
Wavelet Methods for Time Series Analysis

Part IV: Wavelet-Based Decorrelation of Time Series

• DWT well-suited for decorrelating certain time series, including
ones generated from a fractionally differenced (FD) process

• on synthesis side, leads to

− DWT-based simulation of FD processes

− wavelet-based bootstrapping

• on analysis side, leads to

− wavelet-based estimators for FD parameters

− test for homogeneity of variance

− test for trends (won’t discuss – see Craigmile et al., 2004,
for details)
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Wavelets and FD Processes: I

• wavelet filters are approximate band-pass filters, with nominal
pass-bands [1/2j+1, 1/2j] (called jth ‘octave band’)

• suppose {Xt} has SX(·) as its spectral density function (SDF)

• statistical properties of {Wj,t} are simple if SX(·) has simple
structure within jth octave band

• example: FD process with SDF

SX(f) =
σ2
ε

[4 sin2(πf)]δ

WMTSA: 281–284 IV–2



Wavelets and FD Processes: II

• FD process controlled by two parameters: δ and σ2
ε

• for small f , have SX(f) ≈ C|f |−2δ; i.e., a power law

• log(SX(f)) vs. log(f) is approximately linear with slope −2δ

• for large τj, wavelet variance at scale τj, namely ν2
X(τj), satis-

fies ν2
X(τj) ≈ C0τ2δ−1

j

• log (ν2
X(τj)) vs. log (τj) is approximately linear, slope 2δ − 1

• approximately ‘self-similar’ (or ‘fractal’)

• FD process is stationary with ‘long memory’ if 0 < δ < 1/2:
correlation between Xt & Xt+τ dies down slowly as τ increases

WMTSA: 297, 284 IV–3



Wavelets and FD Processes: III

• power law model ubiquitous in physical sciences

− voltage fluctuations across cell membranes

− density fluctuations in hour glass

− traffic fluctuations on Japanese expressway

− impedance fluctuations in geophysical borehole

− fluctuations in the rotation of the earth

− X-ray time variability of galaxies

• DWT well-suited to study FD and related processes

− ‘self-similar’ filters used on ‘self-similar’ processes

− key idea: DWT approximately decorrelates LMPs

WMTSA: 340 IV–4



DWT of an FD Process: I

X ρ̂X,τ
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• realization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for τ ≥ 0,

ρ̂X,τ ≡
PN−1−τ

t=0 XtXt+τ
PN−1

t=0 X2
t

• note that ACS dies down slowly
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DWT of an FD Process: II
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• LA(8) DWT of FD(0.4) series and sample ACSs for each Wj
& V7, along with 95% confidence intervals for white noise
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MODWT of an FD Process
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• LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT
coefficients, none of which are approximately uncorrelated
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DWT of an FD Process: III

• in contrast to X, ACSs for Wj consistent with white noise

• variance of Wj increases with j – can argue that

var {Wj,t} ≈
1

1
2j − 1

2j+1

Z 1/2j

1/2j+1
SX(f) df ≡ Cj,

where Cj is average value of SX(·) over [1/2j+1, 1/2j]

• for FD process, have Cj ≈ SX(1/2j+1
2), where 1/2j+1

2 is mid-
point of interval [1/2j+1, 1/2j]

WMTSA: 343–344 IV–8



DWT of an FD Process: IV
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• plot shows cvar {Wj,t} (circles) & SX(1/2j+1
2) (curve) versus

1/2j+1
2, along with 95% confidence intervals for var {Wj,t}

• observed cvar {Wj,t} agrees well with theoretical var {Wj,t}

WMTSA: 344–345 IV–9



Correlations Within a Scale and Between Two Scales

• let {sX,τ} denote autocovariance sequence (ACVS) for {Xt};
i.e., sX,τ = cov {Xt,Xt+τ}

• let {hj,l} denote equivalent wavelet filter for jth level

• to quantify decorrelation, can write

cov {Wj,t,Wj0,t0} =

Lj−1X

l=0

Lj0−1X

l0=0

hj,lhj0,l0sX,2j(t+1)−l−2j0(t0+1)+l0,

from which we can get ACVS (and hence within-scale correla-
tions) for {Wj,t}:

cov {Wj,t,Wj,t+τ} =

Lj−1X

m=−(Lj−1)

sX,2jτ+m

Lj−|m|−1X

l=0

hj,lhj,l+|m|

WMTSA: 345 IV–10



Correlations Within a Scale
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• correlations between Wj,t and Wj,t+τ for an FD(0.4) process

• correlations within scale are slightly smaller for Haar

• maximum magnitude of correlation is less than 0.2
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Correlations Between Two Scales: I
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• correlation between Haar wavelet coefficients Wj,t and Wj0,t0

from FD(0.4) process and for levels satisfying 1 ≤ j < j0 ≤ 4
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Correlations Between Two Scales: II
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• same as before, but now for LA(8) wavelet coefficients

• correlations between scales decrease as L increases
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Wavelet Domain Description of FD Process

• DWT acts as a decorrelating transform for FD process
(also true for fractional Gaussian noise, pure power law etc.)

• wavelet domain description is simple

− wavelet coefficients within a given scale approximately uncor-
related (refinement: assume 1st order autoregressive model)

− wavelet coefficients have scale-dependent variance controlled
by the two FD parameters (δ and σ2

ε)

− wavelet coefficients between scales also approximately uncor-
related (approximation improves as filter width L increases)

WMTSA: 345–350 IV–14



DWT-Based Simulation

• properties of DWT of FD processes lead to schemes for simu-
lating time series X ≡ [X0, . . . , XN−1]

T with zero mean and
with a multivariate Gaussian distribution

• with N = 2J , recall that X = WTW, where

W =





W1
W2

...
Wj

...
WJ
VJ





WMTSA: 355 IV–15



Basic DWT-Based Simulation Scheme

• assume W to contain N uncorrelated Gaussian (normal) ran-
dom variables (RVs) with zero mean

• assume Wj to have variance Cj ≈ SX(1/2j+1
2)

• assume single RV in VJ to have variance CJ+1 (see Percival
and Walden, 2000, for details on how to set CJ+1)

• approximate FD time series X via Y ≡ WTΛ1/2Z, where

− Λ1/2 is N ×N diagonal matrix with diagonal elements

C
1/2
1 , . . . , C

1/2
1| {z }

N
2 of these

, C
1/2
2 , . . . , C

1/2
2| {z }

N
4 of these

, . . . , C
1/2
J−1, C

1/2
J−1| {z }

2 of these

, C
1/2
J , C

1/2
J+1

− Z is vector of deviations drawn from a Gaussian distribution
with zero mean and unit variance

WMTSA: 355 IV–16



Refinements to Basic Scheme: I

• covariance matrix for approximation Y does not correspond to
that of a stationary process

• recall W treats X as if it were circular

• let T be N ×N ‘circular shift’ matrix:

T





Y0
Y1
Y2
Y3



 =





Y1
Y2
Y3
Y0



 ; T 2





Y0
Y1
Y2
Y3



 =





Y2
Y3
Y0
Y1



 ; etc.

• let κ be uniformily distributed over 0, . . . , N − 1

• define eY ≡ T κY

• eY is stationary with ACVS given by, say, seY ,τ

WMTSA: 356–357 IV–17



Refinements to Basic Scheme: II

• Q: how well does {seY ,τ
} match {sX,τ}?

• due to circularity, find that seY ,N−τ
= seY ,τ

for τ = 1, . . . , N/2

• implies seY ,τ
cannot approximate sX,τ well for τ close to N

• can patch up by simulating eY with M > N elements and then
extracting first N deviates (M = 4N works well)

WMTSA: 356–357 IV–18



Refinements to Basic Scheme: III
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• plot shows true ACVS {sX,τ} (thick curves) for FD(0.4) process
and wavelet-based approximate ACVSs {seY ,τ

} (thin curves)

based on an LA(8) DWT in which an N = 64 series is ex-
tracted from M = N , M = 2N and M = 4N series
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Example and Some Notes
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• simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)

• notes:

− can form realizations faster than best exact method

− can efficiently simulate extremely long time series in ‘real-
time’ (e.g, N = 230 = 1, 073, 741, 824 or even longer!)

− effect of random circular shifting is to render time series
slightly non-Gaussian (a Gaussian mixture model)

WMTSA: 358–361 IV–20



Wavelet-Domain Bootstrapping

• for many (but not all!) time series, DWT acts as a decorrelating
transform: to a good approximation, each Wj is a sample of a
white noise process, and coefficients from different sub-vectors
Wj and Wj0 are also pairwise uncorrelated

• variance of coefficients in Wj depends on j

• scaling coefficients VJ0
are still autocorrelated, but there will

be just a few of them if J0 is selected to be large

• decorrelating property holds particularly well for FD and other
processes with long-range dependence

• above suggests the following recipe for wavelet-domain boot-
strapping of a statistic of interest, e.g., sample autocorrelation
sequence ρ̂X,τ at unit lag τ = 1

IV–21



Recipe for Wavelet-Domain Bootstrapping

1. given X of length N = 2J , compute level J0 DWT (the choice
J0 = J − 3 yields 8 coefficients in WJ0

and VJ0
)

2. randomly sample with replacement from Wj to create boot-

strapped vector W
(b)
j , j = 1, . . . , J0

3. create V
(b)
J0

using 1st-order autoregressive parametric bootstrap

4. apply WT to W
(b)
1 , . . ., W

(b)
J0

and V
(b)
J0

to obtain bootstrapped

time series X(b) and then form ρ̂
(b)
X,1

• repeat above many times to build up sample distribution of
bootstrapped autocorrelations
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Illustration of Wavelet-Domain Bootstrapping
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Wavelet-Domain Bootstrapping of FD Series

• approximations to true PDF using (a) Haar & (b) LA(8) wavelets

(a)

−1 0 1
0

10 (b)

−1 0 1

vertical line
indicates ρ̂X,1

ρ̂(m)
1 ρ̂(m)

1

• using 50 FD time series and the Haar DWT yields:

average of 50 sample means
.
= 0.35 (truth

.
= 0.53)

average of 50 sample SDs
.
= 0.096 (truth

.
= 0.107)

• using 50 FD time series and the LA(8) DWT yields:

average of 50 sample means
.
= 0.43 (truth

.
= 0.53)

average of 50 sample SDs
.
= 0.098 (truth

.
= 0.107)
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MLEs of FD Parameters: I

• FD process depends on 2 parameters, namely, δ and σ2
ε:

SX(f) =
σ2
ε

[4 sin2(πf)]δ

• given X = [X0, X1, . . . , XN−1]
T with N = 2J , suppose we

want to estimate δ and σ2
ε

• if X is stationary (i.e. δ < 1/2) and multivariate Gaussian,
can use the maximum likelihood (ML) method

WMTSA: 361 IV–25



MLEs of FD Parameters: II

• definition of Gaussian likelihood function:

L(δ, σ2
ε | X) ≡ 1

(2π)N/2|ΣX|1/2
e−XTΣ−1

X X/2

where ΣX is covariance matrix for X, with (s, t)th element
given by sX,s−t, and |ΣX|& Σ−1

X denote determinant & inverse

• ML estimators of δ and σ2
ε maximize L(δ, σ2

ε | X) or, equiva-
lently, mininize

−2 log (L(δ, σ2
ε | X)) = N log (2π) + log (|ΣX|) + XTΣ−1

X X

• exact MLEs computationally intensive, mainly because of the
need to deal with |ΣX| and Σ−1

X

• good approximate MLEs of considerable interest

WMTSA: 361–362 IV–26



MLEs of FD Parameters: III

• key ideas behind first wavelet-based approximate MLEs

− have seen that we can approximate FD time series X by
Y = WTΛ1/2Z, where Λ1/2 is a diagonal matrix, all of
whose diagonal elements are positive

− since covariance matrix for Z is IN , the one for Y is

WTΛ1/2IN(WTΛ1/2)T = WTΛ1/2Λ1/2W = WTΛW ≡ eΣX,

where Λ ≡ Λ1/2Λ1/2 is also diagonal

− can consider eΣX to be an approximation to ΣX

• leads to approximation of log likelihood:

−2 log (L(δ, σ2
ε | X)) ≈ N log (2π) + log (|eΣX|) + XT eΣ−1

X X

WMTSA: 362–363 IV–27



MLEs of FD Parameters: IV

• Q: so how does this help us?

− easy to invert eΣX:

eΣ−1
X =

≥
WTΛW

¥−1
= (W)−1 Λ−1

≥
WT

¥−1
= WTΛ−1W,

where Λ−1 is another diagonal matrix, leading to

XT eΣ−1
X X = XTWTΛ−1WX = WTΛ−1W

− easy to compute the determinant of eΣX:

|eΣX| = |WTΛW| = |ΛWWT | = |ΛIN | = |Λ|,
and the determinant of a diagonal matrix is just the product
of its diagonal elements

WMTSA: 362–363 IV–28



MLEs of FD Parameters: V

• define the following three functions of δ:

C0j(δ) ≡
Z 1/2j

1/2j+1

2j+1

[4 sin2(πf)]δ
df ≈

Z 1/2j

1/2j+1

2j+1

[2πf ]2δ
df

C0J+1(δ) ≡ NΓ(1− 2δ)

Γ2(1− δ)
−

JX

j=1

N

2jC
0
j(δ)

σ2
ε(δ) ≡ 1

N




V 2

J,0

C0J+1(δ)
+

JX

j=1

1

C0j(δ)

N
2j
−1

X

t=0

W 2
j,t





WMTSA: 362–363 IV–29



MLEs of FD Parameters: VI

• wavelet-based approximate MLE δ̃ for δ is the value that min-
imizes the following function of δ:

l̃(δ | X) ≡ N log(σ2
ε(δ)) + log(C0J+1(δ)) +

JX

j=1

N

2j log(C0j(δ))

• once δ̃ has been determined, MLE for σ2
ε is given by σ2

ε(δ̃)

• computer experiments indicate scheme works quite well

WMTSA: 363–364 IV–30



Other Wavelet-Based Estimators of FD Parameters

• second MLE approach: formulate likelihood directly in terms
of nonboundary wavelet coefficients

− handles stationary or nonstationary FD processes
(i.e., need not assume δ < 1/2)

− handles certain deterministic trends

• alternative to MLEs are least square estimators (LSEs)

− recall that, for large τ and for β = 2δ − 1, have

log (ν2
X(τj)) ≈ ζ + β log (τj)

− suggests determining δ by regressing log (ν̂2
X(τj)) on log (τj)

over range of τj
− weighted LSE takes into account fact that variance of log (ν̂2

X(τj))
depends upon scale τj (increases as τj increases)

WMTSA: 368–379 IV–31



Homogeneity of Variance: I

• because DWT decorrelates LMPs, nonboundary coefficients in
Wj should resemble white noise; i.e., cov {Wj,t,Wj,t0} ≈ 0
when t 6= t0, and var {Wj,t} should not depend upon t

• can test for homogeneity of variance in X using Wj over a
range of levels j

• suppose U0, . . . , UN−1 are independent normal RVs with E{Ut} =
0 and var {Ut} = σ2

t

• want to test null hypothesis

H0 : σ2
0 = σ2

1 = · · · = σ2
N−1

• can test H0 versus a variety of alternatives, e.g.,

H1 : σ2
0 = · · · = σ2

k 6= σ2
k+1 = · · · = σ2

N−1

using normalized cumulative sum of squares

WMTSA: 379–380 IV–32



Homogeneity of Variance: II

• to define test statistic D, start with

Pk ≡
Pk

j=0 U2
j

PN−1
j=0 U2

j

, k = 0, . . . , N − 2

and then compute D ≡ max (D+, D−), where

D+ ≡ max
0≤k≤N−2

µ
k + 1

N − 1
−Pk

∂
& D− ≡ max

0≤k≤N−2

µ
Pk −

k

N − 1

∂

• can reject H0 if observed D is ‘too large,’ where ‘too large’ is
quantified by considering distribution of D under H0

• need to find critical value xα such that P[D ≥ xα] = α for,
e.g., α = 0.01, 0.05 or 0.1

WMTSA: 380–381 IV–33



Homogeneity of Variance: III

• once determined, can perform α level test of H0:

− compute D statistic from data U0, . . . , UN−1

− reject H0 at level α if D ≥ xα

− fail to reject H0 at level α if D < xα

• can determine critical values xα in two ways

−Monte Carlo simulations

− large sample approximation to distribution of D:

P[(N/2)1/2D ≥ x] ≈ 1 + 2
∞X

l=1

(−1)le−2l2x2

(reasonable approximation for N ≥ 128)

WMTSA: 380–381 IV–34



Homogeneity of Variance: IV

• idea: given time series {Xt}, compute D using nonboundary
wavelet coefficients Wj,t (there are M 0

j ≡ Nj − L0j of these):

Pk ≡

Pk
t=L0j

W 2
j,t

PNj−1

t=L0j
W 2

j,t

, k = L0j, . . . , Nj − 2

• if null hypothesis rejected at level j, can use nonboundary
MODWT coefficients to locate change point based on

ePk ≡

Pk
t=Lj−1

fW 2
j,t

PN−1
t=Lj−1

fW 2
j,t

, k = Lj − 1, . . . , N − 2

along with analogs eD+
k and eD−k of D+

k and D−k

WMTSA: 380–381 IV–35



Example – Annual Minima of Nile River: I

x

x

x

x

o
o

o
o

15

13

11

9

1

0.1

0.01
600 1300

years
1 2 4 8

scale (years)

• left-hand plot: annual minima of Nile River

• new measuring device introduced around year 715

• right: Haar ν̂2
X(τj) before (x’s) and after (o’s) year 715.5, with

95% confidence intervals based upon χ2
η3

approximation

WMTSA: 326–327 IV–36



Example – Annual Minima of Nile River: II

l̃(δ | X)

δ

−100

−300

−500
0.0 0.1 0.2 0.3 0.4 0.5

• based upon last 512 values (years 773 to 1284), plot shows
l̃(δ | X) versus δ for the first wavelet-based approximate MLE
using the LA(8) wavelet (upper curve) and corresponding curve
for exact MLE (lower)

− wavelet-based approximate MLE is value minimizing upper
curve: δ̃

.
= 0.4532

− exact MLE is value minimizing lower curve: δ̂
.
= 0.4452

WMTSA: 386–388 IV–37



Example – Annual Minima of Nile River: III
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f

• using last 512 values again, variance of wavelet coefficients com-
puted via LA(8) MLEs δ̃ and σ2

ε(δ̃) (solid curve) as compared
to sample variances of LA(8) wavelet coefficients (circles)

• agreement is almost too good to be true!

WMTSA: 386–388 IV–38



Example – Annual Minima of Nile River: IV

• results of testing all Nile River minima for homogeneity of vari-
ance using the Haar wavelet filter with critical values deter-
mined by computer simulations

critical levels
τj M 0

j D 10% 5% 1%

1 year 331 0.1559 0.0945 0.1051 0.1262
2 years 165 0.1754 0.1320 0.1469 0.1765
4 years 82 0.1000 0.1855 0.2068 0.2474
8 years 41 0.2313 0.2572 0.2864 0.3436

• can reject null hypothesis of homogeneity of variance at level
of significance 0.05 for scales τ1 & τ2, but not at larger scales

WMTSA: 386–388 IV–39



Example – Annual Minima of Nile River: V
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• Nile River minima (top plot) along with curves (constructed
per Equation (382)) for scales τ1 & τ2 (middle & bottom) to
identify change point via time of maximum deviation (vertical
lines denote year 715)

WMTSA: 386–388 IV–40



Summary

• DWT approximately decorrelate certain time series, including
ones coming from FD and related processes

• leads to schemes for simulating time series and bootstrapping

• also leads to schemes for estimating parameters of FD process

− approximate maximum likelihood estimators (two varieties)

− weighted least squares estimator

• can also devise wavelet-based tests for

− homogeneity of variance

− trends (see Craigmile et al., 2004, for details)

WMTSA: 388–391 IV–41
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