Modeling North Pacific Climate Time Series

Don Percival

Applied Physics Lab, University of Washington

overheads for talk available at

http://staff.washington.edu/dbp/talks.html

joint work with Jim Overland & Hal Mofjeld (PMEL/NOAA) (partially based on Dec. 2001 *Journal of Climate* paper)

Introduction

- goal: investigate nature of interdecadal variability in climate time series
- Fig. 1: average Nov–Mar Aleutian low sea level pressure field (North Pacific index (NPI))
- shortness of series poses major difficulties
- one approach is through modeling
 - stochastic
 - oscillator
 - other possibilities: nonlinear dynamics, SSA, \ldots
- models have different implications for extrapolations (e.g., nature of regime shifts)
- will fit/assess/compare three models
 - short memory stochastic model
 - long memory stochastic model
 - 'signal + noise' model: square wave oscillator & white noise

Overview of Remainder of Talk

- describe short & long memory stochastic models
- describe rationale for square wave oscillator model (picked using matching pursuit)
- discuss estimation of model parameters
- look at fitted models for NPI
- discuss use of goodness of fit tests to assess models (will find that all 3 models fit equally well)
- discuss how well we can expect to discriminate amongst models
- look at implications of models (regime shifts)
- state conclusions

Short & Long Memory Models

- will consider two Gaussian stationary models for data
 - first order autoregressive process (AR(1))
 - fractionally differenced (FD) process
- both processes fully specified by 3 parameters (and hence both are 'equally simple')
 - 1. process mean
 - 2. parameter that controls process variance
 - 3. parameter controlling shape of both
 - autocovariance sequence (ACVS) and
 - spectral density function (SDF)
- essential difference between processes
 - AR(1) ACVS dies down quickly (exponentially), so process said to have 'short memory'
 - FD ACVS dies down slowly (hyperbolically), so process said to have 'long memory' (LM)

Short Memory Stochastic Model

• regard data as realization of portion $X_0, X_1, \ldots, X_{N-1}$ of stationary Gaussian AR(1) process:

$$X_t - \mu_X = \phi(X_{t-1} - \mu_X) + \epsilon_t = \sum_{k=0}^{\infty} \phi^k \epsilon_{t-k}$$

where

1. $\mu_X = E\{X_t\}$ is process mean

- 2. ϵ_t is white noise with mean zero and variance σ_{ϵ}^2
- 3. $|\phi| < 1$ (if $\phi = 0$, then X_t is white noise)
- ACVS and SDF given by

$$s_{X,\tau} \equiv \operatorname{cov}\{X_t, X_{t+\tau}\} = \frac{\sigma_{\epsilon}^2 \phi^{|\tau|}}{1 - \phi^2} \& S_X(f) = \frac{\sigma_{\epsilon}^2}{1 + \phi^2 - 2\phi \cos(2\pi f)},$$

where τ is an integer $\& |f| \le \frac{1}{2}$

- related to discretized 1st order differential equation (has single damping constant (related to ϕ))
- can define measure of decorrelation (or integral time scale):

$$\tau_D \equiv 1 + 2\sum_{\tau=1}^{\infty} \frac{s_{X,\tau}}{s_{X,0}} = \frac{1+\phi}{1-\phi};$$

i.e., subseries $X_{n[\tau_D]}$, $n = \dots, -1, 0, 1, \dots$ is close to white noise

Long Memory Stochastic Model

• regard data as realization of portion $Y_0, Y_1, \ldots, Y_{N-1}$ of stationary Gaussian FD process:

$$Y_t - \mu_Y = \sum_{k=0}^{\infty} \frac{\Gamma(1+\delta)}{\Gamma(k+1)\Gamma(1+\delta-k)} (-1)^k (Y_{t-k} - \mu_Y)$$
$$= \sum_{k=0}^{\infty} \frac{\Gamma(1-\delta)}{\Gamma(k+1)\Gamma(1-\delta-k)} (-1)^k \varepsilon_{t-k}$$

where

- 1. $\mu_Y = E\{Y_t\}$ is process mean
- 2. ε_t is white noise with mean zero and variance σ_{ε}^2
- 3. $|\delta| < \frac{1}{2}$ (if $\delta = 0$, Y_t is white noise; LM if $\delta > 0$)
- ACVS and SDF given by $s_{Y,\tau} = \frac{\sigma_{\varepsilon}^2 \sin(\pi\delta)\Gamma(1-2\delta)\Gamma(\tau+\delta)}{\pi\Gamma(\tau+1-\delta)} \& S_Y(f) = \frac{\sigma_{\varepsilon}^2}{|2\sin(\pi f)|^{2\delta}}$
- for $\tau \ge 1$ and approximately for large τ & small f, $s_{Y,\tau} = s_{Y,\tau-1} \frac{\tau + \delta - 1}{\tau - \delta} \propto |\tau|^{2\delta - 1}$ and $S_Y(f) \propto \frac{1}{|f|^{2\delta}}$
- related to aggregation of 1st order differential equation involving many different damping constants
- integral time scale τ_D is infinite

Square Wave Oscillation Model: I

- Minobe (1999): NPI contains 'regime' shifts
- regime is time interval over which series is essentially either > or < its long term average value
- Fig. 1: plot of NPI and 5 year running mean
 - data for 1901–23 are essentially > sample mean (exceptions are 1905 & 1919)
 - called positive regime with duration of 23 years
 - clearly identified in 5 year running mean
 - latter is essentially < sample mean for 1924–46 (but not strictly so)
- Minobe (1999): regimes characterized by
 - 20 & 50 year oscillations
 - rapid transitions that 'cannot be attributed to a single sinusoidal-wavelike variability'
 - (cf. Figure 1 from Minobe, 1999)
- matching pursuit supports Minobe's notions

Matching Pursuit: Basics

- idea: approximate time series $\mathbf{Z} \equiv [Z_0, \dots, Z_{N-1}]^T$ using small # of vectors selected from a large set
- let $\mathcal{D} \equiv {\mathbf{d}_n : n = 0, \dots, N_{\mathcal{D}} 1}$ be 'dictionary' containing $N_{\mathcal{D}}$ different vectors

$$-\mathbf{d}_n = [d_{n,0}, d_{n,1}, \dots, d_{n,N-1}]^T$$

- each vector normalized to have unit norm:

$$\|\mathbf{d}_n\|^2 = \sum_{t=0}^{N-1} |d_{n,t}|^2 = 1$$

- $-\mathbf{d}_n$ can be real- or complex-valued
- assume \mathcal{D} to be highly redundant (allows us to find \mathbf{d}_n well matched to \mathbf{Z})
- matching pursuit successively approximates \mathbf{Z} with orthogonal projections onto elements of \mathcal{D}

Matching Pursuit Algorithm: I

- for $\mathbf{d}_{n_0} \in \mathcal{D}$, form $\langle \mathbf{Z}, \mathbf{d}_{n_0} \rangle \mathbf{d}_{n_0}$
- define residual vector: $\mathbf{R}^{(1)} \equiv \mathbf{Z} \langle \mathbf{Z}, \mathbf{d}_{n_0} \rangle \mathbf{d}_{n_0}$ so that $\mathbf{Z} = \langle \mathbf{Z}, \mathbf{d}_{n_0} \rangle \mathbf{d}_{n_0} + \mathbf{R}^{(1)}$
- \mathbf{d}_{n_0} and $\mathbf{R}^{(1)}$ are orthogonal: $\langle \mathbf{d}_{n_0}, \mathbf{R}^{(1)} \rangle = 0$
- hence have

$$\|\mathbf{Z}\|^{2} = \|\langle \mathbf{Z}, \mathbf{d}_{n_{0}} \rangle \mathbf{d}_{n_{0}}\|^{2} + \|\mathbf{R}^{(1)}\|^{2} = |\langle \mathbf{Z}, \mathbf{d}_{n_{0}} \rangle|^{2} + \|\mathbf{R}^{(1)}\|^{2}$$

• choose \mathbf{d}_{n_0} such that

$$|\langle \mathbf{Z}, \mathbf{d}_{n_0} \rangle| = \max_{\mathbf{d}_n \in \mathcal{D}} |\langle \mathbf{Z}, \mathbf{d}_n \rangle|$$

• above is first step of algorithm; second step is

$$\mathbf{R}^{(1)} = \langle \mathbf{R}^{(1)}, \mathbf{d}_{n_1} \rangle \mathbf{d}_{n_1} + \mathbf{R}^{(2)}$$

with \mathbf{d}_{n_1} picked such that

$$\left|\langle \mathbf{R}^{(1)}, \mathbf{d}_{n_1} \rangle\right| = \max_{\mathbf{d}_n \in \mathcal{D}} \left|\langle \mathbf{R}^{(1)}, \mathbf{d}_n \rangle\right|$$

Matching Pursuit Algorithm: II

• after m such steps, have additive decomposition:

$$\mathbf{Z} = \sum_{k=0}^{m-1} \langle \mathbf{R}^{(k)}, \mathbf{d}_{n_k} \rangle \mathbf{d}_{n_k} + \mathbf{R}^{(m)}$$

(letting $\mathbf{R}^{(0)} \equiv \mathbf{Z}$) and energy decomposition:

$$\|\mathbf{Z}\|^{2} = \sum_{k=0}^{m-1} \|\langle \mathbf{R}^{(k)}, \mathbf{d}_{n_{k}} \rangle \mathbf{d}_{n_{k}} \|^{2} + \|\mathbf{R}^{(m)}\|^{2}$$
$$= \sum_{k=0}^{m-1} |\langle \mathbf{R}^{(k)}, \mathbf{d}_{n_{k}} \rangle|^{2} + \|\mathbf{R}^{(m)}\|^{2}$$

• note: as m increases, $\|\mathbf{R}^{(m)}\|^2$ must decrease (must reach zero under certain conditions)

Square Wave Oscillation Model: II

- idea: construct \mathcal{D} containing
 - 1. real- & complex-valued vectors from orthonormal discrete Fourier transform (ODFT)
 - 2. square wave oscillations (SWOs) with periods of $2, \ldots, N$ and all relevant shifts
- note: if complex-valued ODFT vector picked, will also pick its complex conjugate (to handle phases)
- Fig. 2: result of applying matching pursuit to NPI (after subtraction of sample mean)
 - 1st vector picked is SWO with period of 50 years
 - 2nd vector picked is SWO with period of 20 years
 - 5th, 6th & 10th vectors picked are from ODFT
- will consider simple SWO model for NPI time series:

$$Z_t = \mu_Z + \beta d_{n_0,t} + e_t$$

- $-\mu_Z$ & β are parameters (if $\beta = 0, Z_t$ is white noise)
- $-d_{n_0,t}$ part of 1st vector picked by matching pursuit
- $-e_t$ is Gaussian white noise with mean zero and variance σ_e^2

Estimation of Model Parameters: I

- AR(1) process X_t parameterized by μ_X , $\phi \& \sigma_{\epsilon}^2$
- FD process Y_t parameterized by μ_Y , $\delta \& \sigma_{\varepsilon}^2$
- SWO process Z_t parameterized by μ_Z , $\beta \& \sigma_e^2$
- can estimate μ_X , μ_Y & μ_Z via sample means:

$$\hat{\mu}_X = \frac{1}{N} \sum_{t=0}^{N-1} X_t, \quad \hat{\mu}_Y = \frac{1}{N} \sum_{t=0}^{N-1} Y_t \& \quad \hat{\mu}_Z = \frac{1}{N} \sum_{t=0}^{N-1} Z_t$$

(might be suboptimal, but little practical loss)

• form recentered series:

$$\widetilde{X}_t \equiv X_t - \hat{\mu}_X, \ \widetilde{Y}_t \equiv Y_t - \hat{\mu}_Y \& \ \widetilde{Z}_t \equiv Z_t - \hat{\mu}_Z$$

- regard \widetilde{X}_t , \widetilde{Y}_t & \widetilde{Z}_t as AR(1), FD & SWO processes with $\mu_X = \mu_Y = \mu_Z = 0$
- can estimate $\phi \& \sigma_{\epsilon}^2$, $\delta \& \sigma_{\varepsilon}^2$ or $\beta \& \sigma_{e}^2$ via maximum likelihood (ML) method

Estimation of Model Parameters: II

- large sample theory on ML estimators says
 - $-\hat{\phi} \& \hat{\sigma}_{\epsilon}^2$ are approximately normally distributed with means $\phi \& \sigma_{\epsilon}^2$ and variances $\frac{1-\phi^2}{N} \& \frac{2\sigma_{\epsilon}^4}{N}$
 - $-\hat{\delta} \& \hat{\sigma}_{\varepsilon}^2$ are approximately normally distributed with means $\delta \& \sigma_{\varepsilon}^2$ and variances $\frac{6}{\pi^2 N} \& \frac{2\sigma_{\varepsilon}^4}{N}$
 - $-\hat{\beta} \& \hat{\sigma}_e^2$ are approximately normally distributed with means $\beta \& \sigma_e^2$ and variances $\sigma_e^2 \& \frac{2\sigma_e^4}{N}$
- Monte Carlo experiments: above valid for $N \ge 100$
- can use ML theory to form 95% confidence intervals (CIs) for unknown parameters
- can form residuals $\hat{\epsilon}_t$, $\hat{\varepsilon}_t$ and \hat{e}_t
- can use residuals to test adequacy of model (if adequate, residuals should resemble white noise)

Fitted Models for NPI

- Tab. 1: parameter estimates & CIs for NPI series
- all 3 models significantly different from white noise (i.e., $\phi \neq 0, \, \delta \neq 0 \& \beta \neq 0$)
- SWO model has smallest estimated residual variation
- Fig. 3: estimated autocorrelation sequence (ACS) and estimated SDF (periodogram) for NPI, i.e.,

$$\hat{\rho}_{\tau} \equiv \frac{\hat{s}_{X,\tau}}{\hat{s}_{X,0}} = \frac{\sum_{t=0}^{N-\tau-1} \widetilde{X}_t \widetilde{X}_{t+\tau}}{\sum_{t=0}^{N-1} \widetilde{X}_t^2} \& \hat{S}(f_k) \equiv \frac{1}{N} \left| \sum_{t=0}^{N-1} \widetilde{X}_t e^{-i2\pi f_k t} \right|^2,$$

along with ACSs & SDFs from fitted models (for SWO, SDF taken to be $E\{\hat{S}(f_k)\}$)

- qualitatively, all 3 models seem reasonable (arguably AR(1) ACS poorest match to $\hat{\rho}_{\tau}$)
- can use goodness of fit tests for quantitative assessment of models

Goodness of Fit Tests: I

1. compare fitted SDF to periodogram:

$$T_1 \equiv \frac{NA}{4\pi B^2}, \text{ where } A \equiv \sum_{k=1}^{\lfloor \frac{N-1}{2} \rfloor} \left(\frac{\hat{S}(f_k)}{S(f_k; \hat{\theta})} \right)^2; B \equiv \sum_{k=1}^{\lfloor \frac{N-1}{2} \rfloor} \frac{\hat{S}(f_k)}{S(f_k; \hat{\theta})};$$

 $S(f_k; \hat{\theta})$ is theoretical SDF depending on $\hat{\theta}$; & either $\hat{\theta} = [\hat{\phi}, \hat{\sigma}_{\epsilon}^2]^T$ or $\hat{\theta} = [\hat{\delta}, \hat{\sigma}_{\varepsilon}^2]^T$ (can't use with SWO)

2. cumulative periodogram test statistic:

$$T_{2} = \max\left\{\max_{l}\left(\frac{l}{\lfloor\frac{N-1}{2}\rfloor - 1} - \mathcal{P}_{l}\right), \max_{l}\left(\mathcal{P}_{l} - \frac{l-1}{\lfloor\frac{N-1}{2}\rfloor - 1}\right)\right\},\$$

where \mathcal{P}_l is the normalized cumulative periodogram for $\hat{\epsilon}_t$ (likewise for $\hat{\varepsilon}_t \& \hat{e}_t$):

$$\mathcal{P}_{l} \equiv \frac{\sum_{k=1}^{l} \hat{S}_{\hat{\epsilon}_{t}}(f_{k})}{\sum_{k=1}^{\lfloor \frac{N-1}{2} \rfloor} \hat{S}_{\hat{\epsilon}_{t}}(f_{k})}$$

3. Box–Pierce portmanteau test statistic:

$$T_3 = N \sum_{\tau=1}^{K} \hat{\rho}_{\hat{\epsilon}_t,\tau}^2$$

where $\rho_{\hat{\epsilon}_t,\tau}$ is estimated ACS for $\hat{\epsilon}_t$ (same for $\hat{\epsilon}_t \& \hat{e}_t$)

4. Ljung–Box–Pierce portmanteau test statistic:

$$T_4 = N(N+2) \sum_{\tau=1}^{K} \frac{\hat{\rho}_{\hat{\epsilon}_t,\tau}^2}{N-\tau}$$

Goodness of Fit Tests: II

- if T_j 'too big,' reject 'model is adequate' hypothesis
- can determine what is 'too big' under null hypothesis that model is correct
- Tab. 2: model goodness of fit tests for NPI
 - can reject white noise model
 - cannot reject any of the 3 models for NPI
- Q: can we really expect to distinguish amongst 3 models given just N = 100 values for NPI?

Model Discrimination

- to address question, consider following experiment
- assume FD model with observed $\hat{\delta}$ is correct for NPI
- simulate time series of length N' from FD model
- fit AR(1) model to simulated FD series
- evaluate fitted AR(1) model using each T_j
- repeat above large # of times (2500)
- can estimate probability that T_j will (correctly) reject null hypothesis that AR(1) model is correct
- gives power of T_j in saying AR(1) model is incorrect
- repeat above for variety of sample sizes N'
- can repeat all of the above with different combinations of AR(1), FD & SWO processes
- Fig. 4: power of various test statistics vs. N'
 - at best, 30% chance of rejecting null hypothesis
 - need $N' \approx 500$ to have 50% chance of discriminating between AR(1) & FD models
 - no one test uniformly better than others

Model Implications: I

- no statistical reason to one model over other two
- all three models depend on 3 parameters & hence are equally simple (ignoring matching pursuit step)
- even though all match NPI equally well, models can have different & potentially important implications
- Fig. 5: examples of 1000 year simulations
- Q: how well do models support notion of regimes?

Model Implications: II

- to address question, consider following experiment
- generate deviate $\tilde{\delta}$ from normal distribution with mean $\hat{\delta}$ from NPI and variance $\frac{6}{\pi^2 N} = \frac{6}{\pi^2 100}$
- assume FD model with $\tilde{\delta}$ is correct for NPI
- simulate time series of length 1024 from FD model
- tabulate sizes of observed regimes in
 - 1. simulated series
 - 2. five year running mean of series
- repeat above 1000 times
- also repeat using fitted AR(1) and SWO models
- Fig. 6: plots of empirically determined probabilities of regime sizes being ≥ specified sizes
- intermediate regime sizes most likely under SWO
- large regime sizes most likely under FD
- regime size ≥ 23 is 4 times more likely under FD model than under AR(1)

Conclusions

- \bullet AR(1), FD & SWO models equally adequate for NPI
- cannot realistically hope to distinguish between three models given available sample sizes
- all 3 models include white noise as special case (all 3 lead to rejection of hypothesis of white noise)
- AR(1) model has most rapid drop off of ACS
- FD model has long tail of small positive correlations
- SWO model has oscillating ACS
- loose physical considerations might favor FD model (aggregation of first order differential equations)
- FD model more supportive of regimes than AR(1)
- FD model more supportive of long regimes than SWO
- estimated δ compatible with notion of regimes, but NPI does not have strong long memory