An Introduction to Wavelet Analysis with Application to Water Quality Time Series

Don Percival

Applied Physics Laboratory
Department of Statistics
University of Washington
Seattle, Washington, USA

http://faculty.washington.edu/dbp

Overview: I

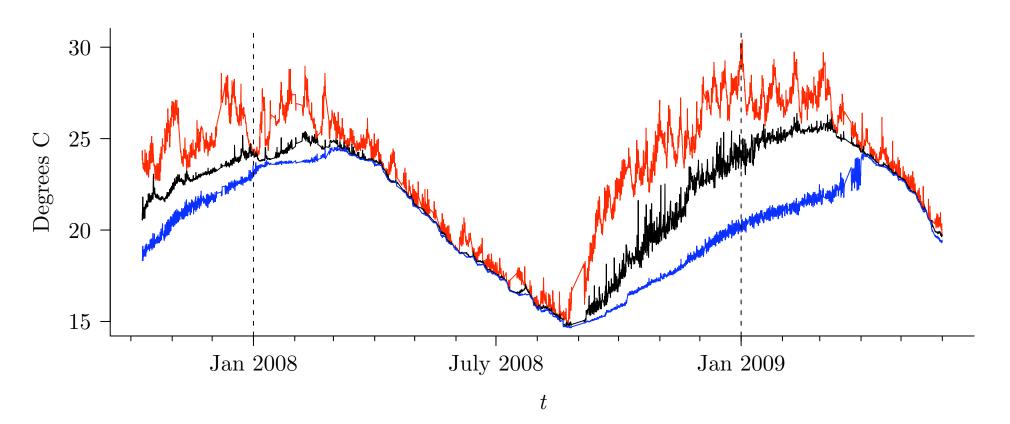
- as a subject, wavelets are
 - relatively new (1983 to present)
 - a synthesis of old/new ideas
 - keyword in 45,875 articles and books since 1989 (7685 more since 2008: an inundation of material!!!)
- wavelets can help us understand
 - time series (i.e., observations collected over time)
 - images

Overview: II

- wavelets capable of describing how
 - time series evolve over time on a given scale
 - images change from one place to the next on a given scale, where here 'scale' is either
 - an interval (span) of time (hour, year, ...) or
 - a spatial area (square kilometer, acre, ...)

Overview: III

• example: water temperatures recorded at wall of Wivenhoe Dam at depths of 1, 10 & 20 meters (9 October 2007 & on)



Overview: IV

- some questions that wavelets can help address:
 - 1. How does variance change across time?
 - 2. Are variations from one day to the next more prominent than variations from one month to the next?
 - 3. Temperatures at 10 and 20 meters are less variable than those at 1 meter, but are some of their other statistical properties similar?
 - 4. What are the pairwise relationships between these series on a scale-by-scale basis (e.g., day-to-day, month-to-month)?

Outline of Remainder of Talk: I

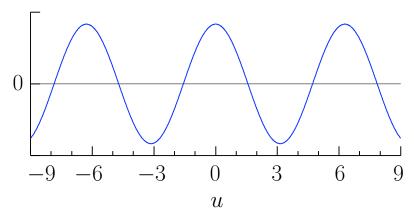
- discuss what exactly a wavelet is
- discuss wavelet analysis (emphasis on physical interpretation)
- point out two fundamental properties of the continuous wavelet transform (CWT):
 - 1. CWT is fully equivalent to the transformed time series
 - 2. CWT tells how 'energy' in time series is distributed across different scales and different times
- describe the discrete wavelet transform (DWT)
- point out two analogous fundamental properties of DWT

Outline of Remainder of Talk: II

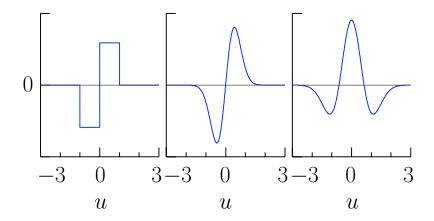
- look at some preliminary results from wavelet-based analysis of water temperature (on-going work with Sarah Lennox, You-Gan Wang and Ross Darnell)
- concluding remarks

What is a Wavelet?

• looking at cos(u) vs. u, a cosine is a 'big wave'

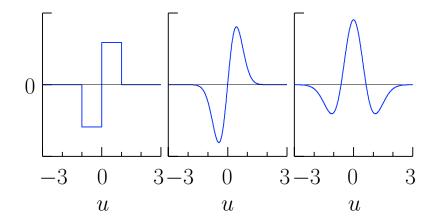


• wavelets are 'small waves' (left-hand is Haar wavelet $\psi^{\text{\tiny (H)}}(\cdot)$)



Technical Definition of a Wavelet

- real-valued function $\psi(\cdot)$ defined over real axis is a wavelet if
 - 1. integral of $\psi^2(\cdot)$ is unity: $\int_{-\infty}^{\infty} \psi^2(u) du = 1$ (called 'unit energy' property, with apologies to physicists)
 - 2. integral of $\psi(\cdot)$ is zero: $\int_{-\infty}^{\infty} \psi(u) du = 0$ (technically, need an 'admissibility condition,' but this is almost equivalent to integration to zero)



What is Wavelet Analysis?

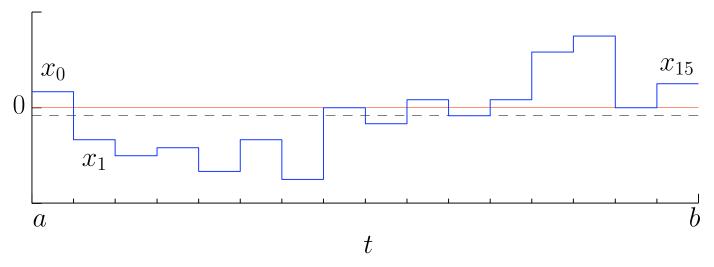
- wavelets tell us about variations in local averages
- to quantify this description, let $x(\cdot)$ be a time series
 - real-valued function of t defined over real axis
 - will refer to t as time (but it need not be such)
- consider 'average value' of $x(\cdot)$ over [a, b]:

$$\frac{1}{b-a} \int_{a}^{b} x(t) \, dt$$

(above notion discussed in elementary calculus books)

Example of Average Value of a Time Series

• let $x(\cdot)$ be step function taking on values x_0, x_1, \ldots, x_{15} over 16 equal subintervals of [a, b]:



• here we have

$$\frac{1}{b-a} \int_a^b x(t) dt = \frac{1}{16} \sum_{j=0}^{15} x_j = \text{ height of dashed line}$$

Average Values at Different Scales and Times

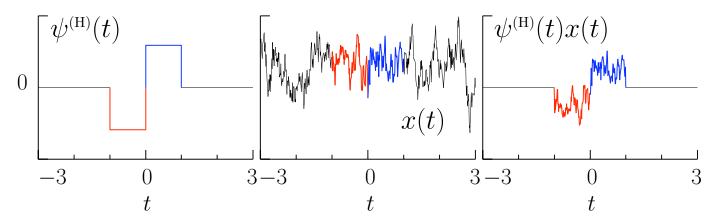
• define the following function of τ and t

$$A(\tau,t) \equiv \frac{1}{\tau} \int_{t-\frac{\tau}{2}}^{t+\frac{\tau}{2}} x(u) du$$

- $-\tau$ is width of interval referred to as 'scale'
- t is midpoint of interval
- $A(\tau,t)$ is average value of $x(\cdot)$ over scale τ centered at t
- average values of time series are of wide-spread interest
 - one second average temperatures over forest
 - ten minute rainfall rate during severe storm
 - yearly average temperatures over central England

Defining a Wavelet Coefficient W

• multiply Haar wavelet & time series $x(\cdot)$ together:



• integrate resulting function to get 'wavelet coefficient' W(1,0):

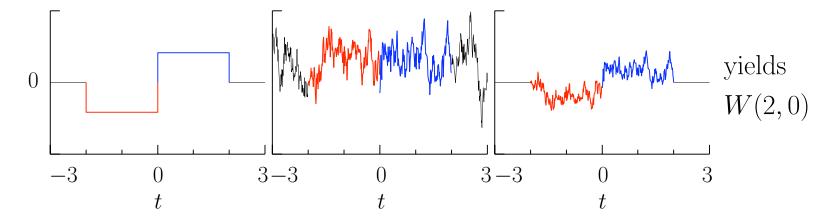
$$\int_{-\infty}^{\infty} \psi^{(\mathrm{H})}(t)x(t)\,dt = W(1,0)$$

• to see what W(1,0) is telling us about $x(\cdot)$, note that

$$W(1,0) \propto \frac{1}{1} \int_0^1 x(t) dt - \frac{1}{1} \int_{-1}^0 x(t) dt = A(1,\frac{1}{2}) - A(1,-\frac{1}{2})$$

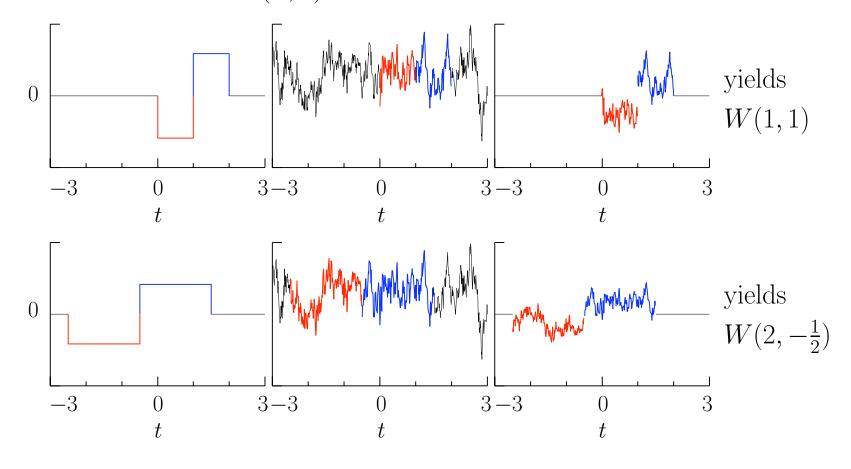
Defining Wavelet Coefficients for Other Scales

- W(1,0) proportional to difference between averages of $x(\cdot)$ over [-1,0] & [0,1], i.e., two unit-scale averages before/after t=0
 - '1' in W(1,0) denotes scale 1 (width of each interval)
 - '0' in W(1,0) denotes time 0 (center of combined intervals)
- stretch or shrink wavelet to define $W(\tau,0)$ for other scales τ :



Defining Wavelet Coefficients for Other Locations

• relocate to define $W(\tau, t)$ for other times t:



Haar Continuous Wavelet Transform (CWT)

• for all $\tau > 0$ and all $-\infty < t < \infty$, can write

$$W(\tau,t) = \frac{1}{\sqrt{\tau}} \int_{-\infty}^{\infty} x(u) \psi^{(\mathrm{H})} \left(\frac{u-t}{\tau} \right) \, du$$

- $-\frac{u-t}{\tau}$ does the stretching/shrinking and relocating
- $-\frac{1}{\sqrt{\tau}}$ needed so $\psi_{\tau,t}^{\text{\tiny (H)}}(u)\equiv\frac{1}{\sqrt{\tau}}\psi^{\text{\tiny (H)}}\left(\frac{u-t}{\tau}\right)$ has unit energy
- since it also integrates to zero, $\psi_{\tau,t}^{\text{\tiny (H)}}(\cdot)$ is a wavelet
- $W(\tau, t)$ over all $\tau > 0$ and all t is Haar CWT for $x(\cdot)$
- analyzes/breaks up/decomposes $x(\cdot)$ into components
 - associated with a scale and a time
 - physically related to a difference of averages

Other Continuous Wavelet Transforms: I

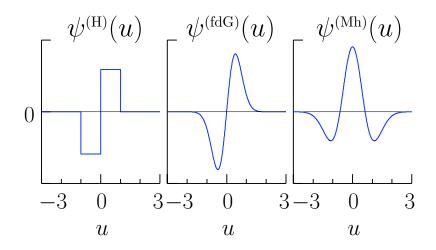
- can do the same for wavelets other than the Haar
- start with basic wavelet $\psi(\cdot)$
- use $\psi_{\tau,t}(u) = \frac{1}{\sqrt{\tau}} \psi\left(\frac{u-t}{\tau}\right)$ to stretch/shrink & relocate
- define CWT via

$$W(\tau,t) = \int_{-\infty}^{\infty} x(u)\psi_{\tau,t}(u) du = \frac{1}{\sqrt{\tau}} \int_{-\infty}^{\infty} x(u)\psi\left(\frac{u-t}{\tau}\right) du$$

- analyzes/breaks up/decomposes $x(\cdot)$ into components
 - associated with a scale and a time
 - physically related to a difference of weighted averages

Other Continuous Wavelet Transforms: II

• consider two companions of Haar wavelet:



- $\psi^{\text{(fdG)}}(\cdot)$ proportional to 1st derivative of Gaussian PDF
- 'Mexican hat' wavelet $\psi^{\text{\tiny (Mh)}}(\cdot)$ proportional to 2nd derivative
- $\psi^{\text{(fdG)}}(\cdot)$ looks at difference of adjacent weighted averages
- $\psi^{\text{(Mh)}}(\cdot)$ looks at difference between weighted average and sum of weighted averages occurring before & after

First Scary-Looking Equation

• CWT equivalent to $x(\cdot)$ because we can write

$$x(t) = \int_0^\infty \left[\frac{1}{C\tau^2} \int_{-\infty}^\infty W(\tau, u) \frac{1}{\sqrt{\tau}} \psi\left(\frac{t - u}{\tau}\right) du \right] d\tau,$$

where C is a constant depending on specific wavelet $\psi(\cdot)$

- can synthesize (put back together) $x(\cdot)$ given its CWT; i.e., nothing is lost in reexpressing time series $x(\cdot)$ via its CWT
- regard stuff in brackets as defining 'scale τ ' time series at t
- says we can reexpress $x(\cdot)$ as integral (sum) of new time series, each associated with a particular scale
- similar additive decompositions are a central theme of wavelet analysis

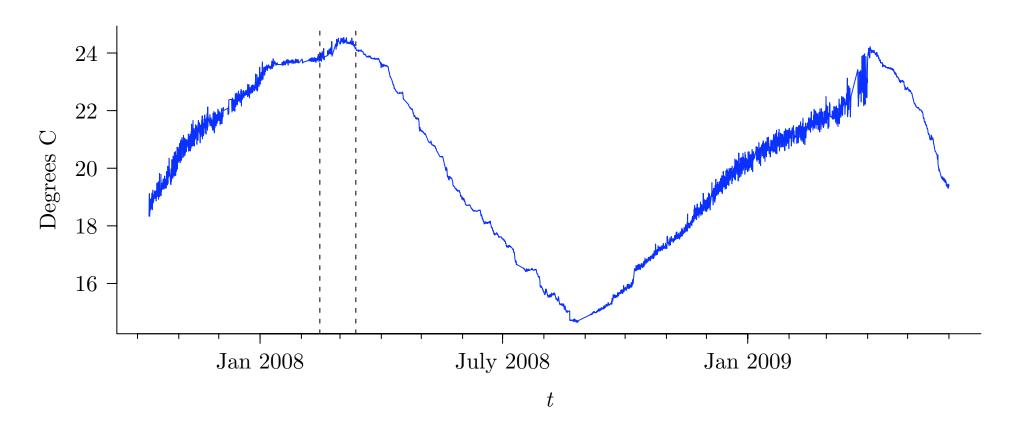
Second Scary-Looking Equation

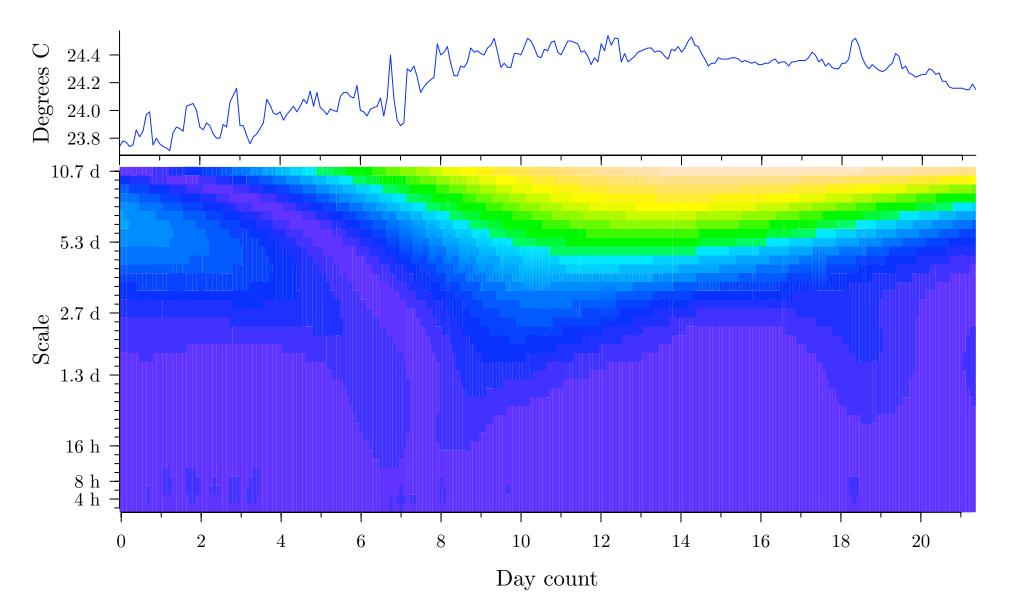
• energy in $x(\cdot)$ is reexpressed in CWT because

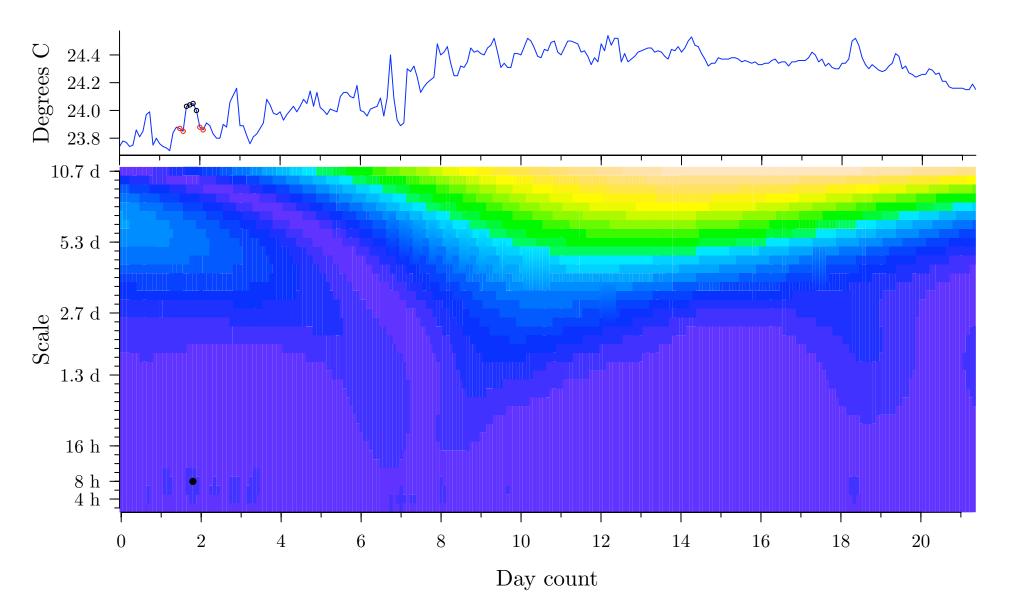
energy =
$$\int_{-\infty}^{\infty} x^2(t) dt = \int_0^{\infty} \left[\frac{1}{C\tau^2} \int_{-\infty}^{\infty} W^2(\tau, t) dt \right] d\tau$$

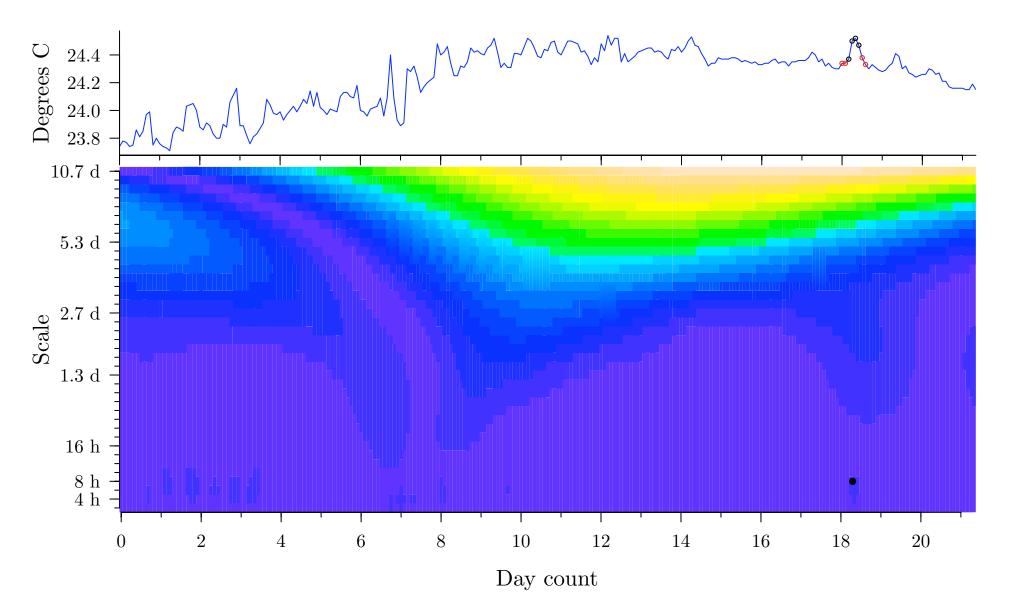
- can regard $x^2(t)$ versus t as breaking up the energy across time (i.e., an 'energy density' function)
- regard stuff in brackets as breaking up the energy across scales
- says we can reexpress energy as integral (sum) of components, each associated with a particular scale
- function defined by $W^2(\tau,t)/C\tau^2$ is an energy density across both time and scale
- similar energy decompositions are a second central theme

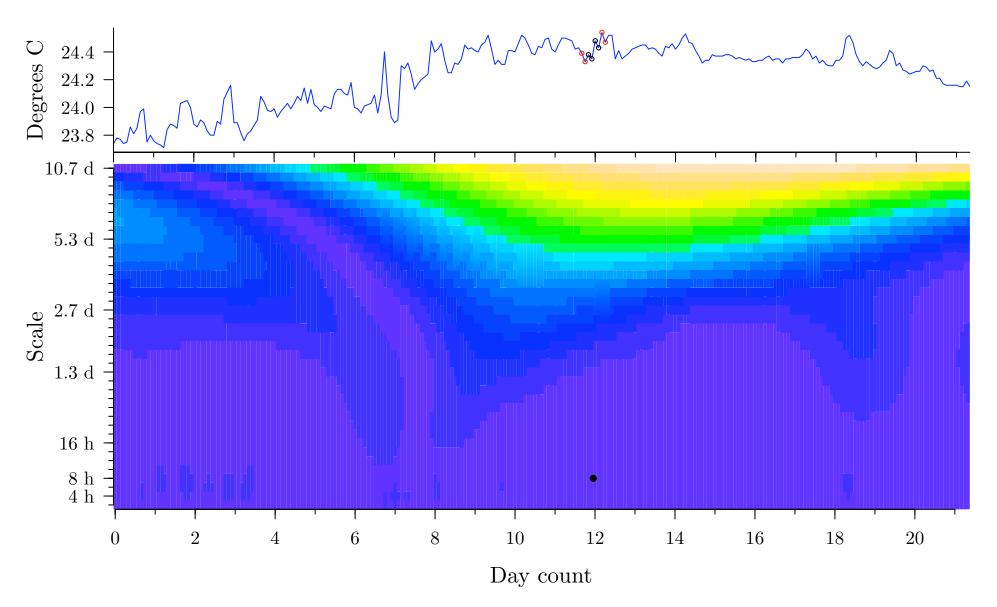
Example: Portion of Water Temperatures at 20 m

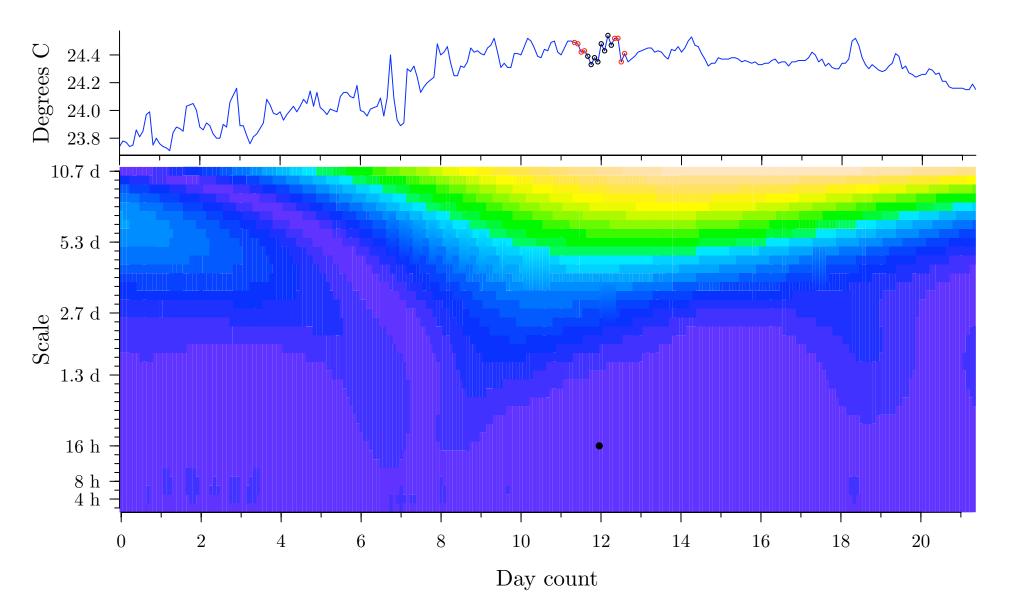


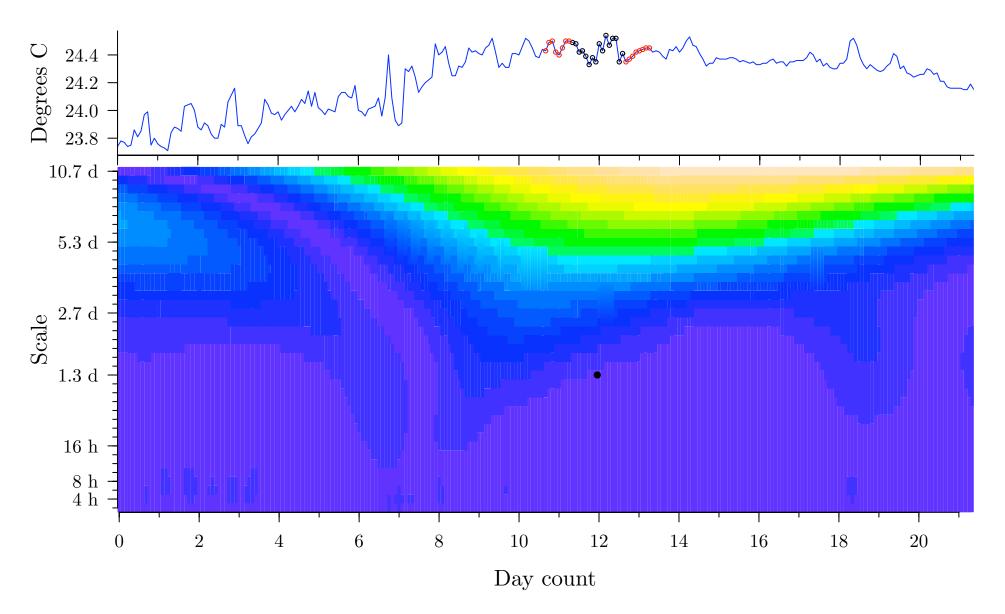


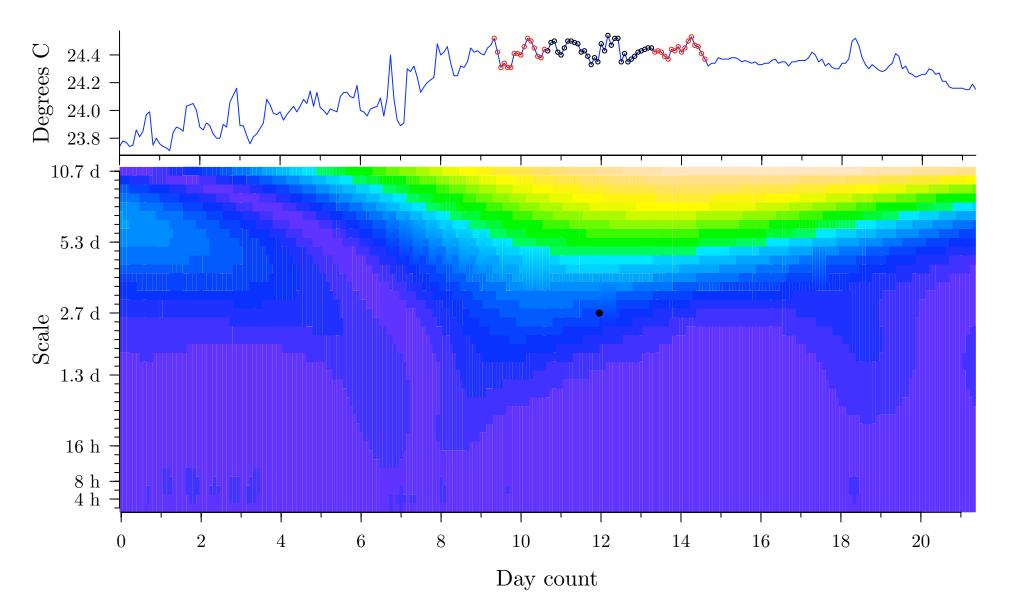


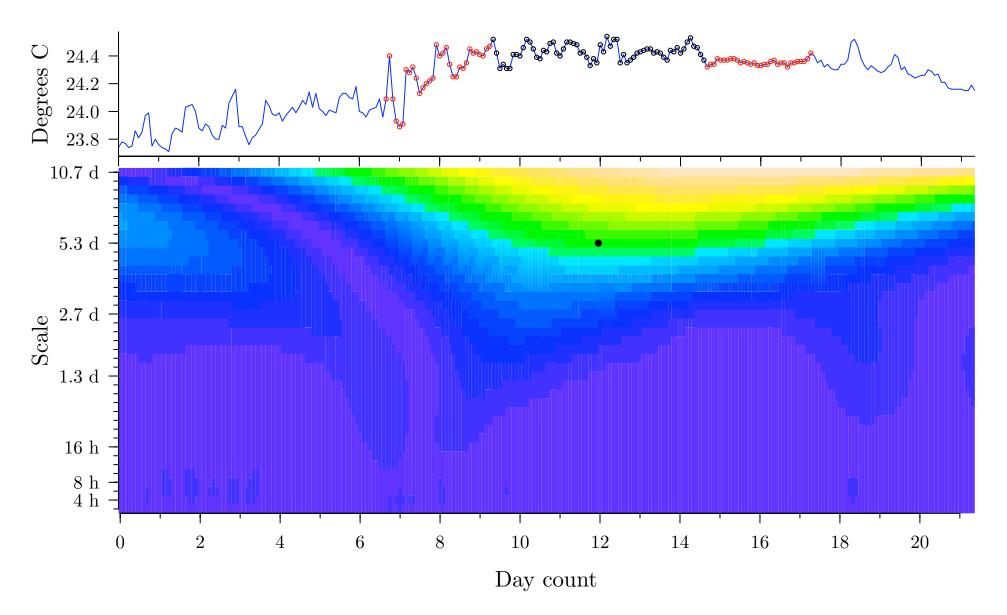


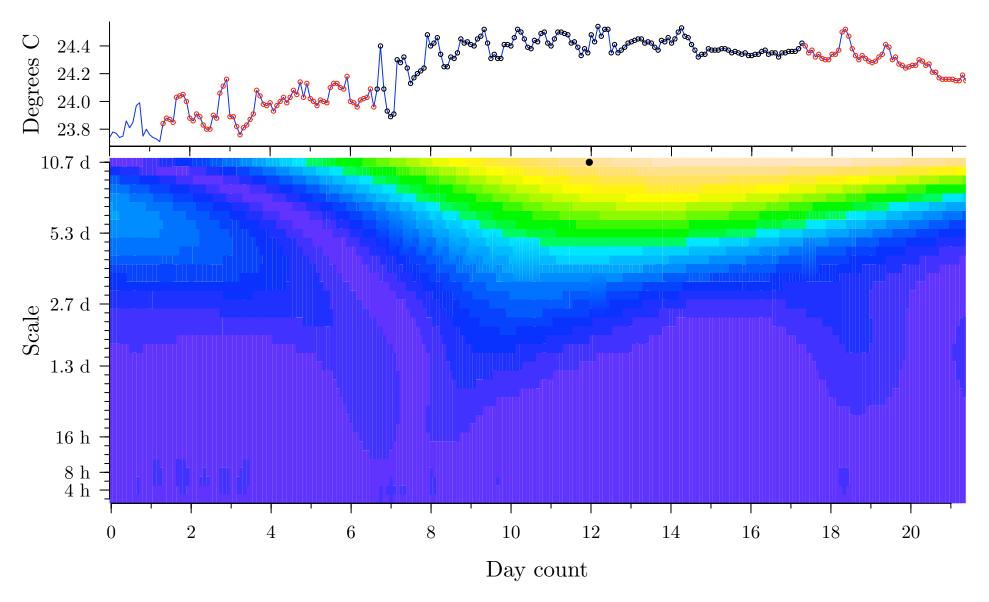








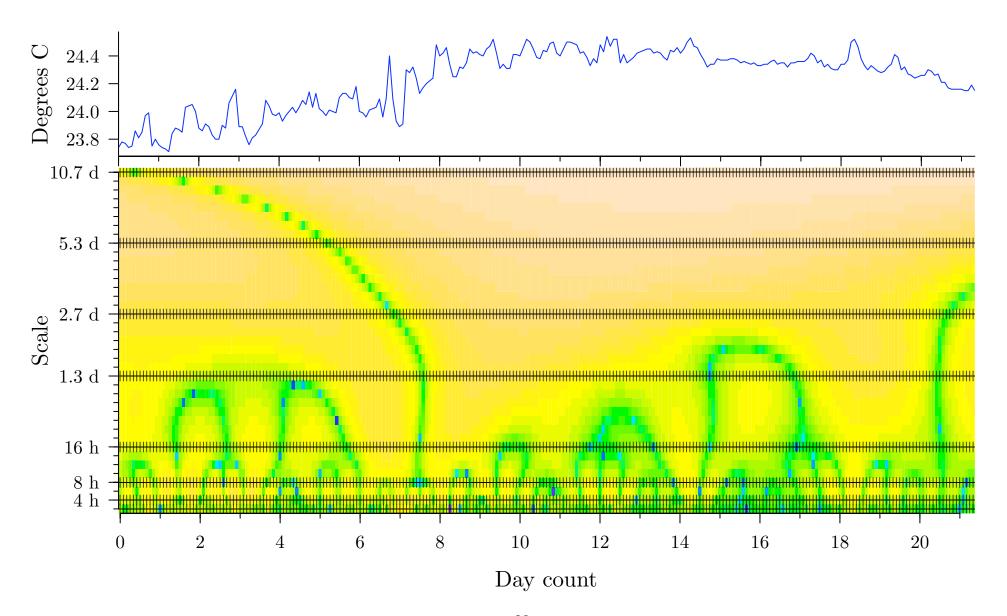




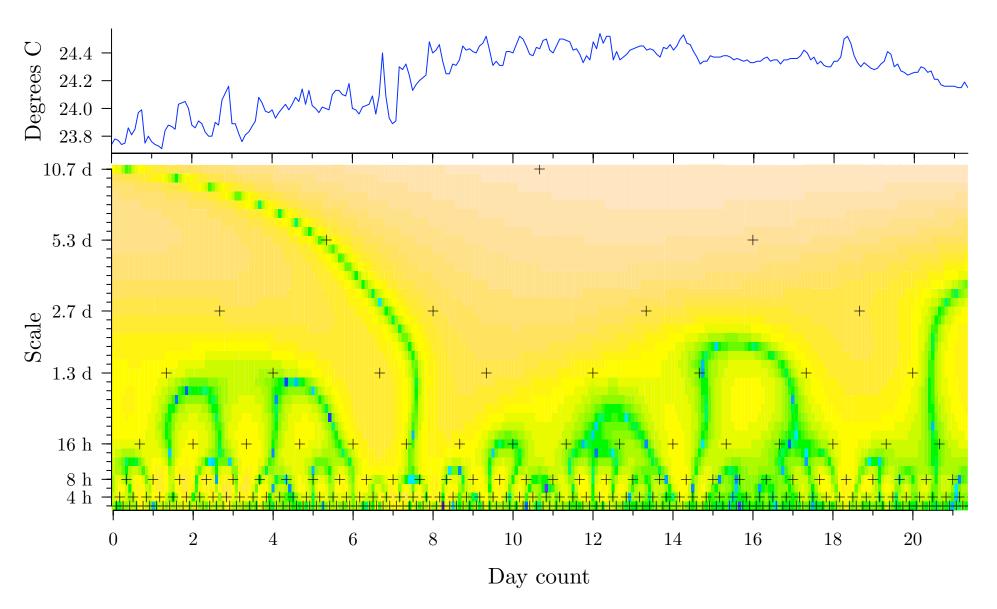
Beyond the CWT: the DWT

- critique: have transformed signal into an image (anti-statistics!)
- can often but not always get by with subsamples of $W(\tau, t)$
- leads to notion of discrete wavelet transform (DWT) more convenient for use with samples $x_0, x_1, \dots x_{N-1}$ from $x(\cdot)$,
- can regard DWT as 'slices' through CWT
 - restrict τ to 'dyadic' scales $\tau_j \equiv 2^{j-1} \Delta_t$, j = 1, 2, ..., J, where Δ_t is sampling interval (2 hours for water temperature data), and J is a maximum level chosen by user
 - restrict times to an offset + $t \Delta_t$, t = 0, 1, ..., N-1
 - this yields 'maximal overlap' DWT (MODWT) can restrict times even further to get orthonormal DWT (ODWT)
- yields wavelet coefficients $W_{j,t} \propto W(\tau_j, t)$

MODWT Subsampling of CWT



ODWT Subsampling of CWT



The Discrete Wavelet Transform

- collect $W_{j,t}$ into vector \mathbf{W}_j for levels $j=1,2,\ldots,J$
- also get scaling coefficients $V_{J,t}$
 - related to averages over a scale of $2\tau_J$
 - summary of information in $W(\tau, t)$ at $\tau \geq 2\tau_J = 2^J \Delta_t$
- collect $V_{J,t}$ into vector \mathbf{V}_J
- $\mathbf{W}_1, \ldots, \mathbf{W}_J$ and \mathbf{V}_J form the DWT of $\mathbf{X} \equiv [x_0, \ldots, x_{N-1}]^T$

Multiresolution Analysis (MRA)

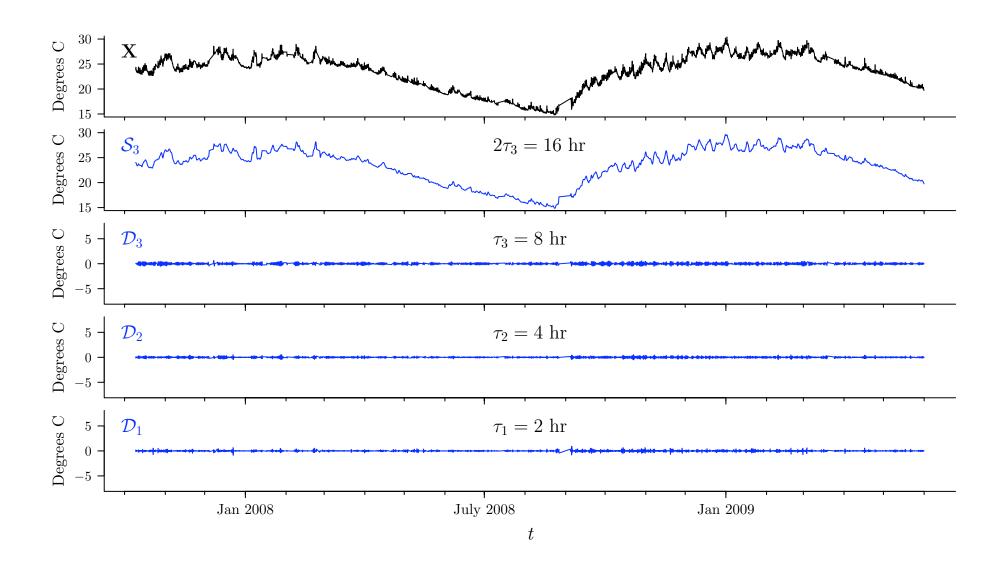
- DWT has equivalents of two 'scary-looking' equations
- analog of first equation is called a multiresolution analysis (MRA):

$$\mathbf{X} = \sum_{j=1}^{J} \mathcal{D}_j + \mathcal{S}_J,$$

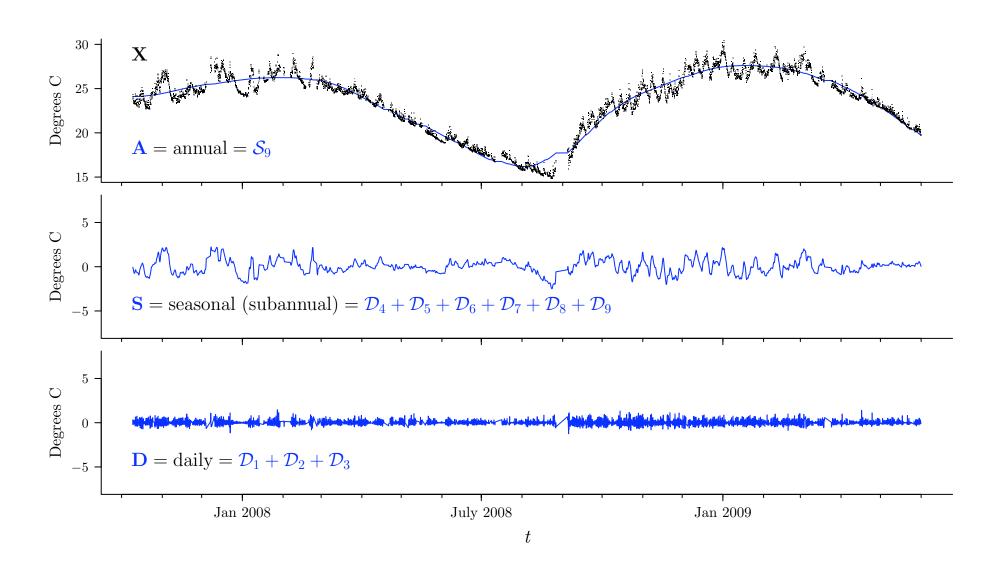
where

- $-\mathcal{D}_j$ is a 'detail' series depending just on \mathbf{W}_j and capturing part of \mathbf{X} attributable to changes on a scale of τ_j
- $-\mathcal{S}_J$ is a 'smooth' series depending just on \mathbf{V}_J and capturing part of \mathbf{X} attributable to averages on a scale of $2\tau_J$
- since we can recover \mathbf{X} perfectly from its DWT, $\mathbf{W}_1, \ldots, \mathbf{W}_J$ & \mathbf{V}_J are fully equivalent to \mathbf{X}

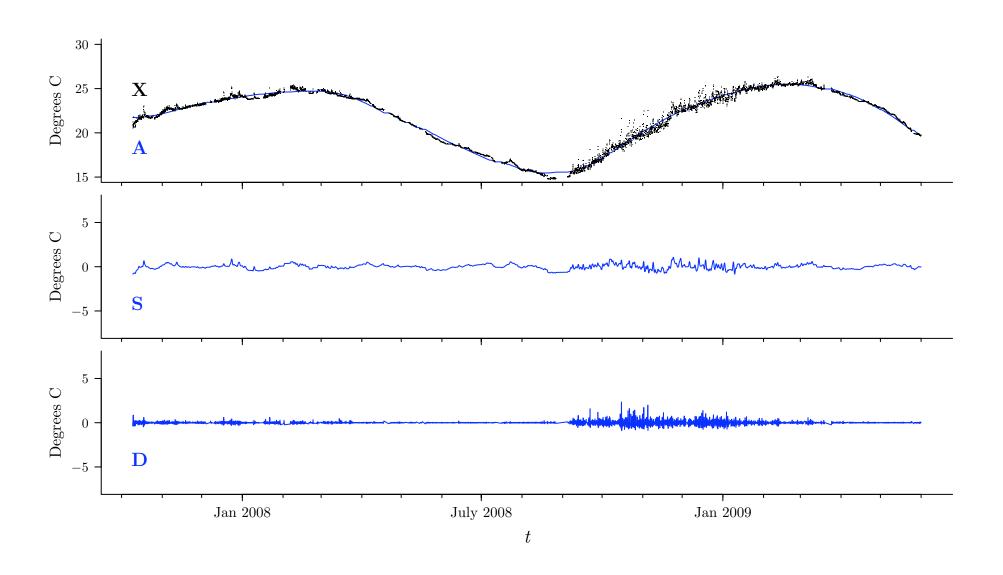
J = 3 MRA for 1 m Water Temperatures



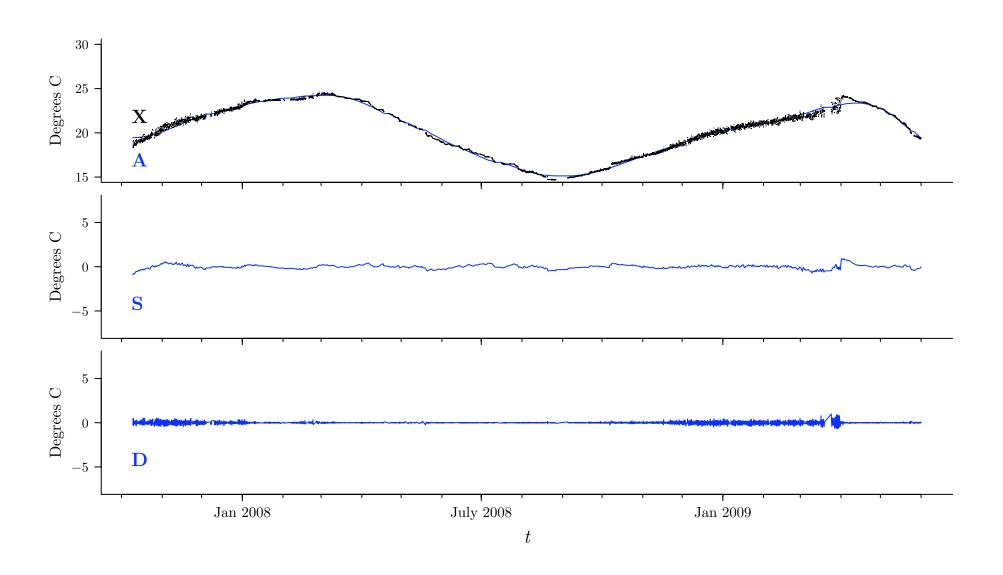
J = 9 Modified MRA for 1 m Water Temperatures



J = 9 Modified MRA for 10 m Water Temperatures



J = 9 Modified MRA for 20 m Water Temperatures



	A_t	A_t	A_t	S_t	S_t	S_t	D_t	D_t	D_t
_	1 m	10 m	20 m	1 m	10 m	20 m	1 m	10 m	20 m
A_t , 1 m	1.00								
A_t , 10 m	0.91	1.00							
A_t , 20 m	0.65	0.88	1.00						
S_t , 1 m	0.01	0.00	0.00	1.00					
S_t , 10 m	0.01	0.01	0.01	0.33	1.00				
S_t , 20 m	0.01	0.02	0.04	0.12	0.26	1.00			
D_t , 1 m	0.00	0.00	0.00	0.03	0.00	0.00	1.00		
D_t , 10 m	0.00	0.00	0.00	0.00	0.05	0.00	0.04	1.00	
D_t , 20 m	0.00	0.00	0.00	0.00	0.00	0.03	0.05	-0.07	1.00

	A_t	A_t	A_t	S_t	S_t	S_t	D_t	D_t	D_t
	1 m	10 m	20 m	1 m	10 m	20 m	1 m	10 m	20 m
A_t , 1 m	1.00								
A_t , 10 m	0.91	1.00							
A_t , 20 m	0.65	0.88	1.00						
S_t , 1 m	0.01	0.00	0.00	1.00					
S_t , 10 m	0.01	0.01	0.01	0.33	1.00				
S_t , 20 m	0.01	0.02	0.04	0.12	0.26	1.00			
D_t , 1 m	0.00	0.00	0.00	0.03	0.00	0.00	1.00		
D_t , 10 m	0.00	0.00	0.00	0.00	0.05	0.00	0.04	1.00	
$D_t, 20 \text{ m}$	0.00	0.00	0.00	0.00	0.00	0.03	0.05	-0.07	1.00

	A_t	A_t	A_t	S_t	S_t	S_t	D_t	D_t	D_t
	1 m	10 m	20 m	1 m	10 m	20 m	1 m	10 m	20 m
A_t , 1 m	1.00								
A_t , 10 m	0.91	1.00							
A_t , 20 m	0.65	0.88	1.00						
S_t , 1 m	0.01	0.00	0.00	1.00					
S_t , 10 m	0.01	0.01	0.01	0.33	1.00				
S_t , 20 m	0.01	0.02	0.04	0.12	0.26	1.00			
D_t , 1 m	0.00	0.00	0.00	0.03	0.00	0.00	1.00		
D_t , 10 m	0.00	0.00	0.00	0.00	0.05	0.00	0.04	1.00	
D_t , 20 m	0.00	0.00	0.00	0.00	0.00	0.03	0.05	-0.07	1.00

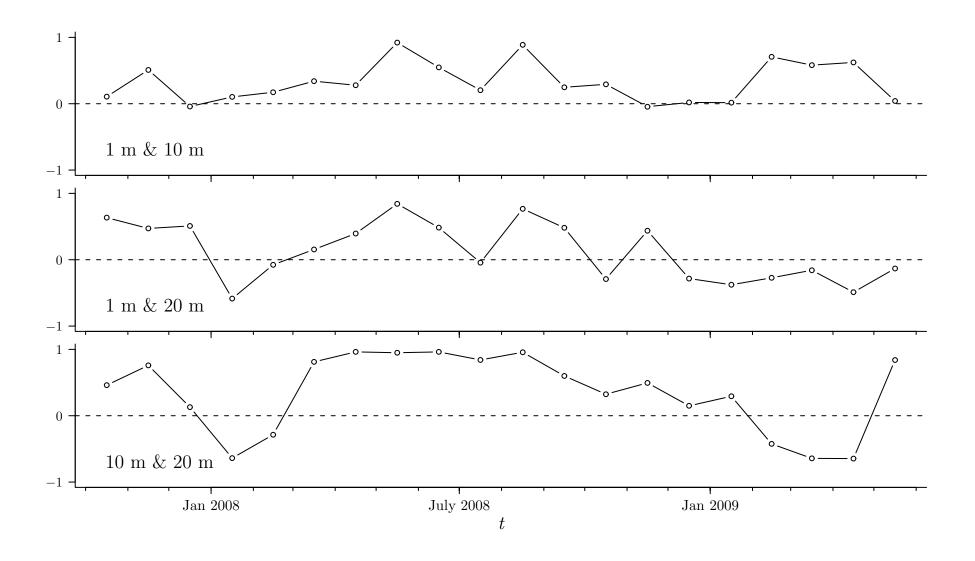
	A_t	A_t	A_t	S_t	S_t	S_t	D_t	D_t	D_t
	1 m	10 m	20 m	1 m	10 m	20 m	1 m	10 m	20 m
A_t , 1 m	1.00								
A_t , 10 m	0.91	1.00							
A_t , 20 m	0.65	0.88	1.00						
S_t , 1 m	0.01	0.00	0.00	1.00					
S_t , 10 m	0.01	0.01	0.01	0.33	1.00				
S_t , 20 m	0.01	0.02	0.04	0.12	0.26	1.00			
D_t , 1 m	0.00	0.00	0.00	0.03	0.00	0.00	1.00		
D_t , 10 m	0.00	0.00	0.00	0.00	0.05	0.00	0.04	1.00	
D_t , 20 m	0.00	0.00	0.00	0.00	0.00	0.03	0.05	-0.07	1.00

	A_t	A_t	A_t	S_t	S_t	S_t	D_t	D_t	D_t
	1 m	10 m	20 m	1 m	10 m	20 m	1 m	10 m	20 m
A_t , 1 m	1.00								
A_t , 10 m	0.91	1.00							
A_t , 20 m	0.65	0.88	1.00						
S_t , 1 m	0.01	0.00	0.00	1.00					
S_t , 10 m	0.01	0.01	0.01	0.33	1.00				
S_t , 20 m	0.01	0.02	0.04	0.12	0.26	1.00			
D_t , 1 m	0.00	0.00	0.00	0.03	0.00	0.00	1.00		
D_t , 10 m	0.00	0.00	0.00	0.00	0.05	0.00	0.04	1.00	
$D_t, 20 \text{ m}$	0.00	0.00	0.00	0.00	0.00	0.03	0.05	-0.07	1.00

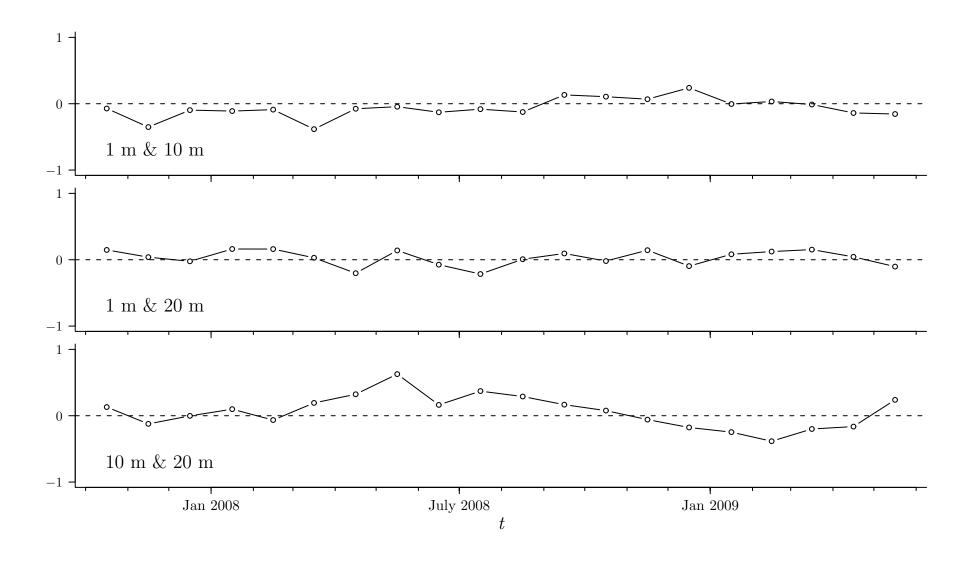
	A_t	A_t	A_t	S_t	S_t	S_t	D_t	D_t	D_t
	1 m	10 m	20 m	1 m	10 m	20 m	1 m	10 m	20 m
A_t , 1 m	1.00								
A_t , 10 m	0.91	1.00							
A_t , 20 m	0.65	0.88	1.00						
S_t , 1 m	0.01	0.00	0.00	1.00					
S_t , 10 m	0.01	0.01	0.01	0.33	1.00				
S_t , 20 m	0.01	0.02	0.04	0.12	0.26	1.00			
D_t , 1 m	0.00	0.00	0.00	0.03	0.00	0.00	1.00		
D_t , 10 m	0.00	0.00	0.00	0.00	0.05	0.00	0.04	1.00	
D_t , 20 m	0.00	0.00	0.00	0.00	0.00	0.03	0.05	-0.07	1.00

	A_t	A_t	A_t	S_t	S_t	S_t	D_t	D_t	D_t
_	1 m	10 m	20 m	1 m	10 m	20 m	1 m	10 m	20 m
A_t , 1 m	1.00								
A_t , 10 m	0.91	1.00							
A_t , 20 m	0.65	0.88	1.00						
S_t , 1 m	0.01	0.00	0.00	1.00					
S_t , 10 m	0.01	0.01	0.01	0.33	1.00				
S_t , 20 m	0.01	0.02	0.04	0.12	0.26	1.00			
D_t , 1 m	0.00	0.00	0.00	0.03	0.00	0.00	1.00		
D_t , 10 m	0.00	0.00	0.00	0.00	0.05	0.00	0.04	1.00	
D_t , 20 m	0.00	0.00	0.00	0.00	0.00	0.03	0.05	-0.07	1.00

Time-Varying Seasonal Correlations at 3 Depths



Time-Varying Daily Correlations at 3 Depths



Wavelet Variance: I

• analog of second 'scary-looking' equation is

$$\|\mathbf{X}\|^2 \equiv \sum_{t=0}^{N-1} x_t^2 = \sum_{j=1}^{J} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_J\|^2;$$

where $\|\mathbf{X}\|$ is the Euclidean norm of \mathbf{X}

• 'energy' preservation leads to analysis of sample variance:

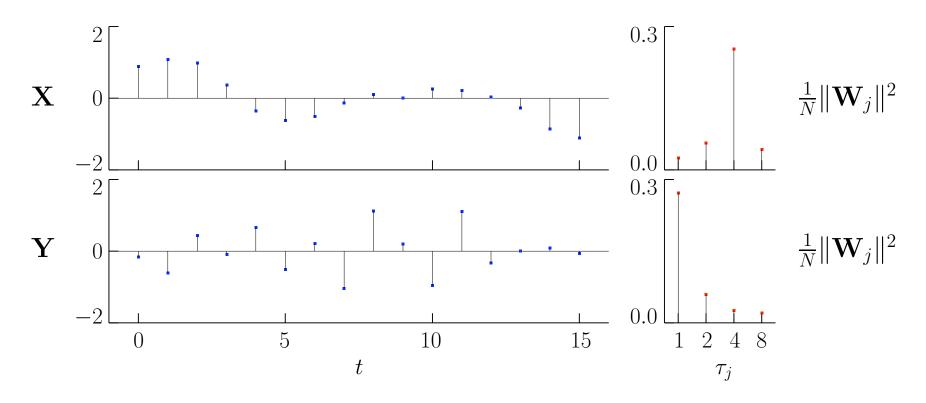
$$\hat{\sigma}_x^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (x_t - \bar{x})^2 = \frac{1}{N} \left(\sum_{j=1}^J ||\mathbf{W}_j||^2 + ||\mathbf{V}_J||^2 \right) - \bar{x}^2,$$

where $\bar{x} \equiv \sum_t x_t/N$

• $\frac{1}{N} ||\mathbf{W}_j||^2$ called wavelet variance (or spectrum) and is portion of $\hat{\sigma}_x^2$ due to changes in averages over scale τ_j , thus providing a 'scale-by-scale' analysis of variance

Wavelet Variance: II

• wavelet variances for time series \mathbf{X} and \mathbf{Y} of length N=16, each with zero sample mean and same sample variance

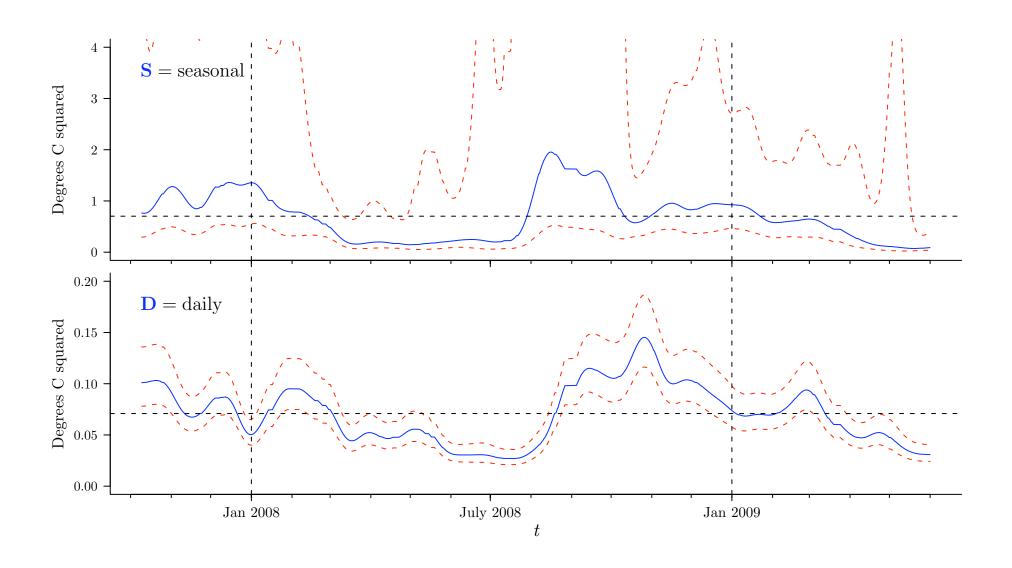


Wavelet Variance Estimates for Water Tempertures

- variance associated with daily component **D** is sum of circles
- variance associated with seasonal component S is sum of pluses



Time-Varying Wavelet Variance Estimates, 1 m Data



Concluding Remarks: I

- wavelets decompose time series with respect to two variables:
 - time (location)
 - scale (extent)
- CWT & DWT have two fundamental properties:
 - 1. fully equivalent to original time series
 - 2. energy (variance) of time series is preserved
- wavelet variance gives scale-based analysis of variance (natural match for many geophysical processes)
- techniques extend naturally to images

Concluding Remarks: II

- many other uses for wavelets (barely scratched the surface!)
 - approximately decorrelate certain time series (ODWT needed)
 - assessing sampling properties of statistics (ODWT or MODWT)
 - signal extraction ('wavelet shrinkage'; ODWT or MODWT)
 - edge identification in images (CWT best)
 - compression of time series/images (ODWT needed)
 - fast simulation of time series/images (ODWT needed)

Thanks to ...

- conference organizers for opportunity to talk
- numerous folks at CSIRO who made my visit possible (and pleasureable!)
- Sequater for opportunity to analyze their data