Wavelet Methods for Time Series Analysis

Part IV: Wavelet-Based Decorrelation of Time Series

- DWT well-suited for decorrelating certain time series, including ones generated from a fractionally differenced (FD) process
- on synthesis side, leads to
- DWT-based simulation of FD processes
- wavelet-based bootstrapping
- on analysis side, leads to
- wavelet-based estimators for FD parameters
- test for homogeneity of variance
- test for trends (won't discuss - see Craigmile et al., 2004, for details)

Wavelets and FD Processes: I

- wavelet filters are approximate band-pass filters, with nominal pass-bands $\left[1 / 2^{j+1}, 1 / 2^{j}\right]$ (called j th 'octave band')
- suppose $\left\{X_{t}\right\}$ has $S_{X}(\cdot)$ as its spectral density function (SDF)
- statistical properties of $\left\{W_{j, t}\right\}$ are simple if $S_{X}(\cdot)$ has simple structure within j th octave band
- example: FD process with SDF

$$
S_{X}(f)=\frac{\sigma_{\varepsilon}^{2}}{\left[4 \sin ^{2}(\pi f)\right]^{\delta}}
$$

Wavelets and FD Processes: II

- FD process controlled by two parameters: δ and σ_{ε}^{2}
- for small f, have $S_{X}(f) \approx C|f|^{-2 \delta}$; i.e., a power law
- $\log \left(S_{X}(f)\right)$ vs. $\log (f)$ is approximately linear with slope -2δ
- for large τ_{j}, wavelet variance at scale τ_{j}, namely $\nu_{X}^{2}\left(\tau_{j}\right)$, satisfies $\nu_{X}^{2}\left(\tau_{j}\right) \approx C^{\prime} \tau_{j}^{2 \delta-1}$
- $\log \left(\nu_{X}^{2}\left(\tau_{j}\right)\right)$ vs. $\log \left(\tau_{j}\right)$ is approximately linear, slope $2 \delta-1$
- approximately 'self-similar' (or 'fractal')
- FD process is stationary with 'long memory' if $0<\delta<1 / 2$: correlation between $X_{t} \& X_{t+\tau}$ dies down slowly as τ increases

Wavelets and FD Processes: III

- power law model ubiquitous in physical sciences
- voltage fluctuations across cell membranes
- density fluctuations in hour glass
- traffic fluctuations on Japanese expressway
- impedance fluctuations in geophysical borehole
- fluctuations in the rotation of the earth
- X-ray time variability of galaxies
- DWT well-suited to study FD and related processes
- 'self-similar' filters used on 'self-similar' processes
- key idea: DWT approximately decorrelates LMPs

DWT of an FD Process: I

- realization of an $\operatorname{FD}(0.4)$ time series \mathbf{X} along with its sample autocorrelation sequence (ACS): for $\tau \geq 0$,

$$
\hat{\rho}_{X, \tau} \equiv \frac{\sum_{t=0}^{N-1-\tau} X_{t} X_{t+\tau}}{\sum_{t=0}^{N-1} X_{t}^{2}}
$$

- note that ACS dies down slowly

DWT of an FD Process: II

- LA(8) DWT of $\mathrm{FD}(0.4)$ series and sample ACSs for each \mathbf{W}_{j} \& \mathbf{V}_{7}, along with 95% confidence intervals for white noise

MODWT of an FD Process

- LA(8) MODWT of FD(0.4) series \& sample ACSs for MODWT coefficients, none of which are approximately uncorrelated

DWT of an FD Process: III

- in contrast to \mathbf{X}, ACSs for \mathbf{W}_{j} consistent with white noise
- variance of \mathbf{W}_{j} increases with j - can argue that

$$
\operatorname{var}\left\{W_{j, t}\right\} \approx \frac{1}{\frac{1}{2^{j}}-\frac{1}{2^{j+1}}} \int_{1 / 2^{j+1}}^{1 / 2^{j}} S_{X}(f) d f \equiv C_{j}
$$

where C_{j} is average value of $S_{X}(\cdot)$ over $\left[1 / 2^{j+1}, 1 / 2^{j}\right]$

- for FD process, have $C_{j} \approx S_{X}\left(1 / 2^{j+\frac{1}{2}}\right)$, where $1 / 2^{j+\frac{1}{2}}$ is midpoint of interval $\left[1 / 2^{j+1}, 1 / 2^{j}\right]$

DWT of an FD Process: IV

- plot shows $\widehat{\operatorname{var}}\left\{W_{j, t}\right\}$ (circles) \& $S_{X}\left(1 / 2^{j+\frac{1}{2}}\right)$ (curve) versus $1 / 2^{j+\frac{1}{2}}$, along with 95% confidence intervals for $\operatorname{var}\left\{W_{j, t}\right\}$
- observed $\widehat{\operatorname{var}}\left\{W_{j, t}\right\}$ agrees well with theoretical $\operatorname{var}\left\{W_{j, t}\right\}$

Correlations Within a Scale and Between Two Scales

- let $\left\{s_{X, \tau}\right\}$ denote autocovariance sequence (ACVS) for $\left\{X_{t}\right\}$; i.e., $s_{X, \tau}=\operatorname{cov}\left\{X_{t}, X_{t+\tau}\right\}$
- let $\left\{h_{j, l}\right\}$ denote equivalent wavelet filter for j th level
- to quantify decorrelation, can write

$$
\operatorname{cov}\left\{W_{j, t}, W_{j^{\prime}, t^{\prime}}\right\}=\sum_{l=0}^{L_{j}-1} \sum_{l^{\prime}=0}^{L_{j^{\prime}}-1} h_{j, l} h_{j^{\prime}, l^{\prime}} S_{X, 2^{j}(t+1)-l-2 j^{\prime}\left(t^{\prime}+1\right)+l^{\prime}}
$$

from which we can get ACVS (and hence within-scale correlations) for $\left\{W_{j, t}\right\}$:

$$
\operatorname{cov}\left\{W_{j, t}, W_{j, t+\tau}\right\}=\sum_{m=-\left(L_{j}-1\right)}^{L_{j}-1} s_{X, 2^{j} \tau+m} \sum_{l=0}^{L_{j}-|m|-1} h_{j, l} h_{j, l+|m|}
$$

Correlations Within a Scale

- correlations between $W_{j, t}$ and $W_{j, t+\tau}$ for an $\mathrm{FD}(0.4)$ process
- correlations within scale are slightly smaller for Haar
- maximum magnitude of correlation is less than 0.2

Correlations Between Two Scales: I

- correlation between Haar wavelet coefficients $W_{j, t}$ and $W_{j^{\prime}, t^{\prime}}$ from $\mathrm{FD}(0.4)$ process and for levels satisfying $1 \leq j<j^{\prime} \leq 4$

Correlations Between Two Scales: II

- same as before, but now for LA(8) wavelet coefficients
- correlations between scales decrease as L increases

Wavelet Domain Description of FD Process

- DWT acts as a decorrelating transform for FD process (also true for fractional Gaussian noise, pure power law etc.)
- wavelet domain description is simple
- wavelet coefficients within a given scale approximately uncorrelated (refinement: assume 1st order autoregressive model)
- wavelet coefficients have scale-dependent variance controlled by the two FD parameters (δ and σ_{ε}^{2})
- wavelet coefficients between scales also approximately uncorrelated (approximation improves as filter width L increases)

DWT-Based Simulation

- properties of DWT of FD processes lead to schemes for simulating time series $\mathbf{X} \equiv\left[X_{0}, \ldots, X_{N-1}\right]^{T}$ with zero mean and with a multivariate Gaussian distribution
- with $N=2^{J}$, recall that $\mathbf{X}=\mathcal{W}^{T} \mathbf{W}$, where

$$
\mathbf{W}=\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{j} \\
\vdots \\
\mathbf{W}_{J} \\
\mathbf{V}_{J}
\end{array}\right]
$$

Basic DWT-Based Simulation Scheme

- assume \mathbf{W} to contain N uncorrelated Gaussian (normal) random variables (RVs) with zero mean
- assume \mathbf{W}_{j} to have variance $C_{j} \approx S_{X}\left(1 / 2^{j+\frac{1}{2}}\right)$
- assume single RV in \mathbf{V}_{J} to have variance C_{J+1} (see Percival and Walden, 2000, for details on how to set C_{J+1})
- approximate FD time series \mathbf{X} via $\mathbf{Y} \equiv \mathcal{W}^{T} \Lambda^{1 / 2} \mathbf{Z}$, where $-\Lambda^{1 / 2}$ is $N \times N$ diagonal matrix with diagonal elements $\underbrace{C_{1}^{1 / 2}, \ldots, C_{1}^{1 / 2}}_{\frac{N}{2} \text { of these }}, \underbrace{C_{2}^{1 / 2}, \ldots, C_{2}^{1 / 2}}_{\frac{N}{4} \text { of these }}, \ldots, \underbrace{C_{J-1}^{1 / 2}, C_{J-1}^{1 / 2}}_{2 \text { of these }}, C_{J}^{1 / 2}, C_{J+1}^{1 / 2}$
$-\mathbf{Z}$ is vector of deviations drawn from a Gaussian distribution with zero mean and unit variance

Refinements to Basic Scheme: I

- covariance matrix for approximation \mathbf{Y} does not correspond to that of a stationary process
- recall \mathcal{W} treats \mathbf{X} as if it were circular
- let \mathcal{T} be $N \times N$ 'circular shift' matrix:

$$
\mathcal{T}\left[\begin{array}{l}
Y_{0} \\
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right]=\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{0}
\end{array}\right] ; \quad \mathcal{T}^{2}\left[\begin{array}{l}
Y_{0} \\
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right]=\left[\begin{array}{c}
Y_{2} \\
Y_{3} \\
Y_{0} \\
Y_{1}
\end{array}\right] ; \quad \text { etc. }
$$

- let κ be uniformily distributed over $0, \ldots, N-1$
- define $\widetilde{\mathbf{Y}} \equiv \mathcal{T}^{\kappa} \mathbf{Y}$
- $\widetilde{\mathbf{Y}}$ is stationary with ACVS given by, say, $s_{\tilde{Y}}, \tau$

Refinements to Basic Scheme: II

- Q: how well does $\left\{s_{\tilde{Y}, \tau}\right\}$ match $\left\{s_{X, \tau}\right\}$?
- due to circularity, find that $s_{\widetilde{Y}, N-\tau}=s_{\widetilde{Y}, \tau}$ for $\tau=1, \ldots, N / 2$
- implies $s_{\widetilde{Y}, \tau}$ cannot approximate $s_{X, \tau}$ well for τ close to N
- can patch up by simulating $\tilde{\mathbf{Y}}$ with $M>N$ elements and then extracting first N deviates ($M=4 N$ works well)

Refinements to Basic Scheme: III

- plot shows true ACVS $\left\{s_{X, \tau}\right\}$ (thick curves) for $\mathrm{FD}(0.4)$ process and wavelet-based approximate ACVSs $\left\{s_{\widetilde{Y}, \tau}\right\}$ (thin curves) based on an LA(8) DWT in which an $N=64$ series is extracted from $M=N, M=2 N$ and $M=4 N$ series

Example and Some Notes

- simulated $\mathrm{FD}(0.4)$ series $(\mathrm{LA}(8), N=1024$ and $M=4 N)$
- notes:
- can form realizations faster than best exact method
- can efficiently simulate extremely long time series in 'realtime' (e.g, $N=2^{30}=1,073,741,824$ or even longer!)
- effect of random circular shifting is to render time series slightly non-Gaussian (a Gaussian mixture model)

Wavelet-Domain Bootstrapping

- for many (but not all!) time series, DWT acts as a decorrelating transform: to a good approximation, each \mathbf{W}_{j} is a sample of a white noise process, and coefficients from different sub-vectors \mathbf{W}_{j} and $\mathbf{W}_{j^{\prime}}$ are also pairwise uncorrelated
- variance of coefficients in \mathbf{W}_{j} depends on j
- scaling coefficients $\mathbf{V}_{J_{0}}$ are still autocorrelated, but there will be just a few of them if J_{0} is selected to be large
- decorrelating property holds particularly well for FD and other processes with long-range dependence
- above suggests the following recipe for wavelet-domain bootstrapping of a statistic of interest, e.g., sample autocorrelation sequence $\hat{\rho}_{X, \tau}$ at unit $\operatorname{lag} \tau=1$

Recipe for Wavelet-Domain Bootstrapping

1. given \mathbf{X} of length $N=2^{J}$, compute level J_{0} DWT (the choice $J_{0}=J-3$ yields 8 coefficients in $\mathbf{W}_{J_{0}}$ and $\mathbf{V}_{J_{0}}$)
2. randomly sample with replacement from \mathbf{W}_{j} to create bootstrapped vector $\mathbf{W}_{j}^{(b)}, j=1, \ldots, J_{0}$
3. create $\mathbf{V}_{J_{0}}^{(b)}$ using 1st-order autoregressive parametric bootstrap
4. apply \mathcal{W}^{T} to $\mathbf{W}_{1}^{(b)}, \ldots, \mathbf{W}_{J_{0}}^{(b)}$ and $\mathbf{V}_{J_{0}}^{(b)}$ to obtain bootstrapped time series $\mathbf{X}^{(b)}$ and then form $\hat{\rho}_{X, 1}^{(b)}$

- repeat above many times to build up sample distribution of bootstrapped autocorrelations

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

X

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Illustration of Wavelet-Domain Bootstrapping

- Haar DWT of $\operatorname{FD}(0.45)$ series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Wavelet-Domain Bootstrapping of FD Series

- approximations to true PDF using (a) Haar \& (b) LA(8) wavelets

vertical line indicates $\hat{\rho}_{X, 1}$
- using 50 FD time series and the Haar DWT yields:

$$
\begin{aligned}
\text { average of } 50 \text { sample means } & \doteq 0.35 & & (\text { truth } \doteq 0.53) \\
\text { average of } 50 \text { sample } \mathrm{SDs} & \doteq 0.096 & & (\text { truth } \doteq 0.107)
\end{aligned}
$$

- using 50 FD time series and the LA(8) DWT yields:

$$
\begin{array}{rlrl}
\text { average of } 50 \text { sample means } & \doteq 0.43 & & (\text { truth } \doteq 0.53) \\
\text { average of } 50 \text { sample } S D s \doteq 0.098 & (\text { truth } \doteq 0.107)
\end{array}
$$

MLEs of FD Parameters: I

- FD process depends on 2 parameters, namely, δ and σ_{ε}^{2} :

$$
S_{X}(f)=\frac{\sigma_{\varepsilon}^{2}}{\left[4 \sin ^{2}(\pi f)\right]^{\delta}}
$$

- given $\mathbf{X}=\left[X_{0}, X_{1}, \ldots, X_{N-1}\right]^{T}$ with $N=2^{J}$, suppose we want to estimate δ and σ_{ε}^{2}
- if \mathbf{X} is stationary (i.e. $\delta<1 / 2$) and multivariate Gaussian, can use the maximum likelihood (ML) method

MLEs of FD Parameters: II

- definition of Gaussian likelihood function:

$$
L\left(\delta, \sigma_{\varepsilon}^{2} \mid \mathbf{X}\right) \equiv \frac{1}{(2 \pi)^{N / 2}\left|\Sigma_{\mathbf{X}}\right|^{1 / 2}} e^{-\mathbf{X}^{T} \Sigma_{\mathbf{X}}^{-1} \mathbf{X} / 2}
$$

where $\Sigma_{\mathbf{X}}$ is covariance matrix for \mathbf{X}, with (s, t) th element given by $s_{X, s-t}$, and $\left|\Sigma_{\mathbf{X}}\right| \& \Sigma_{\mathbf{X}}^{-1}$ denote determinant \& inverse

- ML estimators of δ and σ_{ε}^{2} maximize $L\left(\delta, \sigma_{\varepsilon}^{2} \mid \mathbf{X}\right)$ or, equivalently, mininize

$$
-2 \log \left(L\left(\delta, \sigma_{\varepsilon}^{2} \mid \mathbf{X}\right)\right)=N \log (2 \pi)+\log \left(\left|\Sigma_{\mathbf{X}}\right|\right)+\mathbf{X}^{T} \Sigma_{\mathbf{X}}^{-1} \mathbf{X}
$$

- exact MLEs computationally intensive, mainly because of the need to deal with $\left|\Sigma_{\mathbf{X}}\right|$ and $\Sigma_{\mathbf{X}}^{-1}$
- good approximate MLEs of considerable interest

MLEs of FD Parameters: III

- key ideas behind first wavelet-based approximate MLEs
- have seen that we can approximate FD time series \mathbf{X} by $\mathbf{Y}=\mathcal{W}^{T} \Lambda^{1 / 2} \mathbf{Z}$, where $\Lambda^{1 / 2}$ is a diagonal matrix, all of whose diagonal elements are positive
- since covariance matrix for \mathbf{Z} is I_{N}, the one for \mathbf{Y} is

$$
\mathcal{W}^{T} \Lambda^{1 / 2} I_{N}\left(\mathcal{W}^{T} \Lambda^{1 / 2}\right)^{T}=\mathcal{W}^{T} \Lambda^{1 / 2} \Lambda^{1 / 2} \mathcal{W}=\mathcal{W}^{T} \Lambda \mathcal{W} \equiv \widetilde{\Sigma}_{\mathbf{X}}
$$

where $\Lambda \equiv \Lambda^{1 / 2} \Lambda^{1 / 2}$ is also diagonal

- can consider $\widetilde{\Sigma}_{\mathbf{X}}$ to be an approximation to $\Sigma_{\mathbf{X}}$
- leads to approximation of \log likelihood:

$$
-2 \log \left(L\left(\delta, \sigma_{\varepsilon}^{2} \mid \mathbf{X}\right)\right) \approx N \log (2 \pi)+\log \left(\left|\widetilde{\Sigma}_{\mathbf{X}}\right|\right)+\mathbf{X}^{T} \widetilde{\Sigma}_{\mathbf{X}}^{-1} \mathbf{X}
$$

MLEs of FD Parameters: IV

- Q: so how does this help us?
- easy to invert $\widetilde{\Sigma}_{\mathbf{X}}$:
$\widetilde{\Sigma}_{\mathbf{X}}^{-1}=\left(\mathcal{W}^{T} \Lambda \mathcal{W}\right)^{-1}=(\mathcal{W})^{-1} \Lambda^{-1}\left(\mathcal{W}^{T}\right)^{-1}=\mathcal{W}^{T} \Lambda^{-1} \mathcal{W}$,
where Λ^{-1} is another diagonal matrix, leading to

$$
\mathbf{X}^{T} \widetilde{\Sigma}_{\mathbf{X}}^{-1} \mathbf{X}=\mathbf{X}^{T} \mathcal{W}^{T} \Lambda^{-1} \mathcal{W} \mathbf{X}=\mathbf{W}^{T} \Lambda^{-1} \mathbf{W}
$$

- easy to compute the determinant of $\widetilde{\Sigma}_{\mathbf{X}}$:

$$
\left|\widetilde{\Sigma}_{\mathbf{X}}\right|=\left|\mathcal{W}^{T} \Lambda \mathcal{W}\right|=\left|\Lambda \mathcal{W} \mathcal{W}^{T}\right|=\left|\Lambda I_{N}\right|=|\Lambda|
$$

and the determinant of a diagonal matrix is just the product of its diagonal elements

MLEs of FD Parameters: V

- define the following three functions of δ :

$$
\begin{aligned}
C_{j}^{\prime}(\delta) & \equiv \int_{1 / 2^{j+1}}^{1 / 2^{j}} \frac{2^{j+1}}{\left[4 \sin ^{2}(\pi f)\right]^{\delta}} d f \approx \int_{1 / 2^{j+1}}^{1 / 2^{j}} \frac{2^{j+1}}{[2 \pi f]^{2 \delta}} d f \\
C_{J+1}^{\prime}(\delta) & \equiv \frac{N \Gamma(1-2 \delta)}{\Gamma^{2}(1-\delta)}-\sum_{j=1}^{J} \frac{N}{2^{j}} C_{j}^{\prime}(\delta) \\
\sigma_{\varepsilon}^{2}(\delta) & \equiv \frac{1}{N}\left(\frac{V_{J, 0}^{2}}{C_{J+1}^{\prime}(\delta)}+\sum_{j=1}^{J} \frac{1}{C_{j}^{\prime}(\delta)} \sum_{t=0}^{\frac{N}{2 j}-1} W_{j, t}^{2}\right)
\end{aligned}
$$

MLEs of FD Parameters: VI

- wavelet-based approximate MLE $\tilde{\delta}$ for δ is the value that minimizes the following function of δ :

$$
\tilde{l}(\delta \mid \mathbf{X}) \equiv N \log \left(\sigma_{\varepsilon}^{2}(\delta)\right)+\log \left(C_{J+1}^{\prime}(\delta)\right)+\sum_{j=1}^{J} \frac{N}{2^{j}} \log \left(C_{j}^{\prime}(\delta)\right)
$$

- once $\tilde{\delta}$ has been determined, MLE for σ_{ε}^{2} is given by $\sigma_{\varepsilon}^{2}(\tilde{\delta})$
- computer experiments indicate scheme works quite well

Other Wavelet-Based Estimators of FD Parameters

- second MLE approach: formulate likelihood directly in terms of nonboundary wavelet coefficients
- handles stationary or nonstationary FD processes (i.e., need not assume $\delta<1 / 2$)
- handles certain deterministic trends
- alternative to MLEs are least square estimators (LSEs)
- recall that, for large τ and for $\beta=2 \delta-1$, have

$$
\log \left(\nu_{X}^{2}\left(\tau_{j}\right)\right) \approx \zeta+\beta \log \left(\tau_{j}\right)
$$

- suggests determining δ by regressing $\log \left(\hat{\nu}_{X}^{2}\left(\tau_{j}\right)\right)$ on $\log \left(\tau_{j}\right)$ over range of τ_{j}
- weighted LSE takes into account fact that variance of $\log \left(\hat{\nu}_{X}^{2}\left(\tau_{j}\right)\right)$ depends upon scale τ_{j} (increases as τ_{j} increases)

Homogeneity of Variance: I

- because DWT decorrelates LMPs, nonboundary coefficients in \mathbf{W}_{j} should resemble white noise; i.e., $\operatorname{cov}\left\{W_{j, t}, W_{j, t^{\prime}}\right\} \approx 0$ when $t \neq t^{\prime}$, and var $\left\{W_{j, t}\right\}$ should not depend upon t
- can test for homogeneity of variance in \mathbf{X} using \mathbf{W}_{j} over a range of levels j
- suppose U_{0}, \ldots, U_{N-1} are independent normal RVs with $E\left\{U_{t}\right\}=$ 0 and $\operatorname{var}\left\{U_{t}\right\}=\sigma_{t}^{2}$
- want to test null hypothesis

$$
H_{0}: \sigma_{0}^{2}=\sigma_{1}^{2}=\cdots=\sigma_{N-1}^{2}
$$

- can test H_{0} versus a variety of alternatives, e.g.,

$$
H_{1}: \sigma_{0}^{2}=\cdots=\sigma_{k}^{2} \neq \sigma_{k+1}^{2}=\cdots=\sigma_{N-1}^{2}
$$

using normalized cumulative sum of squares

Homogeneity of Variance: II

- to define test statistic D, start with

$$
\mathcal{P}_{k} \equiv \frac{\sum_{j=0}^{k} U_{j}^{2}}{\sum_{j=0}^{N-1} U_{j}^{2}}, \quad k=0, \ldots, N-2
$$

and then compute $D \equiv \max \left(D^{+}, D^{-}\right)$, where
$D^{+} \equiv \max _{0 \leq k \leq N-2}\left(\frac{k+1}{N-1}-\mathcal{P}_{k}\right) \& D^{-} \equiv \max _{0 \leq k \leq N-2}\left(\mathcal{P}_{k}-\frac{k}{N-1}\right)$

- can reject H_{0} if observed D is 'too large,' where 'too large' is quantified by considering distribution of D under H_{0}
- need to find critical value x_{α} such that $\mathbf{P}\left[D \geq x_{\alpha}\right]=\alpha$ for, e.g., $\alpha=0.01,0.05$ or 0.1

Homogeneity of Variance: III

- once determined, can perform α level test of H_{0} :
- compute D statistic from data U_{0}, \ldots, U_{N-1}
- reject H_{0} at level α if $D \geq x_{\alpha}$
- fail to reject H_{0} at level α if $D<x_{\alpha}$
- can determine critical values x_{α} in two ways
- Monte Carlo simulations
- large sample approximation to distribution of D :

$$
\mathbf{P}\left[(N / 2)^{1 / 2} D \geq x\right] \approx 1+2 \sum_{l=1}^{\infty}(-1)^{l} e^{-2 l^{2} x^{2}}
$$

(reasonable approximation for $N \geq 128$)

Homogeneity of Variance: IV

- idea: given time series $\left\{X_{t}\right\}$, compute D using nonboundary wavelet coefficients $W_{j, t}$ (there are $M_{j}^{\prime} \equiv N_{j}-L_{j}^{\prime}$ of these):

$$
\mathcal{P}_{k} \equiv \frac{\sum_{t=L_{j}^{\prime}}^{k} W_{j, t}^{2}}{\sum_{t=L_{j}^{\prime}}^{N_{j}-1} W_{j, t}^{2}}, \quad k=L_{j}^{\prime}, \ldots, N_{j}-2
$$

- if null hypothesis rejected at level j, can use nonboundary MODWT coefficients to locate change point based on

$$
\widetilde{\mathcal{P}}_{k} \equiv \frac{\sum_{t=L_{j}-1}^{k} \widetilde{W}_{j, t}^{2}}{\sum_{t=L_{j}-1}^{N-1} \widetilde{W}_{j, t}^{2}}, \quad k=L_{j}-1, \ldots, N-2
$$

along with analogs \widetilde{D}_{k}^{+}and \widetilde{D}_{k}^{-}of D_{k}^{+}and D_{k}^{-}

Example - Annual Minima of Nile River: I

- left-hand plot: annual minima of Nile River
- new measuring device introduced around year 715
- right: Haar $\hat{\nu}_{X}^{2}\left(\tau_{j}\right)$ before (x's) and after (o's) year 715.5, with 95% confidence intervals based upon $\chi_{\eta_{3}}^{2}$ approximation

Example - Annual Minima of Nile River: II

- based upon last 512 values (years 773 to 1284), plot shows $\tilde{l}(\delta \mid \mathbf{X})$ versus δ for the first wavelet-based approximate MLE using the LA(8) wavelet (upper curve) and corresponding curve for exact MLE (lower)
- wavelet-based approximate MLE is value minimizing upper curve: $\tilde{\delta} \doteq 0.4532$
- exact MLE is value minimizing lower curve: $\hat{\delta} \doteq 0.4452$

Example - Annual Minima of Nile River: III

- using last 512 values again, variance of wavelet coefficients computed via LA(8) MLEs $\tilde{\delta}$ and $\sigma_{\varepsilon}^{2}(\tilde{\delta})$ (solid curve) as compared to sample variances of $\mathrm{LA}(8)$ wavelet coefficients (circles)
- agreement is almost too good to be true!

Example - Annual Minima of Nile River: IV

- results of testing all Nile River minima for homogeneity of variance using the Haar wavelet filter with critical values determined by computer simulations

			critical levels		
τ_{j}	M_{j}^{\prime}	D	10%	5%	1%
1 year	331	0.1559	0.0945	0.1051	0.1262
2 years	165	0.1754	0.1320	0.1469	0.1765
4 years	82	0.1000	0.1855	0.2068	0.2474
8 years	41	0.2313	0.2572	0.2864	0.3436

- can reject null hypothesis of homogeneity of variance at level of significance 0.05 for scales $\tau_{1} \& \tau_{2}$, but not at larger scales

Example - Annual Minima of Nile River: V

- Nile River minima (top plot) along with curves (constructed per Equation (382)) for scales $\tau_{1} \& \tau_{2}$ (middle \& bottom) to identify change point via time of maximum deviation (vertical lines denote year 715)

Summary

- DWT approximately decorrelate certain time series, including ones coming from FD and related processes
- leads to schemes for simulating time series and bootstrapping
- also leads to schemes for estimating parameters of FD process
- approximate maximum likelihood estimators (two varieties)
- weighted least squares estimator
- can also devise wavelet-based tests for
- homogeneity of variance
- trends (see Craigmile et al., 2004, for details)

References: I

- bootstrapping
- A. C. Davison and D. V. Hinkley (1997), Bootstrap Methods and their Applications, Cambridge, England: Cambridge University Press
- D. B. Percival, S. Sardy and A. C. Davison (2001), 'Wavestrapping Time Series: Adaptive Wavelet-Based Bootstrapping,' in Nonlinear and Nonstationary Signal Processing, edited by W. J. Fitzgerald, R. L. Smith, A. T. Walden and P. C. Young. Cambridge, England: Cambridge University Press, pp. 442-70
- A. M. Sabatini (1999), 'Wavelet-Based Estimation of $1 / f$-Type Signal Parameters: Confidence Intervals Using the Bootstrap,' IEEE Transactions on Signal Processing, 47(12), pp. 3406-9
- A. M. Sabatini (2006), 'A Wavelet-Based Bootstrap Method Applied to Inertial Sensor Stochastic Error Modelling Using the Allan Variance,' Measurement Science and Technology, 17, pp. 2980-2988
- B. J Whitcher (2006), 'Wavelet-Based Bootstrapping of Spatial Patterns on a Finite Lattice,' Computational Statistics \& Data Analysis, 50(9), pp. 2399-421

References: II

- decorrelation property of DWTs
- P. F. Craigmile and D. B. Percival (2005), 'Asymptotic Decorrelation of Between-Scale Wavelet Coefficients', IEEE Transactions on Information Theory, 51, pp. 1039-48
- parameter estimation for FD processes
- P. F. Craigmile, P. Guttorp and D. B. Percival (2005), 'Wavelet-Based Parameter Estimation for Polynomial Contaminated Fractionally Differenced Processes,' IEEE Transactions on Signal Processing, 53, pp. 3151-61
- testing for homogeneity of variance
- B. J Whitcher, S. D. Byers, P. Guttorp and D. B. Percival (2002), ‘Testing for Homogeneity of Variance in Time Series: Long Memory, Wavelets and the Nile River,' Water Resources Research, 38, 10.1029/2001WR000509.
- wavelet-based trend assessment
- P. F. Craigmile, P. Guttorp and D. B. Percival (2004), 'Trend Assessment in a Long Memory Dependence Model using the Discrete Wavelet Transform,' Environmetrics, 15, pp. 313-35

