

Overview: IV

- some questions that wavelets can help address:
 - 1. How does variance change across time?
 - 2. Are variations from one day to the next more prominent than variations from one month to the next?
 - 3. Temperatures at 10 and 20 meters are less variable than those at 1 meter, but are some of their other statistical properties similar?
 - 4. What are the pairwise relationships between these series on a scale-by-scale basis (e.g., day-to-day, month-to-month)?

Outline of Remainder of Talk: I

- discuss what exactly a wavelet is
- discuss wavelet analysis (emphasis on physical interpretation)
- point out two fundamental properties of the continuous wavelet transform (CWT):
- 1. CWT is fully equivalent to the transformed time series
- 2. CWT tells how 'energy' in time series is distributed across different scales and different times
- describe the discrete wavelet transform (DWT)
- point out two analogous fundamental properties of DWT

Outline of Remainder of Talk: II

4

• look at some preliminary results from wavelet-based analysis of water temperature (on-going work with Sarah Lennox, You-Gan Wang and Ross Darnell)

6

• concluding remarks

What is a Wavelet?

5

• looking at $\cos(u)$ vs. u, a cosine is a 'big wave'

• wavelets are 'small waves' (left-hand is Haar wavelet $\psi^{(H)}(\cdot)$)

Technical Definition of a Wavelet

- real-valued function $\psi(\cdot)$ defined over real axis is a wavelet if
 - 1. integral of $\psi^2(\cdot)$ is unity: $\int_{-\infty}^{\infty} \psi^2(u) \, du = 1$ (called 'unit energy' property, with apologies to physicists)
- 2. integral of $\psi(\cdot)$ is zero: $\int_{-\infty}^{\infty} \psi(u) du = 0$ (technically, need an 'admissibility condition,' but this is almost equivalent to integration to zero)

Example of Average Value of a Time Series

• let $x(\cdot)$ be step function taking on values x_0, x_1, \ldots, x_{15} over 16 equal subintervals of [a, b]:

• here we have

$$\frac{1}{b-a} \int_{a}^{b} x(t) dt = \frac{1}{16} \sum_{j=0}^{15} x_j = \text{ height of dashed line}$$

What is Wavelet Analysis?

- wavelets tell us about variations in local averages
- to quantify this description, let $x(\cdot)$ be a time series
 - real-valued function of t defined over real axis
 - will refer to t as time (but it need not be such)
- consider 'average value' of $x(\cdot)$ over [a, b]:

$$\frac{1}{b-a} \int_{a}^{b} x(t) \, dt$$

(above notion discussed in elementary calculus books)

Average Values at Different Scales and Times

9

• define the following function of τ and t

$$A(\tau,t) \equiv \frac{1}{\tau} \int_{t-\frac{\tau}{2}}^{t+\frac{\tau}{2}} x(u) \, du$$

- $-\tau$ is width of interval referred to as 'scale'
- -t is midpoint of interval
- $A(\tau, t)$ is average value of $x(\cdot)$ over scale τ centered at t
- average values of time series are of wide-spread interest
 - one second average temperatures over forest
 - ten minute rainfall rate during severe storm
 - yearly average temperatures over central England

• relocate to define $W(\tau, t)$ for other times t:

Defining Wavelet Coefficients for Other Scales

• stretch or shrink wavelet to define $W(\tau, 0)$ for other scales τ :

Haar Continuous Wavelet Transform (CWT)

Other Continuous Wavelet Transforms: I

- can do the same for wavelets other than the Haar
- start with basic wavelet $\psi(\cdot)$
- use $\psi_{\tau,t}(u) = \frac{1}{\sqrt{\tau}} \psi\left(\frac{u-t}{\tau}\right)$ to stretch/shrink & relocate
- define CWT via

$$W(\tau,t) = \int_{-\infty}^{\infty} x(u)\psi_{\tau,t}(u) \, du = \frac{1}{\sqrt{\tau}} \int_{-\infty}^{\infty} x(u)\psi\left(\frac{u-t}{\tau}\right) \, du$$

- analyzes/breaks up/decomposes $x(\cdot)$ into components
 - associated with a scale and a time
 - physically related to a difference of *weighted* averages

16

First Scary-Looking Equation

• CWT equivalent to $x(\cdot)$ because we can write

$$x(t) = \int_0^\infty \left[\frac{1}{C\tau^2} \int_{-\infty}^\infty W(\tau, u) \frac{1}{\sqrt{\tau}} \psi\left(\frac{t-u}{\tau}\right) \, du \right] \, d\tau$$

- where C is a constant depending on specific wavelet $\psi(\cdot)$
- can synthesize (put back together) $x(\cdot)$ given its CWT; i.e., nothing is lost in reexpressing time series $x(\cdot)$ via its CWT
- regard stuff in brackets as defining 'scale τ ' time series at t
- says we can reexpress $x(\cdot)$ as integral (sum) of new time series, each associated with a particular scale
- similar additive decompositions are a central theme of wavelet analysis

Other Continuous Wavelet Transforms: II

• consider two companions of Haar wavelet:

- $\psi^{\text{\tiny (fdG)}}(\cdot)$ proportional to 1st derivative of Gaussian PDF
- 'Mexican hat' wavelet $\psi^{\text{\tiny (Mh)}}(\cdot)$ proportional to 2nd derivative
- $\psi^{\scriptscriptstyle (\mathrm{\tiny fdG})}(\cdot)$ looks at difference of adjacent weighted averages
- $\psi^{(Mh)}(\cdot)$ looks at difference between weighted average and sum of weighted averages occurring before & after

17

Second Scary-Looking Equation

• energy in $x(\cdot)$ is reexpressed in CWT because

energy =
$$\int_{-\infty}^{\infty} x^2(t) dt = \int_0^{\infty} \left[\frac{1}{C\tau^2} \int_{-\infty}^{\infty} W^2(\tau, t) dt \right] d\tau$$

- can regard $x^2(t)$ versus t as breaking up the energy across time (i.e., an 'energy density' function)
- regard stuff in brackets as breaking up the energy across scales
- says we can reexpress energy as integral (sum) of components, each associated with a particular scale
- \bullet function defined by $W^2(\tau,t)/C\tau^2$ is an energy density across both time and scale
- similar energy decompositions are a second central theme

- leads to notion of discrete wavelet transform (DWT) more convenient for use with samples $x_0, x_1, \ldots x_{N-1}$ from $x(\cdot)$,
- can regard DWT as 'slices' through CWT
 - restrict τ to 'dyadic' scales $\tau_j \equiv 2^{j-1} \Delta_t, j = 1, 2, \dots, J$, where Δ_t is sampling interval (2 hours for water temperature data), and J is a maximum level chosen by user
 - restrict times to an offset + $t \Delta_t$, $t = 0, 1, \ldots, N 1$
 - this yields 'maximal overlap' DWT (MODWT) can restrict times even further to get orthonormal DWT (ODWT)
- yields wavelet coefficients $W_{j,t} \propto W(\tau_j, t)$

10

Day count 23

6

8

12

16

18

14

20

Degrees C

16 ł

8 ł

2

22

Thanks to ...

40

- conference organizers for opportunity to talk
- numerous folks at CSIRO who made my visit possible (and pleasureable!)
- Sequater for opportunity to analyze their data