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Introduction

e goal: investigate nature of interdecadal variability in
climate time series

e Fig. 1. average Nov—Mar Aleutian low sea level pres-
sure field (North Pacific index (NPI))

e shortness of series poses major difficulties
e one approach is through modeling

— stochastic
— oscillator
— other possibilities: nonlinear dynamics, SSA, ...

e models have different implications for extrapolations
(e.g., nature of regime shifts)

e will fit/assess/compare three models

— short memory stochastic model
— long memory stochastic model

— ‘signal + noise’ model: square wave oscillator &
white noise



Overview of Remainder of Talk

e describe short & long memory stochastic models

e describe rationale for square wave oscillator model
(picked using matching pursuit)

e discuss estimation of model parameters

e look at fitted models for NPI

e discuss use of goodness of fit tests to assess models
(will find that all 3 models fit equally well)

e discuss how well we can expect to discriminate
amongst models

e look at implications of models (regime shifts)

e state conclusions



Short & Long Memory Models

e will consider two Gaussian stationary models for data

— first order autoregressive process (AR(1))
— fractionally differenced (FD) process
e both processes fully specified by 3 parameters
(and hence both are ‘equally simple’)
1. process mean
2. parameter that controls process variance
3. parameter controlling shape of both

— autocovariance sequence (ACVS) and

— spectral density function (SDF)

e cssential difference between processes

— AR(1) ACVS dies down quickly (exponentially),
so process said to have ‘short memory’

— FD ACVS dies down slowly (hyperbolically),
so process said to have ‘long memory” (LM)



Short Memory Stochastic Model

e regard data as realization of portion X, X1, ..., Xy_1
of stationary Gaussian AR(1) process:

Xi— px = Qb(Xt_l — NX) + € = go ¢k€t—k
where

1. px = E{X;} is process mean
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2. € is white noise with mean zero and variance o

3. |¢| <1 (if ¢ =0, then X; is white noise)
e ACVS and SDF given by

SX,T:COV{ ty t+T}_ 1_¢2 X(f)_ 1—|—¢2—2¢COS(27T]C)’

where 7 is an integer & |f] < 3

e related to discretized 1st order differential equation
(has single damping constant (related to ¢))

e can define measure of decorrelation (or integral time

scale):
X SX,r 1+¢
=142 — = ;
D Tzz:l SX’O 1 - ¢
i.e., subseries Xn(TD% n=...,—1,0,1,... is close

to white noise



Long Memory Stochastic Model

e regard data as realization of portion Yy, Y7, ..., Yv_1
of stationary Gaussian F'D process:

S ['(1+9)
e = kz::O Nk+DI'(1+0—k) (_1)k(Yt—k — y)
S ['(1—9)
- kz—:o Pk+1)I(1—6—k) (—1) &4

where

1. py = E{Y;} is process mean

2. g; is white noise with mean zero and variance o>

3. 18] < 5 (if 6 =0, Y is white noise; LM if § > 0)
e ACVS and SDF given by

o? sin(md)L(1 — 26)I(7 + 6) o’
= & Sy(f) = — "¢
o, nl(t+1—9) v(f) |2 sin (7 f)]20
e for 7 > 1 and approximately for large 7 & small f,

Sys =8y,1—= X |T and Sy (f) o< 5=
r—s I 17

e related to aggregation of 1st order differential equa-
tion involving many different damping constants

e integral time scale 7p is infinite

6



Square Wave Oscillation Model: 1

e Minobe (1999): NPI contains ‘regime’ shifts

e regime is time interval over which series is essentially
either > or < its long term average value

e Fig. 1. plot of NPI and 5 year running mean

— data for 1901-23 are essentially > sample mean
(exceptions are 1905 & 1919)
— called positive regime with duration of 23 years
— clearly identified in 5 year running mean
— latter is essentially < sample mean for 192446
(but not strictly so)
e Minobe (1999): regimes characterized by

— 20 & 50 year oscillations

— rapid transitions that ‘cannot be attributed to a
single sinusoidal-wavelike variability’

(cf. Figure 1 from Minobe, 1999)

e matching pursuit supports Minobe’s notions



Matching Pursuit: Basics

e idea: approximate time series Z = [Zy, ..., Zy_1]t
using small # of vectors selected from a large set

elet D={d,: n=0,...,Np — 1} be ‘dictionary’
containing Np different vectors

—d, =[dyo,dn1,-- -, dn,N—1]T

— each vector normalized to have unit norm:
N—1
Il = S [l =1

— d,, can be real- or complex-valued
— assume D to be highly redundant
(allows us to find d,, well matched to Z)

e matching pursuit successively approximates Z with
orthogonal projections onto elements of D



Matching Pursuit Algorithm: I

e for d,, € D, form (Z,d,,)d,,

e define residual vector: R = 7 — (Z,d,,)dy,
so that Z = (Z,d, )d,,, + R

e d,, and R are orthogonal: (dy, RW) =0
e hence have

|Z1* = [KZ, dug) g [P+ IR = [{Z, ) [+ R

e choose d,,, such that

(Z,dug)| = pas|(Z. )]

e above is first step of algorithm; second step is
RY = (RW d,,)d,, + R?
with d,,, picked such that

(R, d,,)| = puox (RO, d,)



Matching Pursuit Algorithm: II

e after m such steps, have additive decomposition:

m—1
Z= % (R™.d,,)d,, +R"

(letting R = Z) and energy decomposition:

—1

12> = 5 KR, dy,)dy,|]* + [R™

m—1

- ¥ |(RW.d,))?+ RO

e note: as m increases, |[R™||? must decrease
(must reach zero under certain conditions)
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Square Wave Oscillation Model: 11

e idea: construct D containing
1. real- & complex-valued vectors from orthonormal
discrete Fourier transform (ODFT)

2. square wave oscillations (SWOs) with periods of
2,..., N and all relevant shifts

e note: if complex-valued ODFT vector picked, will
also pick its complex conjugate (to handle phases)

e Fig. 2: result of applying matching pursuit to NPI
(after subtraction of sample mean)
— 1st vector picked is SWO with period of 50 years
— 2nd vector picked is SWO with period of 20 years
— bth, 6th & 10th vectors picked are from ODF'T

e will consider simple SWO model for NPI time series:
Zy = gz + Bdy, ¢ + e
— puz & [ are parameters (if § = 0, Z; is white
noise)
— dy, ¢ part of 1st vector picked by matching pursuit

— ¢; 18 Gaussian white noise with mean zero and

2

varlance o;
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Estimation of Model Parameters: 1

e AR(1) process X; parameterized by ux, ¢ & o?
e I'D process Y; parameterized by py, § & o?
e SWO process Z; parameterized by uz, 8 & o2

e can estimate py, puy & pz via sample means:

A RSN 1NZ—1Y&A 1Nz—:12
MX_NE:O b MY_Nt:O ! MZ_Ntzo !

(might be suboptimal, but little practical loss)
e form recentered series:
)AQEXt—ﬂX, EEYQ—,&Y & ZtEZt—ﬂZ
o regard X;, Y, & Z; as AR(1), FD & SWO processes
with uxy = puy = puz =0

e can estimate ¢ & 02, 0 & o2 or 3 & o2 via
maximum likelihood (ML) method
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Estimation of Model Parameters: 11

e large sample theory on ML estimators says

— g% & 62 are approximately normally distributed

. . 2 ) 4
with means ¢ & o2 and variances 5% & 2%

—0 & 62 are approximately normally distributed

. . 9254
with means § & o2 and variances 5 & ==

— B & 6?2 are approximately normally distributed
4
with means 8 & o2 and variances o2 & 2%

e Monte Carlo experiments: above valid for N > 100

e can use ML theory to form 95% confidence intervals
(ClIs) for unknown parameters

e can form residuals €, &; and é;

e can use residuals to test adequacy of model
(if adequate, residuals should resemble white noise)
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Fitted Models for NPI

e Tab. 1: parameter estimates & CIs for NPI series

e all 3 models significantly different from white noise
(e, 6 £0,6 £0& 3 £0)

e SWO model has smallest estimated residual variation

e Fig. 3. estimated autocorrelation sequence (ACS)
and estimated SDF (periodogram) for NP1, i.e.,

2

a N-1—-1v v _
! <§X,() Zi\iﬁl th N | i=o 7

along with ACSs & SDF's from fitted models
(for SWO, SDF taken to be E{S(fx)})

e qualitatively, all 3 models seem reasonable
(arguably AR(1) ACS poorest match to p,)

e can use goodness of fit tests for quantitative assess-
ment of models
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Goodness of Fit Tests: 1

1. compare fitted SDF to periodogram:

NA S Y 2 S(f)
IR where A = g ( (/.6 )) B = —

S(fy: 0) is theoretical SDF depending on 0; & either
0 =[p,64" or 0 = [6,64T (can’t use with SWO)

TlE

2. cumulative periodogram test statistic:

ek ) 5]

where P is the normalized cumulative periodogram

for € (likewise for &; & é;):
Zg{::l S@t (fk‘)
S5 g
=1 €t (fk)
3. Box—Pierce portmanteau test statistic:
Ko
=N X Péy.r
=1

where pe, ; is estimated ACS for ¢ (same for &; & &)

P =

4. Ljung-Box-Pierce portmanteau test statistic:

K /32
Ty, = N(N + 2 T
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Goodness of Fit Tests: 11

e if T} “too big,” reject ‘model is adequate” hypothesis

e can determine what is ‘too big’ under null hypothesis
that model is correct

e Tab. 2: model goodness of fit tests for NPI

— can reject white noise model

— cannot reject any of the 3 models for NPI

e (): can we really expect to distinguish amongst 3
models given just N = 100 values for NPI?
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Model Discrimination

to address question, consider following experiment
assume FD model with observed 4 is correct for NPI
simulate time series of length N’ from FD model

fit AR(1) model to simulated FD series

evaluate fitted AR(1) model using each T;

repeat above large # of times (2500)

can estimate probability that T} will (correctly)
reject null hypothesis that AR(1) model is correct

gives power of T; in saying AR(1) model is incorrect
repeat above for variety of sample sizes N’

can repeat all of the above with different combina-
tions of AR(1), FD & SWO processes

Fig. 4: power of various test statistics vs. N’

— at best, 30% chance of rejecting null hypothesis

— need N’ =~ 500 to have 50% chance of discrimi-
nating between AR(1) & FD models

— no one test uniformly better than others
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Model Implications: I

e no statistical reason to one model over other two

e all three models depend on 3 parameters & hence are
equally simple (ignoring matching pursuit step)

e cven though all match NPI equally well, models can
have different & potentially important implications

e Fig. 5: examples of 1000 year simulations

e (): how well do models support notion of regimes?
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Model Implications: 1I

e to address question, consider following experiment

e generate deviate 0 from normal distribution with mean

6 _ _6
2N 72100

0 from NPI and variance
e assume FD model with 4 is correct for NPI
e simulate time series of length 1024 from FD model
e tabulate sizes of observed regimes in

1. simulated series

2. five year running mean of series
e repeat above 1000 times

e also repeat using fitted AR(1) and SWO models

e [ig. 6: plots of empirically determined probabilities
of regime sizes being > specified sizes

e intermediate regime sizes most likely under SWO
e large regime sizes most likely under FD

e regime size > 23 is 4 times more likely under FD
model than under AR(1)
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Conclusions

e AR(1), FD & SWO models equally adequate for NP1

e cannot realistically hope to distinguish between three
models given available sample sizes

e all 3 models include white noise as special case
(all 3 lead to rejection of hypothesis of white noise)

e AR(1) model has most rapid drop off of ACS
e 'D model has long tail of small positive correlations

e SWO model has oscillating ACS

e loose physical considerations might favor FD model
(aggregation of first order differential equations)

e I'D model more supportive of regimes than AR(1)
e 'D model more supportive of long regimes than SWO

e estimated 0 compatible with notion of regimes, but
NPI does not have strong long memory
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