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Overview: I

• as a subject, wavelets are

− relatively new (1983 to present)

− a synthesis of old/new ideas

− keyword in 45, 875 articles and books since 1989
(7685 more since 2008: an inundation of material!!!)

• wavelets can help us understand

− time series (i.e., observations collected over time)

− images
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Overview: II

• wavelets capable of describing how

− time series evolve over time on a given scale

− images change from one place to the next on a given scale,

where here ‘scale’ is either

− an interval (span) of time (hour, year, . . . ) or

− a spatial area (square kilometer, acre, . . . )
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Overview: III

• example: water temperatures recorded at wall of Wivenhoe
Dam at depths of 1, 10 & 20 meters (9 October 2007 & on)
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Overview: IV

• some questions that wavelets can help address:

1. How does variance change across time?

2. Are variations from one day to the next more prominent than
variations from one month to the next?

3. Temperatures at 10 and 20 meters are less variable than those
at 1 meter, but are some of their other statistical properties
similar?

4. What are the pairwise relationships between these series on
a scale-by-scale basis (e.g., day-to-day, month-to-month)?
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Outline of Remainder of Talk: I

• discuss what exactly a wavelet is

• discuss wavelet analysis (emphasis on physical interpretation)

• point out two fundamental properties of the continuous wavelet
transform (CWT):

1. CWT is fully equivalent to the transformed time series

2. CWT tells how ‘energy’ in time series is distributed across
different scales and different times

• describe the discrete wavelet transform (DWT)

• point out two analogous fundamental properties of DWT
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Outline of Remainder of Talk: II

• look at some preliminary results from wavelet-based analysis
of water temperature (on-going work with Sarah Lennox, You-
Gan Wang and Ross Darnell)

• concluding remarks
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What is a Wavelet?

• looking at cos(u) vs. u, a cosine is a ‘big wave’
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• wavelets are ‘small waves’ (left-hand is Haar wavelet ψ(H)(·))
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Technical Definition of a Wavelet

• real-valued function ψ(·) defined over real axis is a wavelet if

1. integral of ψ2(·) is unity:
R∞
−∞ψ2(u) du = 1

(called ‘unit energy’ property, with apologies to physicists)

2. integral of ψ(·) is zero:
R∞
−∞ψ(u) du = 0

(technically, need an ‘admissibility condition,’ but this is al-
most equivalent to integration to zero)
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What is Wavelet Analysis?

• wavelets tell us about variations in local averages

• to quantify this description, let x(·) be a time series

− real-valued function of t defined over real axis

− will refer to t as time (but it need not be such)

• consider ‘average value’ of x(·) over [a, b]:

1

b− a

Z b

a
x(t) dt

(above notion discussed in elementary calculus books)
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Example of Average Value of a Time Series

• let x(·) be step function taking on values x0, x1, . . . , x15 over
16 equal subintervals of [a, b]:
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Average Values at Different Scales and Times

• define the following function of τ and t

A(τ, t) ≡ 1

τ

Z t+τ
2

t−τ
2

x(u) du

− τ is width of interval – referred to as ‘scale’

− t is midpoint of interval

• A(τ, t) is average value of x(·) over scale τ centered at t

• average values of time series are of wide-spread interest

− one second average temperatures over forest

− ten minute rainfall rate during severe storm

− yearly average temperatures over central England
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Defining a Wavelet Coefficient W

• multiply Haar wavelet & time series x(·) together:
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• integrate resulting function to get ‘wavelet coefficient’ W (1, 0):Z ∞

−∞
ψ(H)(t)x(t) dt = W (1, 0)

• to see what W (1, 0) is telling us about x(·), note that

W (1, 0) ∝ 1

1

Z 1

0
x(t) dt− 1

1

Z 0

−1
x(t) dt = A(1, 1

2)−A(1,−1
2)
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Defining Wavelet Coefficients for Other Scales

• W (1, 0) proportional to difference between averages of x(·) over
[−1, 0] & [0, 1], i.e., two unit-scale averages before/after t = 0

− ‘1’ in W (1, 0) denotes scale 1 (width of each interval)

− ‘0’ in W (1, 0) denotes time 0 (center of combined intervals)

• stretch or shrink wavelet to define W (τ, 0) for other scales τ :
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Defining Wavelet Coefficients for Other Locations

• relocate to define W (τ, t) for other times t:
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Haar Continuous Wavelet Transform (CWT)

• for all τ > 0 and all −∞ < t <∞, can write

W (τ, t) =
1√
τ

Z ∞

−∞
x(u)ψ(H)

µ
u− t

τ

∂
du

− u−t
τ does the stretching/shrinking and relocating

− 1√
τ needed so ψ(H)

τ,t(u) ≡ 1√
τψ(H)

°u−t
τ

¢
has unit energy

− since it also integrates to zero, ψ(H)

τ,t(·) is a wavelet

• W (τ, t) over all τ > 0 and all t is Haar CWT for x(·)
• analyzes/breaks up/decomposes x(·) into components

− associated with a scale and a time

− physically related to a difference of averages
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Other Continuous Wavelet Transforms: I

• can do the same for wavelets other than the Haar

• start with basic wavelet ψ(·)
• use ψτ,t(u) = 1√

τψ
°u−t

τ

¢
to stretch/shrink & relocate

• define CWT via

W (τ, t) =

Z ∞

−∞
x(u)ψτ,t(u) du =

1√
τ

Z ∞

−∞
x(u)ψ

µ
u− t

τ

∂
du

• analyzes/breaks up/decomposes x(·) into components

− associated with a scale and a time

− physically related to a difference of weighted averages
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Other Continuous Wavelet Transforms: II

• consider two companions of Haar wavelet:

    
 

  

 

 

    
 

    
 

ψ(H)(u) ψ(fdG)(u) ψ(Mh)(u)
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• ψ(fdG)(·) proportional to 1st derivative of Gaussian PDF

• ‘Mexican hat’ wavelet ψ(Mh)(·) proportional to 2nd derivative

• ψ(fdG)(·) looks at difference of adjacent weighted averages

• ψ(Mh)(·) looks at difference between weighted average and sum
of weighted averages occurring before & after
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First Scary-Looking Equation

• CWT equivalent to x(·) because we can write

x(t) =

Z ∞

0

∑
1

Cτ2

Z ∞

−∞
W (τ, u)

1√
τ
ψ

µ
t− u

τ

∂
du

∏
dτ,

where C is a constant depending on specific wavelet ψ(·)
• can synthesize (put back together) x(·) given its CWT;

i.e., nothing is lost in reexpressing time series x(·) via its CWT

• regard stuff in brackets as defining ‘scale τ ’ time series at t

• says we can reexpress x(·) as integral (sum) of new time series,
each associated with a particular scale

• similar additive decompositions are a central theme of wavelet
analysis
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Second Scary-Looking Equation

• energy in x(·) is reexpressed in CWT because

energy =

Z ∞

−∞
x2(t) dt =

Z ∞

0

∑
1

Cτ2

Z ∞

−∞
W 2(τ, t) dt

∏
dτ

• can regard x2(t) versus t as breaking up the energy across time
(i.e., an ‘energy density’ function)

• regard stuff in brackets as breaking up the energy across scales

• says we can reexpress energy as integral (sum) of components,
each associated with a particular scale

• function defined by W 2(τ, t)/Cτ2 is an energy density across
both time and scale

• similar energy decompositions are a second central theme
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Example: Portion of Water Temperatures at 20 m
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Mexican Hat CWT of 20 m Water Temperatures

 

23.8
24.0
24.2
24.4

D
eg

re
es

 C

0 2 4 6 8 10 12 14 16 18 20

Day count

4 h
8 h

16 h

1.3 d

2.7 d

5.3 d

10.7 d

Sc
al

e

21



Mexican Hat CWT of 20 m Water Temperatures

 

23.8
24.0
24.2
24.4

D
eg

re
es

 C

0 2 4 6 8 10 12 14 16 18 20

Day count

4 h
8 h

16 h

1.3 d

2.7 d

5.3 d

10.7 d

Sc
al

e

21



Mexican Hat CWT of 20 m Water Temperatures

 

23.8
24.0
24.2
24.4

D
eg

re
es

 C

0 2 4 6 8 10 12 14 16 18 20

Day count

4 h
8 h

16 h

1.3 d

2.7 d

5.3 d

10.7 d

Sc
al

e

21



Mexican Hat CWT of 20 m Water Temperatures

 

23.8
24.0
24.2
24.4

D
eg

re
es

 C

0 2 4 6 8 10 12 14 16 18 20

Day count

4 h
8 h

16 h

1.3 d

2.7 d

5.3 d

10.7 d

Sc
al

e

21



Mexican Hat CWT of 20 m Water Temperatures

 

23.8
24.0
24.2
24.4

D
eg

re
es

 C

0 2 4 6 8 10 12 14 16 18 20

Day count

4 h
8 h

16 h

1.3 d

2.7 d

5.3 d

10.7 d

Sc
al

e

21



Mexican Hat CWT of 20 m Water Temperatures

 

23.8
24.0
24.2
24.4

D
eg

re
es

 C

0 2 4 6 8 10 12 14 16 18 20

Day count

4 h
8 h

16 h

1.3 d

2.7 d

5.3 d

10.7 d

Sc
al

e

21



Mexican Hat CWT of 20 m Water Temperatures

 

23.8
24.0
24.2
24.4

D
eg

re
es

 C

0 2 4 6 8 10 12 14 16 18 20

Day count

4 h
8 h

16 h

1.3 d

2.7 d

5.3 d

10.7 d

Sc
al

e

21



Mexican Hat CWT of 20 m Water Temperatures

 

23.8
24.0
24.2
24.4

D
eg

re
es

 C

0 2 4 6 8 10 12 14 16 18 20

Day count

4 h
8 h

16 h

1.3 d

2.7 d

5.3 d

10.7 d

Sc
al

e

21



Mexican Hat CWT of 20 m Water Temperatures

 

23.8
24.0
24.2
24.4

D
eg

re
es

 C

0 2 4 6 8 10 12 14 16 18 20

Day count

4 h
8 h

16 h

1.3 d

2.7 d

5.3 d

10.7 d

Sc
al

e

21



Beyond the CWT: the DWT

• critique: have transformed signal into an image (anti-statistics!)

• can often – but not always – get by with subsamples of W (τ, t)

• leads to notion of discrete wavelet transform (DWT) – more
convenient for use with samples x0, x1, . . .xN−1 from x(·),

• can regard DWT as ‘slices’ through CWT

− restrict τ to ‘dyadic’ scales τj ≡ 2j−1 ∆t, j = 1, 2, . . . , J ,
where ∆t is sampling interval (2 hours for water temperature
data), and J is a maximum level chosen by user

− restrict times to an offset + t ∆t, t = 0, 1, . . . , N − 1

− this yields ‘maximal overlap’ DWT (MODWT) – can restrict
times even further to get orthonormal DWT (ODWT)

• yields wavelet coefficients Wj,t ∝W (τj, t)
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MODWT Subsampling of CWT
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ODWT Subsampling of CWT
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The Discrete Wavelet Transform

• collect Wj,t into vector Wj for levels j = 1, 2, . . . , J

• also get scaling coefficients VJ,t

− related to averages over a scale of 2τJ
− summary of information in W (τ, t) at τ ≥ 2τJ = 2J ∆t

• collect VJ,t into vector VJ

• W1, . . . , WJ and VJ form the DWT of X ≡ [x0, . . . , xN−1]
T
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Multiresolution Analysis (MRA)

• DWT has equivalents of two ‘scary-looking’ equations

• analog of first equation is called a multiresolution analysis (MRA):

X =
JX

j=1

Dj + SJ,

where

−Dj is a ‘detail’ series depending just on Wj and capturing
part of X attributable to changes on a scale of τj

− SJ is a ‘smooth’ series depending just on VJ and capturing
part of X attributable to averages on a scale of 2τJ

• since we can recover X perfectly from its DWT, W1, . . . , WJ
& VJ are fully equivalent to X
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J = 3 MRA for 1 m Water Temperatures
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J = 9 Modified MRA for 1 m Water Temperatures
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J = 9 Modified MRA for 10 m Water Temperatures
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J = 9 Modified MRA for 20 m Water Temperatures
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Correlations Between ASD Components at 3 Depths

At At At St St St Dt Dt Dt

1 m 10 m 20 m 1 m 10 m 20 m 1 m 10 m 20 m
At, 1 m 1.00
At, 10 m 0.91 1.00
At, 20 m 0.65 0.88 1.00
St, 1 m 0.01 0.00 0.00 1.00
St, 10 m 0.01 0.01 0.01 0.33 1.00
St, 20 m 0.01 0.02 0.04 0.12 0.26 1.00
Dt, 1 m 0.00 0.00 0.00 0.03 0.00 0.00 1.00
Dt, 10 m 0.00 0.00 0.00 0.00 0.05 0.00 0.04 1.00
Dt, 20 m 0.00 0.00 0.00 0.00 0.00 0.03 0.05 −0.07 1.00

31



Correlations Between ASD Components at 3 Depths

At At At St St St Dt Dt Dt

1 m 10 m 20 m 1 m 10 m 20 m 1 m 10 m 20 m
At, 1 m 1.00
At, 10 m 0.91 1.00
At, 20 m 0.65 0.88 1.00
St, 1 m 0.01 0.00 0.00 1.00
St, 10 m 0.01 0.01 0.01 0.33 1.00
St, 20 m 0.01 0.02 0.04 0.12 0.26 1.00
Dt, 1 m 0.00 0.00 0.00 0.03 0.00 0.00 1.00
Dt, 10 m 0.00 0.00 0.00 0.00 0.05 0.00 0.04 1.00
Dt, 20 m 0.00 0.00 0.00 0.00 0.00 0.03 0.05 −0.07 1.00

31



Correlations Between ASD Components at 3 Depths

At At At St St St Dt Dt Dt

1 m 10 m 20 m 1 m 10 m 20 m 1 m 10 m 20 m
At, 1 m 1.00
At, 10 m 0.91 1.00
At, 20 m 0.65 0.88 1.00
St, 1 m 0.01 0.00 0.00 1.00
St, 10 m 0.01 0.01 0.01 0.33 1.00
St, 20 m 0.01 0.02 0.04 0.12 0.26 1.00
Dt, 1 m 0.00 0.00 0.00 0.03 0.00 0.00 1.00
Dt, 10 m 0.00 0.00 0.00 0.00 0.05 0.00 0.04 1.00
Dt, 20 m 0.00 0.00 0.00 0.00 0.00 0.03 0.05 −0.07 1.00

31



Correlations Between ASD Components at 3 Depths

At At At St St St Dt Dt Dt

1 m 10 m 20 m 1 m 10 m 20 m 1 m 10 m 20 m
At, 1 m 1.00
At, 10 m 0.91 1.00
At, 20 m 0.65 0.88 1.00
St, 1 m 0.01 0.00 0.00 1.00
St, 10 m 0.01 0.01 0.01 0.33 1.00
St, 20 m 0.01 0.02 0.04 0.12 0.26 1.00
Dt, 1 m 0.00 0.00 0.00 0.03 0.00 0.00 1.00
Dt, 10 m 0.00 0.00 0.00 0.00 0.05 0.00 0.04 1.00
Dt, 20 m 0.00 0.00 0.00 0.00 0.00 0.03 0.05 −0.07 1.00

31



Correlations Between ASD Components at 3 Depths

At At At St St St Dt Dt Dt

1 m 10 m 20 m 1 m 10 m 20 m 1 m 10 m 20 m
At, 1 m 1.00
At, 10 m 0.91 1.00
At, 20 m 0.65 0.88 1.00
St, 1 m 0.01 0.00 0.00 1.00
St, 10 m 0.01 0.01 0.01 0.33 1.00
St, 20 m 0.01 0.02 0.04 0.12 0.26 1.00
Dt, 1 m 0.00 0.00 0.00 0.03 0.00 0.00 1.00
Dt, 10 m 0.00 0.00 0.00 0.00 0.05 0.00 0.04 1.00
Dt, 20 m 0.00 0.00 0.00 0.00 0.00 0.03 0.05 −0.07 1.00

31



Correlations Between ASD Components at 3 Depths

At At At St St St Dt Dt Dt

1 m 10 m 20 m 1 m 10 m 20 m 1 m 10 m 20 m
At, 1 m 1.00
At, 10 m 0.91 1.00
At, 20 m 0.65 0.88 1.00
St, 1 m 0.01 0.00 0.00 1.00
St, 10 m 0.01 0.01 0.01 0.33 1.00
St, 20 m 0.01 0.02 0.04 0.12 0.26 1.00
Dt, 1 m 0.00 0.00 0.00 0.03 0.00 0.00 1.00
Dt, 10 m 0.00 0.00 0.00 0.00 0.05 0.00 0.04 1.00
Dt, 20 m 0.00 0.00 0.00 0.00 0.00 0.03 0.05 −0.07 1.00

31



Correlations Between ASD Components at 3 Depths

At At At St St St Dt Dt Dt

1 m 10 m 20 m 1 m 10 m 20 m 1 m 10 m 20 m
At, 1 m 1.00
At, 10 m 0.91 1.00
At, 20 m 0.65 0.88 1.00
St, 1 m 0.01 0.00 0.00 1.00
St, 10 m 0.01 0.01 0.01 0.33 1.00
St, 20 m 0.01 0.02 0.04 0.12 0.26 1.00
Dt, 1 m 0.00 0.00 0.00 0.03 0.00 0.00 1.00
Dt, 10 m 0.00 0.00 0.00 0.00 0.05 0.00 0.04 1.00
Dt, 20 m 0.00 0.00 0.00 0.00 0.00 0.03 0.05 −0.07 1.00

31



Time-Varying Seasonal Correlations at 3 Depths
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Time-Varying Daily Correlations at 3 Depths
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Wavelet Variance: I

• analog of second ‘scary-looking’ equation is

kXk2 ≡
N−1X

t=0

x2
t =

JX

j=1

kWjk2 + kVJk2;

where kXk is the Euclidean norm of X

• ‘energy’ preservation leads to analysis of sample variance:

σ̂2
x ≡

1

N

N−1X

t=0

(xt − x̄)2 =
1

N




JX

j=1

kWjk2 + kVJk2


− x2,

where x̄ ≡
P

t xt/N

• 1
NkWjk2 called wavelet variance (or spectrum) and is portion
of σ̂2

x due to changes in averages over scale τj, thus providing
a ‘scale-by-scale’ analysis of variance
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Wavelet Variance: II

• wavelet variances for time series X and Y of length N = 16,
each with zero sample mean and same sample variance
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Wavelet Variance Estimates for Water Tempertures

• variance associated with daily component D is sum of circles

• variance associated with seasonal component S is sum of pluses
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Time-Varying Wavelet Variance Estimates, 1 m Data
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Concluding Remarks: I

• wavelets decompose time series with respect to two variables:

− time (location)

− scale (extent)

• CWT & DWT have two fundamental properties:

1. fully equivalent to original time series

2. energy (variance) of time series is preserved

• wavelet variance gives scale-based analysis of variance
(natural match for many geophysical processes)

• techniques extend naturally to images
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Concluding Remarks: II

• many other uses for wavelets (barely scratched the surface!)

− approximately decorrelate certain time series (ODWT needed)

− assessing sampling properties of statistics (ODWT or MODWT)

− signal extraction (‘wavelet shrinkage’; ODWT or MODWT)

− edge identification in images (CWT best)

− compression of time series/images (ODWT needed)

− fast simulation of time series/images (ODWT needed)
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Thanks to . . .

• conference organizers for opportunity to talk

• numerous folks at CSIRO who made my visit possible
(and pleasureable!)

• Seqwater for opportunity to analyze their data
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