Wavelet Methods for Time Series Analysis

Part IV: Wavelet-Based Decorrelation of Time Series

- DWT well-suited for decorrelating certain time series, including ones generated from a fractionally differenced (FD) process
- on synthesis side, leads to
 - DWT-based simulation of FD processes
 - wavelet-based bootstrapping
- on analysis side, leads to
 - wavelet-based estimators for FD parameters
 - test for homogeneity of variance
 - test for trends (won't discuss see Craigmile *et al.*, 2004, for details)

Wavelets and FD Processes: I

- wavelet filters are approximate band-pass filters, with nominal pass-bands $[1/2^{j+1}, 1/2^j]$ (called *j*th 'octave band')
- suppose $\{X_t\}$ has $S_X(\cdot)$ as its spectral density function (SDF)
- statistical properties of $\{W_{j,t}\}$ are simple if $S_X(\cdot)$ has simple structure within *j*th octave band
- example: FD process with SDF

$$S_X(f) = \frac{\sigma_{\varepsilon}^2}{[4\sin^2(\pi f)]^{\delta}}$$

Wavelets and FD Processes: II

- FD process controlled by two parameters: δ and σ_{ε}^2
- for small f, have $S_X(f) \approx C|f|^{-2\delta}$; i.e., a power law
- $\log(S_X(f))$ vs. $\log(f)$ is approximately linear with slope -2δ
- for large τ_j , wavelet variance at scale τ_j , namely $\nu_X^2(\tau_j)$, satisfies $\nu_X^2(\tau_j) \approx C' \tau_j^{2\delta-1}$
- $\log(\nu_X^2(\tau_j))$ vs. $\log(\tau_j)$ is approximately linear, slope $2\delta 1$
- approximately 'self-similar' (or 'fractal')
- FD process is stationary with 'long memory' if $0 < \delta < 1/2$: correlation between $X_t \& X_{t+\tau}$ dies down slowly as τ increases

Wavelets and FD Processes: III

- power law model ubiquitous in physical sciences
 - voltage fluctuations across cell membranes
 - density fluctuations in hour glass
 - traffic fluctuations on Japanese express way
 - impedance fluctuations in geophysical borehole
 - fluctuations in the rotation of the earth
 - X-ray time variability of galaxies
- DWT well-suited to study FD and related processes
 - 'self-similar' filters used on 'self-similar' processes
 - key idea: DWT approximately decorrelates LMPs

DWT of an FD Process: I

• realization of an FD(0.4) time series **X** along with its sample autocorrelation sequence (ACS): for $\tau \ge 0$,

$$\hat{\rho}_{X,\tau} \equiv \frac{\sum_{t=0}^{N-1-\tau} X_t X_{t+\tau}}{\sum_{t=0}^{N-1} X_t^2}$$

• note that ACS dies down slowly

DWT of an FD Process: II

• LA(8) DWT of FD(0.4) series and sample ACSs for each \mathbf{W}_j & \mathbf{V}_7 , along with 95% confidence intervals for white noise

WMTSA: 341–342

MODWT of an FD Process

• LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT coefficients, none of which are approximately uncorrelated

DWT of an FD Process: III

- in contrast to \mathbf{X} , ACSs for \mathbf{W}_j consistent with white noise
- variance of \mathbf{W}_{j} increases with j can argue that

var
$$\{W_{j,t}\} \approx \frac{1}{\frac{1}{2^j} - \frac{1}{2^{j+1}}} \int_{1/2^{j+1}}^{1/2^j} S_X(f) df \equiv C_j,$$

where C_j is average value of $S_X(\cdot)$ over $[1/2^{j+1}, 1/2^j]$

• for FD process, have $C_j \approx S_X(1/2^{j+\frac{1}{2}})$, where $1/2^{j+\frac{1}{2}}$ is midpoint of interval $[1/2^{j+1}, 1/2^j]$

DWT of an FD Process: IV

plot shows var {W_{j,t}} (circles) & S_X(1/2^{j+1/2}) (curve) versus 1/2^{j+1/2}, along with 95% confidence intervals for var {W_{j,t}}
observed var {W_{j,t}} agrees well with theoretical var {W_{j,t}}

Correlations Within a Scale and Between Two Scales

- let $\{s_{X,\tau}\}$ denote autocovariance sequence (ACVS) for $\{X_t\}$; i.e., $s_{X,\tau} = \operatorname{cov} \{X_t, X_{t+\tau}\}$
- let $\{h_{j,l}\}$ denote equivalent wavelet filter for *j*th level
- to quantify decorrelation, can write

$$\operatorname{cov} \{W_{j,t}, W_{j',t'}\} = \sum_{l=0}^{L_j - 1} \sum_{l'=0}^{L_{j'} - 1} h_{j,l} h_{j',l'} s_{X,2^j(t+1) - l - 2^{j'}(t'+1) + l'},$$

from which we can get ACVS (and hence within-scale correlations) for $\{W_{i,t}\}$:

$$\cos\{W_{j,t}, W_{j,t+\tau}\} = \sum_{m=-(L_j-1)}^{L_j-1} s_{X,2^j\tau+m} \sum_{l=0}^{L_j-|m|-1} h_{j,l}h_{j,l+|m|}$$

Correlations Within a Scale

• correlations between $W_{j,t}$ and $W_{j,t+\tau}$ for an FD(0.4) process

- correlations within scale are slightly smaller for Haar
- maximum magnitude of correlation is less than 0.2

Correlations Between Two Scales: I

$$j' = 2 j' = 3 j' = 4 0.2 0.0 j = 1 0.2 0.0 j = 2 0.0 j = 2 0.0 j = 2 0.0 j = 2 0.0 0.2 0.0 j = 3 0.2 0.2 0.2 0.2 0.3 0.2 0.3$$

• correlation between Haar wavelet coefficients $W_{j,t}$ and $W_{j',t'}$ from FD(0.4) process and for levels satisfying $1 \le j < j' \le 4$

Correlations Between Two Scales: II

$$j' = 2 j' = 3 j' = 4 0.2 0.0 j = 1 0.2 0.0 j = 2 0.0 j = 3 0.2 0.2 0.2 0.3$$

- same as before, but now for LA(8) wavelet coefficients
- correlations between scales decrease as L increases

Wavelet Domain Description of FD Process

- DWT acts as a decorrelating transform for FD process (also true for fractional Gaussian noise, pure power law etc.)
- wavelet domain description is simple
 - wavelet coefficients within a given scale approximately uncorrelated (refinement: assume 1st order autoregressive model)
 - wavelet coefficients have scale-dependent variance controlled by the two FD parameters (δ and σ_{ε}^2)
 - wavelet coefficients between scales also approximately uncorrelated (approximation improves as filter width L increases)

DWT-Based Simulation

- properties of DWT of FD processes lead to schemes for simulating time series $\mathbf{X} \equiv [X_0, \dots, X_{N-1}]^T$ with zero mean and with a multivariate Gaussian distribution
- with $N = 2^J$, recall that $\mathbf{X} = \mathcal{W}^T \mathbf{W}$, where

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_j \\ \vdots \\ \mathbf{W}_J \\ \mathbf{V}_J \end{bmatrix}$$

Basic DWT-Based Simulation Scheme

- assume \mathbf{W} to contain N uncorrelated Gaussian (normal) random variables (RVs) with zero mean
- assume \mathbf{W}_j to have variance $C_j \approx S_X(1/2^{j+\frac{1}{2}})$
- assume single RV in \mathbf{V}_J to have variance C_{J+1} (see Percival and Walden, 2000, for details on how to set C_{J+1})
- approximate FD time series **X** via $\mathbf{Y} \equiv \mathcal{W}^T \Lambda^{1/2} \mathbf{Z}$, where $-\Lambda^{1/2}$ is $N \times N$ diagonal matrix with diagonal elements $\underbrace{C_1^{1/2}, \ldots, C_1^{1/2}}_{\frac{N}{2}}, \underbrace{C_2^{1/2}, \ldots, C_2^{1/2}}_{\frac{N}{4}}, \ldots, \underbrace{C_{J-1}^{1/2}, C_{J-1}^{1/2}}_{2 \text{ of these}}, C_J^{1/2}, C_{J+1}^{1/2}$
 - ${\bf Z}$ is vector of deviations drawn from a Gaussian distribution with zero mean and unit variance

Refinements to Basic Scheme: I

- \bullet covariance matrix for approximation ${\bf Y}$ does not correspond to that of a stationary process
- \bullet recall ${\mathcal W}$ treats ${\mathbf X}$ as if it were circular
- let \mathcal{T} be $N \times N$ 'circular shift' matrix:

$$\mathcal{T}\begin{bmatrix}Y_0\\Y_1\\Y_2\\Y_3\end{bmatrix} = \begin{bmatrix}Y_1\\Y_2\\Y_3\\Y_0\end{bmatrix}; \quad \mathcal{T}^2\begin{bmatrix}Y_0\\Y_1\\Y_2\\Y_3\end{bmatrix} = \begin{bmatrix}Y_2\\Y_3\\Y_0\\Y_1\end{bmatrix}; \quad \text{etc.}$$

- let κ be uniformily distributed over $0, \ldots, N-1$
- define $\widetilde{\mathbf{Y}} \equiv \mathcal{T}^{\kappa} \mathbf{Y}$
- $\widetilde{\mathbf{Y}}$ is stationary with ACVS given by, say, $s_{\widetilde{Y},\tau}$

Refinements to Basic Scheme: II

- Q: how well does $\{s_{\widetilde{Y},\tau}\}$ match $\{s_{X,\tau}\}$?
- due to circularity, find that $s_{\widetilde{Y},N-\tau} = s_{\widetilde{Y},\tau}$ for $\tau = 1,\ldots,N/2$
- \bullet implies $s_{\widetilde{Y},\tau}$ cannot approximate $s_{X,\tau}$ well for τ close to N
- can patch up by simulating $\widetilde{\mathbf{Y}}$ with M > N elements and then extracting first N deviates (M = 4N works well)

Refinements to Basic Scheme: III

• plot shows true ACVS $\{s_{X,\tau}\}$ (thick curves) for FD(0.4) process and wavelet-based approximate ACVSs $\{s_{\widetilde{Y},\tau}\}$ (thin curves) based on an LA(8) DWT in which an N = 64 series is extracted from M = N, M = 2N and M = 4N series

Example and Some Notes

• simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)

• notes:

- can form realizations faster than best exact method
- can efficiently simulate extremely long time series in 'real-time' (e.g, $N = 2^{30} = 1,073,741,824$ or even longer!)
- effect of random circular shifting is to render time series slightly non-Gaussian (a Gaussian mixture model)

Wavelet-Domain Bootstrapping

- for many (but not all!) time series, DWT acts as a decorrelating transform: to a good approximation, each \mathbf{W}_j is a sample of a white noise process, and coefficients from different sub-vectors \mathbf{W}_j and $\mathbf{W}_{j'}$ are also pairwise uncorrelated
- variance of coefficients in \mathbf{W}_j depends on j
- scaling coefficients \mathbf{V}_{J_0} are still autocorrelated, but there will be just a few of them if J_0 is selected to be large
- decorrelating property holds particularly well for FD and other processes with long-range dependence
- above suggests the following recipe for wavelet-domain bootstrapping of a statistic of interest, e.g., sample autocorrelation sequence $\hat{\rho}_{X,\tau}$ at unit lag $\tau = 1$

Recipe for Wavelet-Domain Bootstrapping

- 1. given **X** of length $N = 2^J$, compute level J_0 DWT (the choice $J_0 = J 3$ yields 8 coefficients in \mathbf{W}_{J_0} and \mathbf{V}_{J_0})
- 2. randomly sample with replacement from \mathbf{W}_j to create bootstrapped vector $\mathbf{W}_j^{(b)}$, $j = 1, \ldots, J_0$
- 3. create V^(b)_{J₀} using 1st-order autoregressive parametric bootstrap
 4. apply W^T to W^(b)₁, ..., W^(b)_{J₀} and V^(b)_{J₀} to obtain bootstrapped time series X^(b) and then form ρ^(b)_{X,1}
 - repeat above many times to build up sample distribution of bootstrapped autocorrelations

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Wavelet-Domain Bootstrapping of FD Series

• approximations to true PDF using (a) Haar & (b) LA(8) wavelets

vertical line indicates $\hat{\rho}_{X,1}$

• using 50 FD time series and the Haar DWT yields:

average of 50 sample means $\doteq 0.35$ (truth $\doteq 0.53$) average of 50 sample SDs $\doteq 0.096$ (truth $\doteq 0.107$)

• using 50 FD time series and the LA(8) DWT yields:

average of 50 sample means $\doteq 0.43$ (truth $\doteq 0.53$) average of 50 sample SDs $\doteq 0.098$ (truth $\doteq 0.107$)

MLEs of FD Parameters: I

• FD process depends on 2 parameters, namely, δ and σ_{ε}^2 :

$$S_X(f) = \frac{\sigma_{\varepsilon}^2}{[4\sin^2(\pi f)]^{\delta}}$$

- given $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ with $N = 2^J$, suppose we want to estimate δ and σ_{ε}^2
- if X is stationary (i.e. $\delta < 1/2$) and multivariate Gaussian, can use the maximum likelihood (ML) method

MLEs of FD Parameters: II

• definition of Gaussian likelihood function:

$$L(\delta, \sigma_{\varepsilon}^{2} \mid \mathbf{X}) \equiv \frac{1}{(2\pi)^{N/2} |\Sigma_{\mathbf{X}}|^{1/2}} e^{-\mathbf{X}^{T} \Sigma_{\mathbf{X}}^{-1} \mathbf{X}/2}$$

where $\Sigma_{\mathbf{X}}$ is covariance matrix for \mathbf{X} , with (s, t)th element given by $s_{X,s-t}$, and $|\Sigma_{\mathbf{X}}| \& \Sigma_{\mathbf{X}}^{-1}$ denote determinant & inverse

• ML estimators of δ and σ_{ε}^2 maximize $L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X})$ or, equivalently, minimize

$$-2\log\left(L(\delta,\sigma_{\varepsilon}^{2} \mid \mathbf{X})\right) = N\log\left(2\pi\right) + \log\left(|\Sigma_{\mathbf{X}}|\right) + \mathbf{X}^{T}\Sigma_{\mathbf{X}}^{-1}\mathbf{X}$$

- exact MLEs computationally intensive, mainly because of the need to deal with $|\Sigma_{\mathbf{X}}|$ and $\Sigma_{\mathbf{X}}^{-1}$
- good approximate MLEs of considerable interest

MLEs of FD Parameters: III

- key ideas behind first wavelet-based approximate MLEs
 - have seen that we can approximate FD time series \mathbf{X} by $\mathbf{Y} = \mathcal{W}^T \Lambda^{1/2} \mathbf{Z}$, where $\Lambda^{1/2}$ is a diagonal matrix, all of whose diagonal elements are positive
 - since covariance matrix for \mathbf{Z} is I_N , the one for \mathbf{Y} is

 $\mathcal{W}^T \Lambda^{1/2} I_N (\mathcal{W}^T \Lambda^{1/2})^T = \mathcal{W}^T \Lambda^{1/2} \Lambda^{1/2} \mathcal{W} = \mathcal{W}^T \Lambda \mathcal{W} \equiv \widetilde{\Sigma}_{\mathbf{X}},$ where $\Lambda \equiv \Lambda^{1/2} \Lambda^{1/2}$ is also diagonal – can consider $\widetilde{\Sigma}_{\mathbf{X}}$ to be an approximation to $\Sigma_{\mathbf{X}}$

• leads to approximation of log likelihood:

$$-2\log\left(L(\delta,\sigma_{\varepsilon}^{2} \mid \mathbf{X})\right) \approx N\log\left(2\pi\right) + \log\left(|\widetilde{\Sigma}_{\mathbf{X}}|\right) + \mathbf{X}^{T}\widetilde{\Sigma}_{\mathbf{X}}^{-1}\mathbf{X}$$

MLEs of FD Parameters: IV

- Q: so how does this help us?
 - easy to invert $\widetilde{\Sigma}_{\mathbf{X}}$:

$$\widetilde{\Sigma}_{\mathbf{X}}^{-1} = \left(\mathcal{W}^T \Lambda \mathcal{W} \right)^{-1} = \left(\mathcal{W} \right)^{-1} \Lambda^{-1} \left(\mathcal{W}^T \right)^{-1} = \mathcal{W}^T \Lambda^{-1} \mathcal{W},$$

where Λ^{-1} is another diagonal matrix, leading to

$$\mathbf{X}^T \widetilde{\boldsymbol{\Sigma}}_{\mathbf{X}}^{-1} \mathbf{X} = \mathbf{X}^T \mathcal{W}^T \boldsymbol{\Lambda}^{-1} \mathcal{W} \mathbf{X} = \mathbf{W}^T \boldsymbol{\Lambda}^{-1} \mathbf{W}$$

– easy to compute the determinant of $\widetilde{\Sigma}_{\mathbf{X}}$:

$$|\widetilde{\Sigma}_{\mathbf{X}}| = |\mathcal{W}^T \Lambda \mathcal{W}| = |\Lambda \mathcal{W} \mathcal{W}^T| = |\Lambda I_N| = |\Lambda|,$$

and the determinant of a diagonal matrix is just the product of its diagonal elements

MLEs of FD Parameters: V

• define the following three functions of δ :

$$C'_{j}(\delta) \equiv \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[4\sin^{2}(\pi f)]^{\delta}} df \approx \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[2\pi f]^{2\delta}} df$$
$$C'_{J+1}(\delta) \equiv \frac{N\Gamma(1-2\delta)}{\Gamma^{2}(1-\delta)} - \sum_{j=1}^{J} \frac{N}{2^{j}} C'_{j}(\delta)$$
$$\sigma_{\varepsilon}^{2}(\delta) \equiv \frac{1}{N} \left(\frac{V_{J,0}^{2}}{C'_{J+1}(\delta)} + \sum_{j=1}^{J} \frac{1}{C'_{j}(\delta)} \sum_{t=0}^{N-1} W_{j,t}^{2} \right)$$

MLEs of FD Parameters: VI

• wavelet-based approximate MLE $\tilde{\delta}$ for δ is the value that minimizes the following function of δ :

$$\tilde{l}(\delta \mid \mathbf{X}) \equiv N \log(\sigma_{\varepsilon}^{2}(\delta)) + \log(C'_{J+1}(\delta)) + \sum_{j=1}^{J} \frac{N}{2^{j}} \log(C'_{j}(\delta))$$

- once $\tilde{\delta}$ has been determined, MLE for σ_{ε}^2 is given by $\sigma_{\varepsilon}^2(\tilde{\delta})$
- computer experiments indicate scheme works quite well

Other Wavelet-Based Estimators of FD Parameters

- second MLE approach: formulate likelihood directly in terms of nonboundary wavelet coefficients
 - handles stationary or nonstationary FD processes (i.e., need not assume $\delta < 1/2$)
 - handles certain deterministic trends
- alternative to MLEs are least square estimators (LSEs)

- recall that, for large
$$\tau$$
 and for $\beta = 2\delta - 1$, have
 $\log(\nu_X^2(\tau_j)) \approx \zeta + \beta \log(\tau_j)$

- suggests determining δ by regressing $\log(\hat{\nu}_X^2(\tau_j))$ on $\log(\tau_j)$ over range of τ_j
- weighted LSE takes into account fact that variance of $\log(\hat{\nu}_X^2(\tau_j))$ depends upon scale τ_j (increases as τ_j increases)

Homogeneity of Variance: I

- because DWT decorrelates LMPs, nonboundary coefficients in \mathbf{W}_{j} should resemble white noise; i.e., $\operatorname{cov} \{W_{j,t}, W_{j,t'}\} \approx 0$ when $t \neq t'$, and $\operatorname{var} \{W_{j,t}\}$ should not depend upon t
- \bullet can test for homogeneity of variance in ${\bf X}$ using ${\bf W}_j$ over a range of levels j
- suppose U_0, \ldots, U_{N-1} are independent normal RVs with $E\{U_t\} = 0$ and var $\{U_t\} = \sigma_t^2$

• want to test null hypothesis

$$H_0: \sigma_0^2 = \sigma_1^2 = \dots = \sigma_{N-1}^2$$

• can test H_0 versus a variety of alternatives, e.g.,

$$H_1: \sigma_0^2 = \dots = \sigma_k^2 \neq \sigma_{k+1}^2 = \dots = \sigma_{N-1}^2$$

using normalized cumulative sum of squares

WMTSA: 379-380

Homogeneity of Variance: II

• to define test statistic D, start with

$$\mathcal{P}_k \equiv \frac{\sum_{j=0}^k U_j^2}{\sum_{j=0}^{N-1} U_j^2}, \quad k = 0, \dots, N-2$$

and then compute $D \equiv \max(D^+, D^-)$, where

$$D^+ \equiv \max_{0 \le k \le N-2} \left(\frac{k+1}{N-1} - \mathcal{P}_k \right) \& D^- \equiv \max_{0 \le k \le N-2} \left(\mathcal{P}_k - \frac{k}{N-1} \right)$$

- can reject H_0 if observed D is 'too large,' where 'too large' is quantified by considering distribution of D under H_0
- need to find critical value x_{α} such that $\mathbf{P}[D \ge x_{\alpha}] = \alpha$ for, e.g., $\alpha = 0.01, 0.05$ or 0.1

Homogeneity of Variance: III

• once determined, can perform α level test of H_0 :

- compute D statistic from data U_0, \ldots, U_{N-1}
- reject H_0 at level α if $D \ge x_{\alpha}$
- fail to reject H_0 at level α if $D < x_{\alpha}$
- can determine critical values x_{α} in two ways
 - Monte Carlo simulations
 - large sample approximation to distribution of D:

$$\mathbf{P}[(N/2)^{1/2}D \ge x] \approx 1 + 2\sum_{l=1}^{\infty} (-1)^l e^{-2l^2 x^2}$$

(reasonable approximation for $N \ge 128$)

Homogeneity of Variance: IV

• idea: given time series $\{X_t\}$, compute D using nonboundary wavelet coefficients $W_{j,t}$ (there are $M'_j \equiv N_j - L'_j$ of these):

$$\mathcal{P}_k \equiv \frac{\sum_{t=L'_j}^k W_{j,t}^2}{\sum_{t=L'_j}^{N_j - 1} W_{j,t}^2}, \quad k = L'_j, \dots, N_j - 2$$

• if null hypothesis rejected at level j, can use nonboundary MODWT coefficients to locate change point based on

$$\widetilde{\mathcal{P}}_k \equiv \frac{\sum_{t=L_j-1}^k \widetilde{W}_{j,t}^2}{\sum_{t=L_j-1}^{N-1} \widetilde{W}_{j,t}^2}, \quad k = L_j - 1, \dots, N - 2$$

along with analogs \widetilde{D}_k^+ and \widetilde{D}_k^- of D_k^+ and D_k^-

WMTSA: 380-381
Example – Annual Minima of Nile River: I

- left-hand plot: annual minima of Nile River
- new measuring device introduced around year 715
- right: Haar $\hat{\nu}_X^2(\tau_j)$ before (**x**'s) and after (**o**'s) year 715.5, with 95% confidence intervals based upon $\chi^2_{\eta_3}$ approximation

Example – Annual Minima of Nile River: II

- based upon last 512 values (years 773 to 1284), plot shows $\tilde{l}(\delta \mid \mathbf{X})$ versus δ for the first wavelet-based approximate MLE using the LA(8) wavelet (upper curve) and corresponding curve for exact MLE (lower)
 - wavelet-based approximate MLE is value minimizing upper curve: $\tilde{\delta} \doteq 0.4532$

- exact MLE is value minimizing lower curve: $\hat{\delta} \doteq 0.4452$

Example – Annual Minima of Nile River: III

- using last 512 values again, variance of wavelet coefficients computed via LA(8) MLEs $\tilde{\delta}$ and $\sigma_{\varepsilon}^2(\tilde{\delta})$ (solid curve) as compared to sample variances of LA(8) wavelet coefficients (circles)
- agreement is almost too good to be true!

WMTSA: 386-388

Example – Annual Minima of Nile River: IV

• results of testing all Nile River minima for homogeneity of variance using the Haar wavelet filter with critical values determined by computer simulations

				critical levels	
$ au_j$	M_j'	D	10%	5%	1%
1 year	331	0.1559	0.0945	0.1051	0.1262
2 years	165	0.1754	0.1320	0.1469	0.1765
4 years	82	0.1000	0.1855	0.2068	0.2474
8 years	41	0.2313	0.2572	0.2864	0.3436

• can reject null hypothesis of homogeneity of variance at level of significance 0.05 for scales $\tau_1 \& \tau_2$, but not at larger scales

Example – Annual Minima of Nile River: V

• Nile River minima (top plot) along with curves (constructed per Equation (382)) for scales $\tau_1 \& \tau_2$ (middle & bottom) to identify change point via time of maximum deviation (vertical lines denote year 715)

Summary

- DWT approximately decorrelate certain time series, including ones coming from FD and related processes
- leads to schemes for simulating time series and bootstrapping
- also leads to schemes for estimating parameters of FD process
 - approximate maximum likelihood estimators (two varieties)
 - weighted least squares estimator
- can also devise wavelet-based tests for
 - homogeneity of variance
 - trends (see Craigmile *et al.*, 2004, for details)

References: I

• bootstrapping

- A. C. Davison and D. V. Hinkley (1997), Bootstrap Methods and their Applications, Cambridge, England: Cambridge University Press
- D. B. Percival, S. Sardy and A. C. Davison (2001), 'Wavestrapping Time Series: Adaptive Wavelet-Based Bootstrapping,' in *Nonlinear and Nonstationary Signal Processing*, edited by W. J. Fitzgerald, R. L. Smith, A. T. Walden and P. C. Young. Cambridge, England: Cambridge University Press, pp. 442–70
- A. M. Sabatini (1999), 'Wavelet-Based Estimation of 1/f-Type Signal Parameters: Confidence Intervals Using the Bootstrap,' *IEEE Transactions on Signal Processing*, 47(12), pp. 3406–9
- A. M. Sabatini (2006), 'A Wavelet-Based Bootstrap Method Applied to Inertial Sensor Stochastic Error Modelling Using the Allan Variance,' *Measurement Science and Technology*, 17, pp. 2980–2988
- B. J Whitcher (2006), 'Wavelet-Based Bootstrapping of Spatial Patterns on a Finite Lattice,' Computational Statistics & Data Analysis, 50(9), pp. 2399–421

References: II

- decorrelation property of DWTs
 - P. F. Craigmile and D. B. Percival (2005), 'Asymptotic Decorrelation of Between-Scale Wavelet Coefficients', *IEEE Transactions on Information Theory*, **51**, pp. 1039–48
- parameter estimation for FD processes
 - P. F. Craigmile, P. Guttorp and D. B. Percival (2005), 'Wavelet-Based Parameter Estimation for Polynomial Contaminated Fractionally Differenced Processes,' *IEEE Transactions on Signal Processing*, **53**, pp. 3151–61
- testing for homogeneity of variance
 - B. J Whitcher, S. D. Byers, P. Guttorp and D. B. Percival (2002), 'Testing for Homogeneity of Variance in Time Series: Long Memory, Wavelets and the Nile River,' *Water Resources Research*, 38, 10.1029/2001WR000509.
- wavelet-based trend assessment
 - P. F. Craigmile, P. Guttorp and D. B. Percival (2004), 'Trend Assessment in a Long Memory Dependence Model using the Discrete Wavelet Transform,' *Environmetrics*, 15, pp. 313–35