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Introduction

• goal: investigate nature of interdecadal variability in

climate time series

• Fig. 1: average Nov–Mar Aleutian low sea level pres-

sure field (North Pacific index (NPI))

• shortness of series poses major difficulties

• one approach is through modeling

– stochastic

– oscillator

– other possibilities: nonlinear dynamics, SSA, . . .

• models have different implications for extrapolations

(e.g., nature of regime shifts)

• will fit/assess/compare three models

– short memory stochastic model

– long memory stochastic model

– ‘signal + noise’ model: square wave oscillator &

white noise
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Overview of Remainder of Talk

• describe short & long memory stochastic models

• describe rationale for square wave oscillator model

(picked using matching pursuit)

• discuss estimation of model parameters

• look at fitted models for NPI

• discuss use of goodness of fit tests to assess models

(will find that all 3 models fit equally well)

• discuss how well we can expect to discriminate

amongst models

• look at implications of models (regime shifts)

• state conclusions
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Short & Long Memory Models

• will consider two Gaussian stationary models for data

– first order autoregressive process (AR(1))

– fractionally differenced (FD) process

• both processes fully specified by 3 parameters

(and hence both are ‘equally simple’)

1. process mean

2. parameter that controls process variance

3. parameter controlling shape of both

– autocovariance sequence (ACVS) and

– spectral density function (SDF)

• essential difference between processes

– AR(1) ACVS dies down quickly (exponentially),

so process said to have ‘short memory’

– FD ACVS dies down slowly (hyperbolically),

so process said to have ‘long memory’ (LM)
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Short Memory Stochastic Model

• regard data as realization of portionX0, X1, . . . , XN−1

of stationary Gaussian AR(1) process:

Xt − µX = φ(Xt−1 − µX) + εt =
∞∑
k=0
φkεt−k

where

1. µX = E{Xt} is process mean

2. εt is white noise with mean zero and variance σ2
ε

3. |φ| < 1 (if φ = 0, then Xt is white noise)

• ACVS and SDF given by

sX,τ ≡ cov{Xt,Xt+τ} =
σ2
ε φ

|τ |

1 − φ2
& SX(f ) =

σ2
ε

1 + φ2 − 2φ cos(2πf )
,

where τ is an integer & |f | ≤ 1
2

• related to discretized 1st order differential equation

(has single damping constant (related to φ))

• can define measure of decorrelation (or integral time

scale):

τD ≡ 1 + 2
∞∑
τ=1

sX,τ
sX,0

=
1 + φ

1 − φ;

i.e., subseries Xn	τD
, n = . . . ,−1, 0, 1, . . . is close

to white noise
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Long Memory Stochastic Model

• regard data as realization of portion Y0, Y1, . . . , YN−1

of stationary Gaussian FD process:

Yt − µY =
∞∑
k=0

Γ(1 + δ)

Γ(k + 1)Γ(1 + δ − k)(−1)k(Yt−k − µY )

=
∞∑
k=0

Γ(1 − δ)
Γ(k + 1)Γ(1 − δ − k)(−1)kεt−k

where

1. µY = E{Yt} is process mean

2. εt is white noise with mean zero and variance σ2
ε

3. |δ| < 1
2 (if δ = 0, Yt is white noise; LM if δ > 0)

• ACVS and SDF given by

sY,τ =
σ2
ε sin(πδ)Γ(1 − 2δ)Γ(τ + δ)

πΓ(τ + 1 − δ) & SY (f ) =
σ2
ε

|2 sin(πf )|2δ

• for τ ≥ 1 and approximately for large τ & small f ,

sY,τ = sY,τ−1
τ + δ − 1

τ − δ ∝ |τ |2δ−1 and SY (f ) ∝ 1

|f |2δ

• related to aggregation of 1st order differential equa-

tion involving many different damping constants

• integral time scale τD is infinite
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Square Wave Oscillation Model: I

• Minobe (1999): NPI contains ‘regime’ shifts

• regime is time interval over which series is essentially

either > or < its long term average value

• Fig. 1: plot of NPI and 5 year running mean

– data for 1901–23 are essentially > sample mean

(exceptions are 1905 & 1919)

– called positive regime with duration of 23 years

– clearly identified in 5 year running mean

– latter is essentially < sample mean for 1924–46

(but not strictly so)

• Minobe (1999): regimes characterized by

– 20 & 50 year oscillations

– rapid transitions that ‘cannot be attributed to a

single sinusoidal-wavelike variability’

(cf. Figure 1 from Minobe, 1999)

• matching pursuit supports Minobe’s notions
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Matching Pursuit: Basics

• idea: approximate time series Z ≡ [Z0, . . . , ZN−1]
T

using small # of vectors selected from a large set

• let D ≡ {dn : n = 0, . . . , ND − 1} be ‘dictionary’

containing ND different vectors

– dn = [dn,0, dn,1, . . . , dn,N−1]
T

– each vector normalized to have unit norm:

‖dn‖2 =
N−1∑
t=0

|dn,t|2 = 1

– dn can be real- or complex-valued

– assume D to be highly redundant

(allows us to find dn well matched to Z)

• matching pursuit successively approximates Z with

orthogonal projections onto elements of D
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Matching Pursuit Algorithm: I

• for dn0 ∈ D, form 〈Z,dn0〉dn0

• define residual vector: R(1) ≡ Z − 〈Z,dn0〉dn0

so that Z = 〈Z,dn0〉dn0 + R(1)

• dn0 and R(1) are orthogonal: 〈dn0,R
(1)〉 = 0

• hence have

‖Z‖2 = ‖〈Z,dn0〉dn0‖2+‖R(1)‖2 = |〈Z,dn0〉|
2+‖R(1)‖2

• choose dn0 such that

|〈Z,dn0〉| = max
dn∈D

|〈Z,dn〉|

• above is first step of algorithm; second step is

R(1) = 〈R(1),dn1〉dn1 + R(2)

with dn1 picked such that
∣∣∣∣〈R(1),dn1〉

∣∣∣∣ = max
dn∈D

∣∣∣∣〈R(1),dn〉
∣∣∣∣
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Matching Pursuit Algorithm: II

• after m such steps, have additive decomposition:

Z =
m−1∑
k=0

〈R(k),dnk
〉dnk

+ R(m)

(letting R(0) ≡ Z) and energy decomposition:

‖Z‖2 =
m−1∑
k=0

‖〈R(k),dnk
〉dnk

‖2 + ‖R(m)‖2

=
m−1∑
k=0

|〈R(k),dnk
〉|2 + ‖R(m)‖2

• note: as m increases, ‖R(m)‖2 must decrease

(must reach zero under certain conditions)
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Square Wave Oscillation Model: II

• idea: construct D containing

1. real- & complex-valued vectors from orthonormal

discrete Fourier transform (ODFT)

2. square wave oscillations (SWOs) with periods of

2, . . . , N and all relevant shifts

• note: if complex-valued ODFT vector picked, will

also pick its complex conjugate (to handle phases)

• Fig. 2: result of applying matching pursuit to NPI

(after subtraction of sample mean)

– 1st vector picked is SWO with period of 50 years

– 2nd vector picked is SWO with period of 20 years

– 5th, 6th & 10th vectors picked are from ODFT

• will consider simple SWO model for NPI time series:

Zt = µZ + βdn0,t + et

– µZ & β are parameters (if β = 0, Zt is white

noise)

– dn0,t part of 1st vector picked by matching pursuit

– et is Gaussian white noise with mean zero and

variance σ2
e
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Estimation of Model Parameters: I

• AR(1) process Xt parameterized by µX , φ & σ2
ε

• FD process Yt parameterized by µY , δ & σ2
ε

• SWO process Zt parameterized by µZ , β & σ2
e

• can estimate µX , µY & µZ via sample means:

µ̂X =
1

N

N−1∑
t=0

Xt, µ̂Y =
1

N

N−1∑
t=0

Yt & µ̂Z =
1

N

N−1∑
t=0

Zt

(might be suboptimal, but little practical loss)

• form recentered series:

X̃t ≡ Xt − µ̂X, Ỹt ≡ Yt − µ̂Y & Z̃t ≡ Zt − µ̂Z

• regard X̃t, Ỹt & Z̃t as AR(1), FD & SWO processes

with µX = µY = µZ = 0

• can estimate φ & σ2
ε , δ & σ2

ε or β & σ2
e via

maximum likelihood (ML) method
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Estimation of Model Parameters: II

• large sample theory on ML estimators says

– φ̂ & σ̂2
ε are approximately normally distributed

with means φ & σ2
ε and variances 1−φ2

N & 2σ4
ε
N

– δ̂ & σ̂2
ε are approximately normally distributed

with means δ & σ2
ε and variances 6

π2N
& 2σ4

ε
N

– β̂ & σ̂2
e are approximately normally distributed

with means β & σ2
e and variances σ2

e & 2σ4
e
N

• Monte Carlo experiments: above valid for N ≥ 100

• can use ML theory to form 95% confidence intervals

(CIs) for unknown parameters

• can form residuals ε̂t, ε̂t and êt

• can use residuals to test adequacy of model

(if adequate, residuals should resemble white noise)
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Fitted Models for NPI

• Tab. 1: parameter estimates & CIs for NPI series

• all 3 models significantly different from white noise

(i.e., φ �= 0, δ �= 0 & β �= 0)

• SWO model has smallest estimated residual variation

• Fig. 3: estimated autocorrelation sequence (ACS)

and estimated SDF (periodogram) for NPI, i.e.,

ρ̂τ ≡
ŝX,τ
ŝX,0

=
∑N−τ−1
t=0 X̃tX̃t+τ∑N−1

t=0 X̃2
t

& Ŝ(fk) ≡
1

N

∣∣∣∣∣∣
N−1∑
t=0

X̃te
−i2πfkt

∣∣∣∣∣∣
2

,

along with ACSs & SDFs from fitted models

(for SWO, SDF taken to be E{Ŝ(fk)})
• qualitatively, all 3 models seem reasonable

(arguably AR(1) ACS poorest match to ρ̂τ )

• can use goodness of fit tests for quantitative assess-

ment of models
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Goodness of Fit Tests: I

1. compare fitted SDF to periodogram:

T1 ≡
NA

4πB2
, where A ≡

�N−1
2 �∑
k=1



Ŝ(fk)

S(fk; θ̂)




2

; B ≡
�N−1

2 �∑
k=1

Ŝ(fk)

S(fk; θ̂)
;

S(fk; θ̂) is theoretical SDF depending on θ̂; & either

θ̂ = [φ̂, σ̂2
ε ]
T or θ̂ = [δ̂, σ̂2

ε ]
T (can’t use with SWO)

2. cumulative periodogram test statistic:

T2 = max


max

l


 l

�N−1
2 � − 1

− Pl

 ,max

l


Pl −

l − 1

�N−1
2 � − 1





 ,

where Pl is the normalized cumulative periodogram

for ε̂t (likewise for ε̂t & êt):

Pl ≡
∑l
k=1 Ŝε̂t(fk)

∑�N−1
2 �

k=1 Ŝε̂t(fk)

3. Box–Pierce portmanteau test statistic:

T3 = N
K∑
τ=1
ρ̂2
ε̂t,τ

where ρε̂t,τ is estimated ACS for ε̂t (same for ε̂t & êt)

4. Ljung–Box–Pierce portmanteau test statistic:

T4 = N(N + 2)
K∑
τ=1

ρ̂2
ε̂t,τ

N − τ
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Goodness of Fit Tests: II

• if Tj ‘too big,’ reject ‘model is adequate’ hypothesis

• can determine what is ‘too big’ under null hypothesis

that model is correct

• Tab. 2: model goodness of fit tests for NPI

– can reject white noise model

– cannot reject any of the 3 models for NPI

• Q: can we really expect to distinguish amongst 3

models given just N = 100 values for NPI?
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Model Discrimination

• to address question, consider following experiment

• assume FD model with observed δ̂ is correct for NPI

• simulate time series of length N ′ from FD model

• fit AR(1) model to simulated FD series

• evaluate fitted AR(1) model using each Tj

• repeat above large # of times (2500)

• can estimate probability that Tj will (correctly)

reject null hypothesis that AR(1) model is correct

• gives power of Tj in saying AR(1) model is incorrect

• repeat above for variety of sample sizes N ′

• can repeat all of the above with different combina-

tions of AR(1), FD & SWO processes

• Fig. 4: power of various test statistics vs. N ′

– at best, 30% chance of rejecting null hypothesis

– need N ′ ≈ 500 to have 50% chance of discrimi-

nating between AR(1) & FD models

– no one test uniformly better than others

17



Model Implications: I

• no statistical reason to one model over other two

• all three models depend on 3 parameters & hence are

equally simple (ignoring matching pursuit step)

• even though all match NPI equally well, models can

have different & potentially important implications

• Fig. 5: examples of 1000 year simulations

• Q: how well do models support notion of regimes?
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Model Implications: II

• to address question, consider following experiment

• generate deviate δ̃ from normal distribution with mean

δ̂ from NPI and variance 6
π2N

= 6
π2100

• assume FD model with δ̃ is correct for NPI

• simulate time series of length 1024 from FD model

• tabulate sizes of observed regimes in

1. simulated series

2. five year running mean of series

• repeat above 1000 times

• also repeat using fitted AR(1) and SWO models

• Fig. 6: plots of empirically determined probabilities

of regime sizes being ≥ specified sizes

• intermediate regime sizes most likely under SWO

• large regime sizes most likely under FD

• regime size ≥ 23 is 4 times more likely under FD

model than under AR(1)
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Conclusions

• AR(1), FD & SWO models equally adequate for NPI

• cannot realistically hope to distinguish between three

models given available sample sizes

• all 3 models include white noise as special case

(all 3 lead to rejection of hypothesis of white noise)

• AR(1) model has most rapid drop off of ACS

• FD model has long tail of small positive correlations

• SWO model has oscillating ACS

• loose physical considerations might favor FD model

(aggregation of first order differential equations)

• FD model more supportive of regimes than AR(1)

• FD model more supportive of long regimes than SWO

• estimated δ compatible with notion of regimes, but

NPI does not have strong long memory
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