Wavelet Methods for Time Series Analysis

Part IV: Wavelet-Based Decorrelation of Time Series

e DWT well-suited for decorrelating certain time series, including
ones generated from a fractionally differenced (FD) process

e on synthesis side, leads to

— DW'T-based simulation of FD processes
— wavelet-based bootstrapping

e on analysis side, leads to

— wavelet-based estimators for FD parameters
— test for homogeneity of variance

— test for trends (won't discuss — see Craigmile et al., 2004,
for details)
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Wavelets and FD Processes: 1

e wavelet filters are approximate band-pass filters, with nominal
pass-bands [1/27111/29] (called jth ‘octave band’)

e suppose { X;} has Sx(+) as its spectral density function (SDF)

e statistical properties of {W;;} are simple if Sx(-) has simple
structure within 7th octave band

e example: FD process with SDF

Sx(f) =

2
Oc

[4sin*(r )]

WMTSA: 281-284 V-2



Wavelets and FD Processes: 11

e I'D process controlled by two parameters: o0 and Jg
e for small f, have Sx(f) &~ C’\f]_%; l.e., a power law
e log(Sx(f)) vs. log(f) is approximately linear with slope —20

o for large 7, wavelet variance at scale 7;, namely v5-(7;), satis-

2 (N~ (201
fies v5(75) = C T
e log (Vg(('rj)) vs. log (7;) is approximately linear, slope 20 — 1
e approximately ‘self-similar’ (or ‘fractal’)

e D process is stationary with ‘long memory’ if 0 < § < 1/2:
correlation between X3 & X¢1+ dies down slowly as 7 increases

WMTSA: 297, 284 V-3



Wavelets and FD Processes: 111

e power law model ubiquitous in physical sciences

— voltage fluctuations across cell membranes
— density fluctuations in hour glass
— traflic fluctuations on Japanese expressway
— impedance fluctuations in geophysical borehole
— fluctuations in the rotation of the earth
— X-ray time variability of galaxies
e DW'T well-suited to study FD and related processes

— ‘self-similar’ filters used on ‘self-similar’ processes

— key idea: DW'T approximately decorrelates LMPs

WMTSA: 340 V-4



DWT of an FD Process: 1
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e realization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for 7 > 0,

N—1—
. t=0 ! XtXt—|—7'

IaX,T — N—1 2
t=0 Xt

e note that ACS dies down slowly

WMTSA: 341-342 IV-5



DWT of an FD Process: 11
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e LA(8) DWT of FD(0.4) series and sample ACSs for each W
& V=, along with 95% confidence intervals for white noise
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MODWT of an FD Process
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7 (lag)
e LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT
coefficients, none of which are approximately uncorrelated
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DWT of an FD Process: 111

e in contrast to X, ACSs for W consistent with white noise

e variance of W increases with j — can argue that

! 1/2J
var {W;+} ~ - ] Sx(f)df =C,

o] ~ e 1T

where C'; is average value of Sx(-) over [1/2j+1, 1/2j]

C 1 C 1
o for FD process, have Cj ~ SX(I/Q“H?)7 where 1/2772 is mid-
point of interval [1/2/F1 1 /27]

WMTSA: 343-344 IV-8



DWT of an FD Process: 1V
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e plot shows var {W,;} (circles) & Sx(1/ 2J +%) (curve) versus
»!
1/2773, along with 95% confidence intervals for var {IW; s}
e observed var {W; ;} agrees well with theoretical var {W; ;}

WMTSA: 344-345 IV-9



Correlations Within a Scale and Between Two Scales

e let {sx ;} denote autocovariance sequence (ACVS) for {X;};
i.e., SX,T — COV {Xt, Xt_|_7-}

o let {h;} denote equivalent wavelet filter for jth level

e to quantity decorrelation, can write
COV {Wj,t7 Wj’,t’} = S: S: hjalhjlal/SX,Zj(t—l—l)—l—Qj/(t’—l—l)—i—l”
[=0 ['=0
from which we can get ACVS (and hence within-scale correla-

tions) for {W; ;}:

Lj—l Lj_|m‘_1
COV {Wj,t7 Wj,t+7} — Z SX,QjTer Z hj,lhj,l+\m|

WMTSA: 345 IV-10



Correlations Within a Scale
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e correlations between W ; and W 4 for an FD(0.4) process
e correlations within scale are slightly smaller for Haar

e maximum magnitude of correlation is less than 0.2
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Correlations Between Two Scales: 1
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e correlation between Haar wavelet coefficients W and Wj’,t’
from FD(0.4) process and for levels satisfying 1 < j < j' < 4
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Correlations Between T'wo Scales: 11
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e same as before, but now for LA(8) wavelet coefficients

e correlations between scales decrease as L increases

WMTSA: 346-347 IV-13



Wavelet Domain Description of FD Process

e DWT acts as a decorrelating transtorm for FD process
(also true for fractional Gaussian noise, pure power law etc.)

e wavelet domain description is simple
— wavelet coefficients within a given scale approximately uncor-

related (refinement: assume 1st order autoregressive model)

— wavelet coeflicients have scale-dependent variance controlled
by the two FD parameters (6 and ¢2)

— wavelet coeflicients between scales also approximately uncor-
related (approximation improves as filter width L increases)

WMTSA: 345-350 IV-14



DWT-Based Simulation

e properties of DW'T of FD processes lead to schemes for simu-
lating time series X = [ X, ..., Xy_1]! with zero mean and
with a multivariate Gaussian distribution

o with N = 27 recall that X = W' W, where

WMTSA: 355 IV-15



Basic DWT-Based Simulation Scheme

e assume W to contain N uncorrelated Gaussian (normal) ran-
dom variables (RVs) with zero mean

. ]_|_l
e assume W to have variance C; ~ Sx(1/2/72)

e assume single RV in V j to have variance Cj,; (see Percival
and Walden, 2000, for details on how to set C 7, 1)

e approximate FD time series X via Y = WIAL 27, where

~AVZis N x N diagonal matrix with diagonal elements

1/2 1/2 1/2 1/2 12 1/2 A1/2 1/2
gl 7"'701 j\CQ ,...,02 j‘”’?J—l’CJ—L’CJ ,CJ+1
% of these % of these 2 of these

— 7, 1s vector of deviations drawn from a Gaussian distribution
with zero mean and unit variance

WMTSA: 355 IV-16



Refinements to Basic Scheme: 1

e covariance matrix for approximation Y does not correspond to
that of a stationary process

e recall W treats X as if it were circular

e let 7 be N x N ‘circular shift’ matrix:

Y Y] Y Yo
Yi| Yo V1| | Y3|
T v | = vy | T vl = v, | ete.
REN Yo REN Ren

e let xk be uniformily distributed over 0,..., N — 1
o define Y = THY
oY is stationary with ACVS given by, say, Sy

WMTSA: 356-357 IV-17



Refinements to Basic Scheme: 11

e (): how well does {33777} match {sx - }7

e due to circularity, find that SV N7 = 57 forr=1,...,N/2

e implies Sg- _ cannot approximate sx  well for 7 close to N

)

e can patch up by simulating Y with M > N elements and then
extracting first N deviates (M = 4N works well)

WMTSA: 356-357 IV-18



Refinements to Basic Scheme: 111

M =4AN

T T

| . . L
64 0 64

T

e plot shows true ACVS {sx } (thick curves) for FD(0.4) process
and wavelet-based approximate ACVSs {sg _} (thin curves)

based on an LA(8) DWT in which an N = 64 series is ex-
tracted from M = N, M = 2N and M = 4N series

WMTSA: 356-357 IV-19



Example and Some Notes

A T B R
0 256 512 768 1024
t

e simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)

® notes:

— can form realizations faster than best exact method

— can efficiently simulate extremely long time series in ‘real-
time’ (e.g, N =23V = 1,073, 741, 824 or even longer!)

— effect of random circular shifting is to render time series
slightly non-Gaussian (a Gaussian mixture model)

WMTSA: 358-361 IV-20



Wavelet-Domain Bootstrapping

e for many (but not all!) time series, DW'T acts as a decorrelating
transform: to a good approximation, each W is a sample of a
white noise process, and coefficients from different sub-vectors
W, and Wj/ are also pairwise uncorrelated

e variance of coefficients in W depends on j

o scaling coefficients V j are still autocorrelated, but there will
be just a few of them if Jj is selected to be large

e decorrelating property holds particularly well for FD and other
processes with long-range dependence

e above suggests the following recipe for wavelet-domain boot-
strapping of a statistic of interest, e.g., sample autocorrelation
sequence px » at unit lag 7 =1

IV-21



Recipe for Wavelet-Domain Bootstrapping

1. given X of length N = 2/ compute level Jo DWT (the choice
Jo = J — 3 yields 8 coeflicients in Wy and V ;)

2. randomly sample with replacement from W to create boot-

strapped vector W§b), 7=1,...,Jy
3. create VS? using lst-order autoregressive parametric bootstrap

4. apply W to ng, A W(? and V(b) to obtain bootstrapped

Jo
time series X(®) and then form ﬁg?l

e repeat above many times to build up sample distribution of
bootstrapped autocorrelations

IV-22



Illustration of Wavelet-Domain Bootstrapping

e Haar DWT of FD(0.45) series X (left-hand column) and wavelet-
domain bootstrap thereof (right-hand)
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Wavelet-Domain Bootstrapping of FD Series

e approximations to true PDF using (a) Haar & (b) LA(8) wavelets

107 1 ()

vertical line

/\ //\ indicates pyx i
0_ ’/ \\\—. n B —’I \—-

| T | | | |
1 0 1 - 0 1
" Y

e using 50 FD time series and the Haar DW'T' yields:

average of 50 sample means = 0.35  (truth = 0.53)
average of 50 sample SDs = 0.096 (truth = 0.107)

e using 50 FD time series and the LA(8) DW'T yields:

average of 50 sample means = 0.43  (truth = 0.53)
average of 50 sample SDs = 0.098  (truth = 0.107)
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MLEs of FD Parameters: 1

e I'D process depends on 2 parameters, namely, 0 and Jg ;

)
Sx(f) =

O¢

4 sin?(7 f)]°

e given X = X, X1, ... ,XN_l]T with N = 27 suppose we
want to estimate ¢ and o2

o if X is stationary (i.e. § < 1/2) and multivariate Gaussian,
can use the maximum likelihood (ML) method

WMTSA: 361 IV-25



MLEs of FD Parameters: 11

e definition of Gaussian likelihood function:

1 Tw—1
2 _ ~XTs31X /2
L(9, o | X) = (QW)N/Q\EXH/QG X

where Yx is covariance matrix for X, with (s,%)th element
given by sx ¢, and |Xx | & Zil denote determinant & inverse

o ML estimators of ¢ and o2 maximize L(6, 02 | X) or, equiva-
lently, mininize

—2log (L(6,02 | X)) = Nlog (27) + log (|x|) + XT £¢!X

e exact MLEs computationally intensive, mainly because of the
need to deal with |Xx| and Zil

e cood approximate MLEs of considerable interest

WMTSA: 361-362 IV-26



MLEs of FD Parameters: 111

e key ideas behind first wavelet-based approximate MLESs

— have seen that we can approximate FD time series X by
Y = Wi\l 27, where A2 s a diagonal matrix, all of
whose diagonal elements are positive

— since covariance matrix for Z is Iy, the one for Y is
WINPT (WEAYT = WIALZAL2yy = wTAw = B,
where A = AY/2AL/2 is also diagonal

— can consider Xx to be an approximation to >y

e leads to approximation of log likelihood:

—2log (L(6,02 | X)) = Nlog (27) +log (|5x]) + X' 33X

WMTSA: 362-363 IV-27



MLEs of FD Parameters: 1V

e (): so how does this help us?

— easy to mvert iX:

—~

Syl = (WTAW)_1 — (W) 1A (WT)_1 —WIA—Iw,
where A1 is another diagonal matrix, leading to
XIS X =X IWIA-wx = wia~iw
— easy to compute the determinant of iX:
x| = WIAW] = [AWWT| = [ALy| = |A]

and the determinant of a diagonal matrix is just the product
of its diagonal elements

WMTSA: 362-363 IV-28



MLEs of FD Parameters: V

e define the following three functions of o:

s = 1/2J 0j+1 1/27 9j+1
j< ) = //2J+1 4 sin?( 7Tf 0 G //QJH 27 f]20 f

ZN /
OJ—|—1<5> = I-Q(l B 5) 270](5)
1
( 2 J TR, \
0‘2 = ! VJ’O E L QE 2
€<5> B N \C&+1<5> —|_j:1 C;(5) t=0 Wj,t)

WMTSA: 362-363 IV-29



MLEs of FD Parameters: VI

e wavelet-based approximate MLE 4 for ¢ is the value that min-
imizes the following function of o:

(6 | X) = N log(c2(5)) + log( Ch.1(8)) + Z—log C’/

e once ¢ has been determined, MLE for o2 is given by o2(0)

e computer experiments indicate scheme works quite well

WMTSA: 363-364 IV-30



Other Wavelet-Based Estimators of FFD Parameters

e second MLE approach: formulate likelihood directly in terms
of nonboundary wavelet coefficients

— handles stationary or nonstationary FD processes
(i.e., need not assume ¢ < 1/2)

— handles certain deterministic trends
e alternative to MLEs are least square estimators (LSEs)

— recall that, for large 7 and for 8 = 20 — 1, have

log (v (7)) = ¢ + Blog (1)

— suggests determining ¢ by regressing log ( A%(Tj)) on log (7;)

over range of 7;

~2

— weighted LSE takes into account fact that variance of log (25 (75))

depends upon scale 7; (increases as 7; increases)

WMTSA: 368-379 IV-31



Homogeneity of Variance: 1

e because DW'T decorrelates LMPs, nonboundary coefficients in
W should resemble white noise; i.e., cov {Wj,t,Wj’t/} ~ 0
when ¢ # ¢/, and var {W; +} should not depend upon ¢

e can test for homogeneity of variance in X using W, over a
range of levels j

e suppose Uy, . .., Up_q are independent normal RVs with E{U;} =
0 and var {Us} = o7
e want to test null hypothesis
2 2 2
e can test Hy versus a variety of alternatives, e.g..
2 2 2 2
using normalized cumulative sum of squares

WMTSA: 379-380 IV-32



Homogeneity of Variance: 11

e to define test statistic D, start with

k 2

> =0 U;
PkE ]<7—01 ]2, k:O,...,N—Q
SV
and then compute D = max (DT, D7), where
k+1 k
Dt = - & DT = R
Oglingaf\cf—z (N —1 Pk) oglf;rlgaj})\%_z (P N — 1)

e can reject Hy if observed D is ‘too large,” where ‘too large’ is
quantified by considering distribution of D under Hy

e need to find critical value z, such that P|D > x| = «a for,
e.g., a = 0.01, 0.05 or 0.1

WMTSA: 380-381 IV-33



Homogeneity of Variance: 111

e once determined, can perform « level test of Hy:

— compute D statistic from data Up, ..., Un_1
— reject Hy at level a if D > x,
— fail to reject Hy at level a it D < 2,

e can determine critical values x, In two ways

— Monte Carlo simulations

— large sample approximation to distribution of D:
O
2,2
P[(N/2)V?D > a] m1+2) (=1)e
[=1
(reasonable approximation for N > 128)

WMTSA: 380-381 IV-34



Homogeneity of Variance: IV

e idea: given time series { X}, compute D using nonboundary
wavelet coefficients W; ; (there are M ]’ = N, — L;- of these):

Zf:L’.W2 ,
P = k=L.... N;—2
N Y ]7 Y ]
Zt L/ W2

e if null hypothesis rejected at level 7, can use nonboundary
MODWT coeflicients to locate change point based on

Y L—1W2
Pr. = k=Lj—1,...,N—=2

2 Y
Zt L. —1Wj,t
along with analogs DZ and 13]; of DZ and D,

WMTSA: 380-381 IV-35



Example — Annual Minima of Nile River: 1

e
15 - : l l
131 -
i 0.1L ! I I
111 - |
9 II 1 1 1 1 1 I
600 1300
years 0.0 | | |
1 2 4 8

scale (years)

e left-hand plot: annual minima of Nile River

e new measuring device introduced around year 715

e right: Haar ﬁ%((Tj) before (x’s) and after (o’s) year 715.5, with

95% confidence intervals based upon X7273 approximation

WMTSA: 326-327 IV-36



Example — Annual Minima of Nile River: 1l

—100 [
—500 Ly v vy 0y I Lo I I |
0.0 0.1 0.2 0.3 0.4 0.5

e based upon last 512 values (years 773 to 1284), plot shows
[(0 | X) versus ¢ for the first wavelet-based approximate MLE

using the LA(8) wavelet (upper curve) and corresponding curve
for exact MLE (lower)

— wavelet-based approximate MLE is value minimizing upper
curve: 0 = 0.4532

— exact MLE is value minimizing lower curve: o = 0.4452

WMTSA: 386-388 IV-37



Example — Annual Minima of Nile River: III

100.0F

10.0

1.0

0.1 AT BT R
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f

e using last 512 values again, variance of wavelet coefficients com-
puted via LA(8) MLEs ¢ and ¢2(6) (solid curve) as compared
to sample variances of LA(8) wavelet coefficients (circles)

e agreement is almost too good to be true!

WMTSA: 386-388 IV-38



Example — Annual Minima of Nile River: 1V

e results of testing all Nile River minima for homogeneity of vari-
ance using the Haar wavelet filter with critical values deter-
mined by computer simulations

critical levels

o M, D 10% 5% 1%

L year 331 0.1559 0.0945 0.1051 0.1262
2vyears 165 0.1754 0.1320 0.1469  0.1765
4 years 82  0.1000 0.1855 0.2068 0.2474
Syears 41  0.2313  0.2572  0.28064 0.3436

e can reject null hypothesis of homogeneity of variance at level
of significance 0.05 for scales 71 & 7, but not at larger scales

WMTSA: 386-388 IV-39



Example — Annual Minima of Nile River: V

15[
13+
11F
9 . . . . . . |
0.2

T

0.2

0 e

600 700 800 900 1000 1100 1200 1300
year

e Nile River minima (top plot) along with curves (constructed
per Equation (382)) for scales 71 & m (middle & bottom) to
identify change point via time of maximum deviation (vertical
lines denote year 715)

WMTSA: 386-388 IV-40



Summary

e DW'T approximately decorrelate certain time series, including
ones coming from FD and related processes

e leads to schemes for simulating time series and bootstrapping
e also leads to schemes for estimating parameters of F'D process

— approximate maximum likelihood estimators (two varieties)

— weighted least squares estimator
e can also devise wavelet-based tests for

— homogeneity of variance
— trends (see Craigmile et al., 2004, for details)
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