 3, 4, . . ..

First using p. 19 of Brillinger (1981), we break up the nth order cumulant as follows:

Bn(t1, . . . , tn) =
X

p1

· · ·
X

pn

ap1
· · · apn

cum(Up1,t1Vp1,t1 − ψp1
ωp1

, . . . , Upn,tnVpn,tn − ψpnωpn ).
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Let D1,p,t = (Up,t − ψp)(Vp,t − ωp), D2,p,t = ωp(Up,t − ψp) and D3,p,t = ψp(Vp,t − ωp).
Then Up,tVp,t − ψpωp = D1,p,t +D2,p,t +D3,p,t. Using p. 19 of Brillinger (1981) again, we
have

cum(Up1,t1Vp1,t1 − ψp1
ωp1

, . . . , Upn,tnVpn,tn − ψpnωpn )

=
X

c1,...,cn

cum(Dc1,p1,t1 , . . . ,Dcn,pn,tn ),

where each ci ranges from 1 to 3. Therefore, it suffices to show that, for fixed p1, . . . , pn

and c1, . . . , cn, cum(Dc1,p1,t1 , . . . ,Dcn,pn,tn ) = o(Mn/2). Since the cumulant of n RVs
is invariant under a reordering of the RVs, assume c1 = c2 = · · · = cm = 1, cm+1 =
cm+2 = · · · = cm′ = 2, cm′+1 = cm′+2 = · · · = cn = 3, and consider a two way table
Θi,j with n rows. Rows i = 1, . . . ,m each contain exactly two RVs, namely, Upi,ti

− ψpi

and Vpi,ti
− ωpi

(note that the product of the RVs in row i is D1,pi,ti
). The remaining

n −m rows contain one RV each, namely, Upi,ti
− ψpi

(which is proportional to D2,pi,ti
)

for i = (m + 1), . . . ,m′, and Vpi,ti
− ωpi

(proportional to D3,pi,ti
) for i = m′ + 1, . . . , n.

Theorem 4 says cum(Dc1,p1,t1 , . . . ,Dcn,pn,tn ) is proportional to
P

χ cum(Θi,j : (i, j) ∈

χ1) · · · cum(Θi,j : (i, j) ∈ χr). We complete the proof by showing that for any fixed χ

X

t1,...,tn

cum(Θi,j : (i, j) ∈ χ1) · · · cum(Θi,j : (i, j) ∈ χr) = o(Mn/2). (A.8)

We prove the above in the following steps.

step 1: Since Θi,j is centered, its first order cumulant is zero, so we can restrict ourselves
to cases where |χk| ≥ 2 for all k. If any group of RVs in Θi,j : (i, j) ∈ χk is independent of
the remaining RVs in that set, then cum(Θi,j : (i, j) ∈ χk) = 0. Since the Upi,ti

−ψpi
’s and

Vpi,ti
−ωpi

’s are independent, we need only consider χk containing either just Upi,ti
−ψpi

’s
or just Vpi,ti

− ωpi
’s.

step 2: Consider m = 0. In this case each row in Θi,j has only one RV, and thus all
of Θi,j together form the only indecomposable partition χ = χ1. Now if m′ = 0, then by
Assumption 4.1

X

t1,...,tn

cum(Θi,j : (i, j) ∈ χ)

=
X

t1,...,tn

cum(Vp1,t1 − ωp1
, . . . , Vpn,tn − ωpn ) = o(Mn/2).

On the other hand if m′ = n, then by Lemma A.9

X

t1,...,tn

cum(Θi,j : (i, j) ∈ χ)

=
X

t1,...,tn

cum(Up1,t1 − ωp1
, . . . , Upn,tn − ωpn ) = o(Mn/2).

Finally we rule out the case 1 ≤ m′ < n because then χ contains both Upi,ti
− ψpi

’s and
Vpi,ti

− ωpi
’s and hence cum(Θi,j : (i, j) ∈ χ) = 0.

step 3: Finally consider m ≥ 1. Assume that χ1, . . . , χq partition the random variables
{Θ1,1, . . ., Θm′,1} (these are all Upi,ti

− ψpi
) and that χq+1, . . . , χr partition the random

variables {Θ1,2, . . . , Θm,2, Θm′+1,1, . . . , Θn,1} (these are all Vpi,ti
− ωpi

). To check that
(A.8) holds, we need to consider five cases.

case 1: When m′ > m we sum over tm+1, . . . , tm′ in the left hand side of (A.8) and
use (A.6). In order to keep track of all the individual ti for which (i, 1) belongs to χk for
k = 1, . . . , q, we set 0 = ρ0 ≤ ρ1 ≤ · · · ≤ ρq = m, m = σ0 ≤ σ1 ≤ · · · ≤ σq = m′ and
assume, for k = 1, . . . , q, χk = {(ρk−1 + 1, 1), . . . , (ρk , 1), (σk−1 + 1, 1), . . . , (σk , 1)}. Then,
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for k = 1, . . . , q, we obtain by Lemma A.11

X

tσk−1+1,...,tσk

cum(Θi,j : (i, j) ∈ χk)

=
X

tσk−1+1,...,tσk

κρk+σk−ρk−1−σk−1
(pi, ti : (i, 1) ∈ χk)

= M
1
2
(σk−σk−1−1)+κρk+σk−ρk−1−σk−1

(pi, : (i, 1) ∈ χk, tρk−1+1, . . . , tρk
).

Now boundedness of κρk+σk−ρk−1−σk−1
(pi, (i, 1) ∈ χk, tρk−1+1, . . . , tρk

) yields

M− 1
2
(m′−m−1)

X

t1,...,tn

cum(Θi,j : (i, j) ∈ χ1) · · · cum(Θi,j : (i, j) ∈ χr)

∝
X

t1,...,tm

X

tm′+1
,...,tn

cum(Θi,j : (i, j) ∈ χq+1) · · · cum(Θi,j : (i, j) ∈ χr) = o(M
1
2

n).

The last equality follows from Assumption 4.1.

case 2: If m′ = m and |χk| > 2 for some k in q + 1, . . . , r, then using the boundedness
of cum(Θi,j : (i, j) ∈ χk′) for k′ = 1, . . . , q, we obtain

X

t1,...,tn

cum(Θi,j : (i, j) ∈ χ1) · · · cum(Θi,j : (i, j) ∈ χr)

≤ C0

X

t1,...,tn

cum(Θi,j : (i, j) ∈ χq+1) · · · cum(Θi,j : (i, j) ∈ χr) = o(Mn/2).

In the above C0 is a constant and the last equality follows from Assumption 4.1.

case 3: Consider |χk| = 2 for k = q+1, . . . , r and assume m′ = m. Clearly 2m > n > m

and r − q = n − m. Let (m + i, 1) be contained in χq+i for i = 1, . . . , n. We sum over
tm+1, . . . , tn to obtain

X

t1,...,tn

cum(Θi,j : (i, j) ∈ χ1) · · · cum(Θi,j : (i, j) ∈ χr)

≤ constant
X

t1,...,tm

cum(Θi,j : (i, j) ∈ χ1) · · · cum(Θi,j : (i, j) ∈ χq)

cum(Θi,j : (i, j) ∈ χq+n−m+1) · · · cum(Θi,j : (i, j) ∈ χr)

≤ constant
X

t1,...,tm

cum(Θi,j : (i, j) ∈ χ1) · · · cum(Θi,j : (i, j) ∈ χq) = o(M
1
2

n).

In the above derivation we need the fact that
P

ti
cum(Vpi,ti

, Vpτ ,tτ ) is bounded and note
that the constant is changing from line to line.

case 4: Consider the case n = m. Again if any |χk| > 2 for k = 1, . . . , q, we are done by
using (A.4) along with the fact that cumulants of Vpi,ti

− ωpi
are bounded.

case 5: The last case is n = m and |χk| = 2 for all k. The proof requires Theorem 4
to write down the left hand side of (A.8) in terms of covariances of Upi,ti

and Vpi,ti
and

hinges on the fact that ACVS of Upi,ti
and Vpi,ti

are absolutely summable. ⊓⊔

Proof of Theorem 4.4. Take Up,t = − 1
2
(Xt−l − Xt−l′)

2, Vp,t = δt−lδt−l′ and ap =
hj,lhj,l′βl−l′ , where p = (l, l′). Use Lemma 3 in place of Lemma 2 and complete the proof
as in Theorem 4.2 by checking all the steps. ⊓⊔
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Table A.1 Summary of Monte Carlo results for AR(1) process

j

1 2 3 4 5 6

ν2
X(τj ) 0.0500 0.0689 0.1079 0.1585 0.1907 0.1710

mean of ûX,r(τj) 0.0502 0.0690 0.1084 0.1593 0.1911 0.1716

mean of v̂X,r(τj ) 0.0503 0.0692 0.1085 0.1592 0.1910 0.1715

M
− 1

2

j S
1
2

u,j(0) 0.0087 0.0057 0.0104 0.0230 0.0347 0.0429

s.d. of ûX,r(τj) 0.0076 0.0055 0.0101 0.0204 0.0338 0.0431

mean of M
− 1

2

j Ŝ
1
2

u,j,r(0) 0.0071 0.0047 0.0086 0.0175 0.0288 0.0340

M
− 1

2

j S
1
2

v,j(0) 0.0027 0.0047 0.0102 0.0207 0.0345 0.0428

s.d. of v̂X,r(τj ) 0.0025 0.0044 0.0099 0.0205 0.0337 0.0428

mean of M
− 1

2

j Ŝ
1
2

v,j,r(0) 0.0022 0.0039 0.0085 0.0173 0.0285 0.0339

Table A.2 Summary of Monte Carlo results for FD( 5
6
) process

j

1 2 3 4 5 6

ν2
X(τj ) 0.2594 0.3078 0.4427 0.6831 1.0762 1.7050

mean of v̂X,r(τj ) 0.2599 0.3081 0.4421 0.6832 1.0771 1.7179

M
− 1

2

j S
1
2

v,j(0) 0.0141 0.0203 0.0399 0.0857 0.1899 0.4281

s.d. of v̂X,r(τj ) 0.0129 0.0186 0.0386 0.0847 0.1877 0.4275

mean of M
− 1

2

j Ŝ
1
2

v,j,r(0) 0.0119 0.0168 0.0330 0.0704 0.1567 0.3489
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Fig. A.1 Plot of asymptotic efficiency of ûX(τ3) with respect to v̂X (τ3) under autoregres-
sive (left) and fractionally differenced (right) models.
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Fig. A.2 Plot of a typical simulated gappy AR(1) time series and wavelet variances at
various scales.
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Fig. A.3 Plot of a typical simulated gappy FD( 5
6
) time series and wavelet variances at

various scales. Solid lines indicate the estimated intervals while dotted lines indicate the
true intervals.
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Fig. A.4 Atmospheric pressure data (left) from NOAA’s TAO buoy array and Haar wavelet
variance estimates (right) for scales indexed by j = 1, . . . , 8.
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Fig. A.5 Nile River minima (left) and Haar wavelet variance estimates (right) for scales
indexed by j = 1, . . . , 8.


