Wavelet Methods for Time Series Analysis

Part IV: Wavelet-Based Decorrelation of Time Series

- DWT well-suited for decorrelating certain time series, including ones generated from a fractionally differenced (FD) process
- on synthesis side, leads to
- DWT-based simulation of FD processes
- wavelet-based bootstrapping
- on analysis side, leads to
- wavelet-based estimators for FD parameters
- test for homogeneity of variance
- test for trends (won't discuss see Craigmile *et al.*, 2004, for details)

IV-1

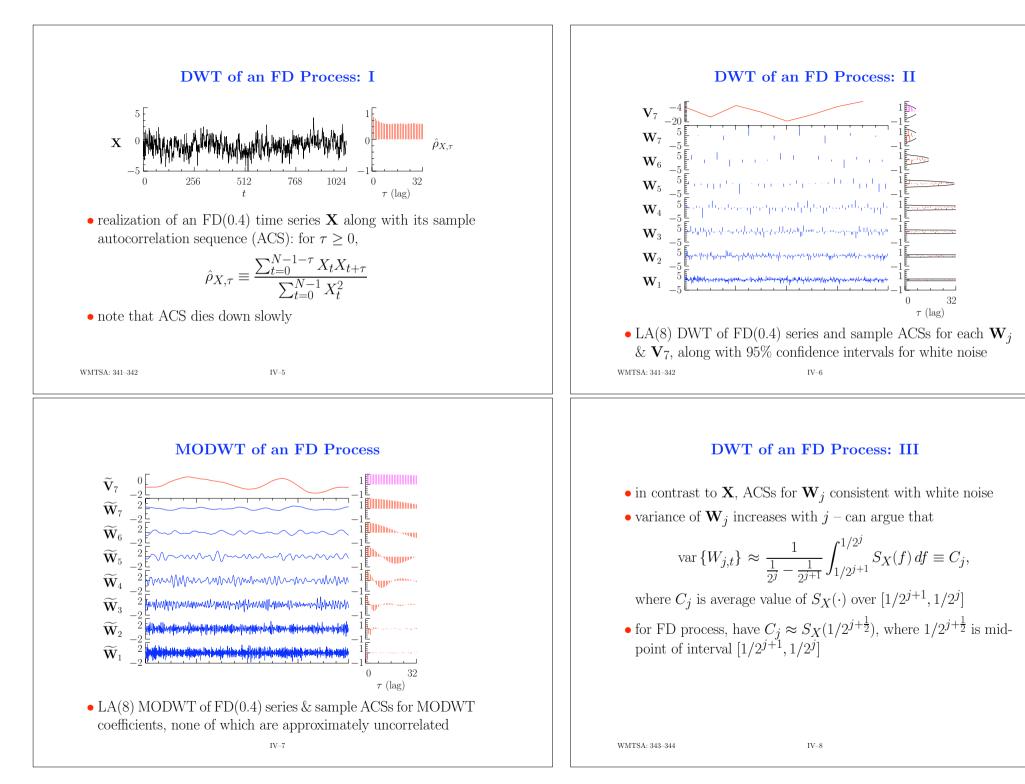
Wavelets and FD Processes: II

- FD process controlled by two parameters: δ and σ_{ε}^2
- for small f, have $S_X(f) \approx C|f|^{-2\delta}$; i.e., a power law
- $\log(S_X(f))$ vs. $\log(f)$ is approximately linear with slope -2δ
- for large τ_j , wavelet variance at scale τ_j , namely $\nu_X^2(\tau_j)$, satisfies $\nu_X^2(\tau_j) \approx C' \tau_j^{2\delta-1}$
- $\log(\nu_X^2(\tau_j))$ vs. $\log(\tau_j)$ is approximately linear, slope $2\delta 1$
- approximately 'self-similar' (or 'fractal')
- FD process is stationary with 'long memory' if $0 < \delta < 1/2$: correlation between $X_t \& X_{t+\tau}$ dies down slowly as τ increases

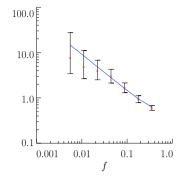
Wavelets and FD Processes: I

- wavelet filters are approximate band-pass filters, with nominal pass-bands $[1/2^{j+1}, 1/2^j]$ (called *j*th 'octave band')
- suppose $\{X_t\}$ has $S_X(\cdot)$ as its spectral density function (SDF)
- statistical properties of $\{W_{j,t}\}$ are simple if $S_X(\cdot)$ has simple structure within *j*th octave band
- example: FD process with SDF

$$S_X(f) = \frac{\sigma_{\varepsilon}^2}{[4\sin^2(\pi f)]^{\delta}}$$

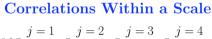

WMTSA: 281–284

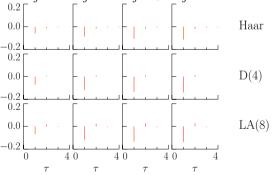
IV–2


Wavelets and FD Processes: III

- power law model ubiquitous in physical sciences
 - voltage fluctuations across cell membranes
 - density fluctuations in hour glass
 - traffic fluctuations on Japanese express way
 - impedance fluctuations in geophysical borehole
 - fluctuations in the rotation of the earth
 - X-ray time variability of galaxies
- DWT well-suited to study FD and related processes
- 'self-similar' filters used on 'self-similar' processes
- key idea: DWT approximately decorrelates LMPs

WMTSA: 340





plot shows var {W_{j,t}} (circles) & S_X(1/2^{j+1/2}) (curve) versus 1/2^{j+1/2}, along with 95% confidence intervals for var {W_{j,t}}
observed var {W_{j,t}} agrees well with theoretical var {W_{j,t}}

WMTSA: 344–345

IV–9

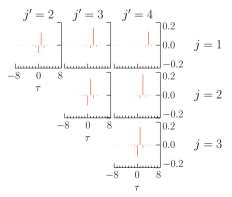
- correlations between $W_{j,t}$ and $W_{j,t+\tau}$ for an FD(0.4) process
- correlations within scale are slightly smaller for Haar
- \bullet maximum magnitude of correlation is less than 0.2

WMTSA: 345–346

Correlations Within a Scale and Between Two Scales

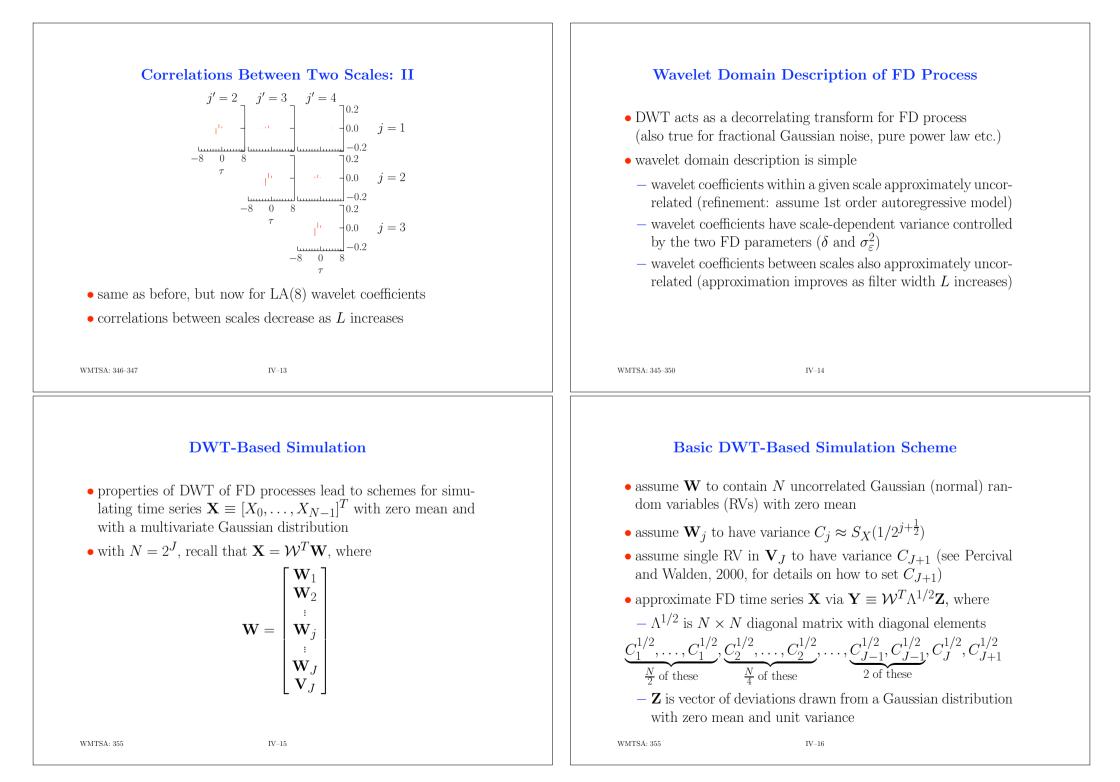
- let $\{s_{X,\tau}\}$ denote autocovariance sequence (ACVS) for $\{X_t\}$; i.e., $s_{X,\tau} = \operatorname{cov} \{X_t, X_{t+\tau}\}$
- \bullet let $\{h_{j,l}\}$ denote equivalent wavelet filter for $j{\rm th}$ level
- to quantify decorrelation, can write

$$\operatorname{cov} \{W_{j,t}, W_{j',t'}\} = \sum_{l=0}^{L_j - 1} \sum_{l'=0}^{L_{j'} - 1} h_{j,l} h_{j',l'} s_{X,2^j(t+1) - l - 2^{j'}(t'+1) + l'},$$


from which we can get ACVS (and hence within-scale correlations) for $\{W_{j,t}\}$:

$$\cos\{W_{j,t}, W_{j,t+\tau}\} = \sum_{m=-(L_j-1)}^{L_j-1} s_{X,2^j\tau+m} \sum_{l=0}^{L_j-|m|-1} h_{j,l}h_{j,l+|m|}$$

WMTSA: 345


IV-10

• correlation between Haar wavelet coefficients $W_{j,t}$ and $W_{j',t'}$ from FD(0.4) process and for levels satisfying $1 \le j < j' \le 4$

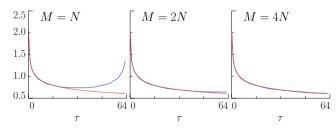
WMTSA: 346–347

Refinements to Basic Scheme: I

- \bullet covariance matrix for approximation ${\bf Y}$ does not correspond to that of a stationary process
- \bullet recall ${\mathcal W}$ treats ${\mathbf X}$ as if it were circular
- let \mathcal{T} be $N \times N$ 'circular shift' matrix:

$$\mathcal{T} \begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_0 \end{bmatrix}; \quad \mathcal{T}^2 \begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} Y_2 \\ Y_3 \\ Y_0 \\ Y_1 \end{bmatrix}; \quad \text{etc.}$$

• let κ be uniformily distributed over $0, \ldots, N-1$


• define
$$\widetilde{\mathbf{Y}} \equiv \mathcal{T}^{\kappa} \mathbf{Y}$$

• $\widetilde{\mathbf{Y}}$ is stationary with ACVS given by, say, $s_{\widetilde{Y},\tau}$

WMTSA: 356–357

IV-17

Refinements to Basic Scheme: III

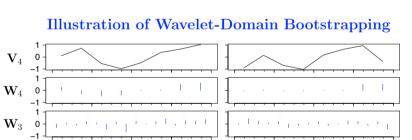
• plot shows true ACVS $\{s_{X,\tau}\}$ (thick curves) for FD(0.4) process and wavelet-based approximate ACVSs $\{s_{\widetilde{Y},\tau}\}$ (thin curves) based on an LA(8) DWT in which an N = 64 series is extracted from M = N, M = 2N and M = 4N series

Refinements to Basic Scheme: II

- Q: how well does $\{s_{\widetilde{Y},\tau}\}$ match $\{s_{X,\tau}\}$?
- due to circularity, find that $s_{\widetilde{Y},N-\tau} = s_{\widetilde{Y},\tau}$ for $\tau = 1,\ldots,N/2$
- \bullet implies $s_{\widetilde{Y},\tau}$ cannot approximate $s_{X,\tau}$ well for τ close to N
- can patch up by simulating $\widetilde{\mathbf{Y}}$ with M > N elements and then extracting first N deviates (M = 4N works well)

WMTSA: 356–357

IV-18

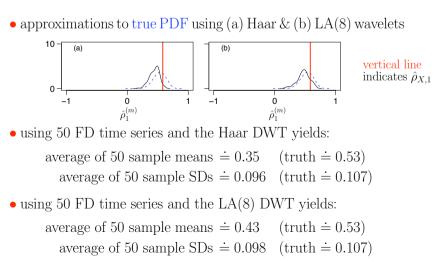

WMTSA: 356–357

WMTSA: 358–361

Wavelet-Domain Bootstrapping

- for many (but not all!) time series, DWT acts as a decorrelating transform: to a good approximation, each \mathbf{W}_j is a sample of a white noise process, and coefficients from different sub-vectors \mathbf{W}_j and $\mathbf{W}_{j'}$ are also pairwise uncorrelated
- ${\scriptstyle \bullet}$ variance of coefficients in ${\bf W}_{i}$ depends on j
- scaling coefficients \mathbf{V}_{J_0} are still autocorrelated, but there will be just a few of them if J_0 is selected to be large
- decorrelating property holds particularly well for FD and other processes with long-range dependence
- above suggests the following recipe for wavelet-domain bootstrapping of a statistic of interest, e.g., sample autocorrelation sequence $\hat{\rho}_{X,\tau}$ at unit lag $\tau = 1$

IV-21


• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Recipe for Wavelet-Domain Bootstrapping

- 1. given **X** of length $N = 2^J$, compute level J_0 DWT (the choice $J_0 = J 3$ yields 8 coefficients in \mathbf{W}_{J_0} and \mathbf{V}_{J_0})
- 2. randomly sample with replacement from \mathbf{W}_j to create bootstrapped vector $\mathbf{W}_i^{(b)}, j = 1, \dots, J_0$
- 3. create $\mathbf{V}_{J_0}^{(b)}$ using 1st-order autoregressive parametric bootstrap
- 4. apply \mathcal{W}^T to $\mathbf{W}_1^{(b)}, \ldots, \mathbf{W}_{J_0}^{(b)}$ and $\mathbf{V}_{J_0}^{(b)}$ to obtain bootstrapped time series $\mathbf{X}^{(b)}$ and then form $\hat{\rho}_{X,1}^{(b)}$
- repeat above many times to build up sample distribution of bootstrapped autocorrelations

IV-22

Wavelet-Domain Bootstrapping of FD Series

MLEs of FD Parameters: I

• FD process depends on 2 parameters, namely, δ and σ_{ε}^2 :

$$S_X(f) = \frac{\sigma_{\varepsilon}^2}{[4\sin^2(\pi f)]^{\delta}}$$

- given $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ with $N = 2^J$, suppose we want to estimate δ and σ_{ε}^2
- if X is stationary (i.e. $\delta < 1/2$) and multivariate Gaussian, can use the maximum likelihood (ML) method

WMTSA: 361

IV-25

MLEs of FD Parameters: III

- key ideas behind first wavelet-based approximate MLEs
- have seen that we can approximate FD time series \mathbf{X} by $\mathbf{Y} = \mathcal{W}^T \Lambda^{1/2} \mathbf{Z}$, where $\Lambda^{1/2}$ is a diagonal matrix, all of whose diagonal elements are positive
- since covariance matrix for \mathbf{Z} is I_N , the one for \mathbf{Y} is $\mathcal{W}^T \Lambda^{1/2} I_N (\mathcal{W}^T \Lambda^{1/2})^T = \mathcal{W}^T \Lambda^{1/2} \Lambda^{1/2} \mathcal{W} = \mathcal{W}^T \Lambda \mathcal{W} \equiv \widetilde{\Sigma}_{\mathbf{X}},$ where $\Lambda \equiv \Lambda^{1/2} \Lambda^{1/2}$ is also diagonal - can consider $\widetilde{\Sigma}_{\mathbf{X}}$ to be an approximation to $\Sigma_{\mathbf{X}}$
- can consider $\Sigma_{\mathbf{X}}$ to be an approximation to $\Sigma_{\mathbf{X}}$
- leads to approximation of log likelihood:

$$-2\log\left(L(\delta,\sigma_{\varepsilon}^{2} \mid \mathbf{X})\right) \approx N\log\left(2\pi\right) + \log\left(|\widetilde{\Sigma}_{\mathbf{X}}|\right) + \mathbf{X}^{T}\widetilde{\Sigma}_{\mathbf{X}}^{-1}\mathbf{X}$$

MLEs of FD Parameters: II

• definition of Gaussian likelihood function:

$$L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X}) \equiv \frac{1}{(2\pi)^{N/2} |\Sigma_{\mathbf{X}}|^{1/2}} e^{-\mathbf{X}^T \Sigma_{\mathbf{X}}^{-1} \mathbf{X}/2}$$

where $\Sigma_{\mathbf{X}}$ is covariance matrix for \mathbf{X} , with (s, t)th element given by $s_{X,s-t}$, and $|\Sigma_{\mathbf{X}}| \& \Sigma_{\mathbf{X}}^{-1}$ denote determinant & inverse

• ML estimators of δ and σ_{ε}^2 maximize $L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X})$ or, equivalently, minimize

 $-2\log\left(L(\delta,\sigma_{\varepsilon}^{2}\mid\mathbf{X})\right) = N\log\left(2\pi\right) + \log\left(|\Sigma_{\mathbf{X}}|\right) + \mathbf{X}^{T}\Sigma_{\mathbf{X}}^{-1}\mathbf{X}$

- exact MLEs computationally intensive, mainly because of the need to deal with $|\Sigma_{\mathbf{X}}|$ and $\Sigma_{\mathbf{X}}^{-1}$
- good approximate MLEs of considerable interest

WMTSA: 361–362

IV-26

MLEs of FD Parameters: IV

• Q: so how does this help us? - easy to invert $\widetilde{\Sigma}_{\mathbf{X}}$: $\widetilde{\Sigma}_{\mathbf{X}}^{-1} = \left(\mathcal{W}^T \Lambda \mathcal{W}\right)^{-1} = (\mathcal{W})^{-1} \Lambda^{-1} \left(\mathcal{W}^T\right)^{-1} = \mathcal{W}^T \Lambda^{-1} \mathcal{W},$ where Λ^{-1} is another diagonal matrix, leading to $\mathbf{X}^T \widetilde{\Sigma}_{\mathbf{X}}^{-1} \mathbf{X} = \mathbf{X}^T \mathcal{W}^T \Lambda^{-1} \mathcal{W} \mathbf{X} = \mathbf{W}^T \Lambda^{-1} \mathbf{W}$ - easy to compute the determinant of $\widetilde{\Sigma}_{\mathbf{X}}$: $|\widetilde{\Sigma}_{\mathbf{X}}| = |\mathcal{W}^T \Lambda \mathcal{W}| = |\Lambda \mathcal{W} \mathcal{W}^T| = |\Lambda I_N| = |\Lambda|,$

and the determinant of a diagonal matrix is just the product of its diagonal elements

WMTSA: 362–363

WMTSA: 362–363

MLEs of FD Parameters: V

• define the following three functions of δ :

$$C'_{j}(\delta) \equiv \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[4\sin^{2}(\pi f)]^{\delta}} df \approx \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[2\pi f]^{2\delta}} df$$
$$C'_{J+1}(\delta) \equiv \frac{N\Gamma(1-2\delta)}{\Gamma^{2}(1-\delta)} - \sum_{j=1}^{J} \frac{N}{2^{j}} C'_{j}(\delta)$$
$$\sigma_{\varepsilon}^{2}(\delta) \equiv \frac{1}{N} \left(\frac{V_{J,0}^{2}}{C'_{J+1}(\delta)} + \sum_{j=1}^{J} \frac{1}{C'_{j}(\delta)} \sum_{t=0}^{\frac{N}{2^{j}}-1} W_{j,t}^{2} \right)$$

WMTSA: 362–363

IV-29

Other Wavelet-Based Estimators of FD Parameters

- second MLE approach: formulate likelihood directly in terms of nonboundary wavelet coefficients
- handles stationary or nonstationary FD processes (i.e., need not assume $\delta < 1/2$)
- handles certain deterministic trends
- alternative to MLEs are least square estimators (LSEs)
- recall that, for large τ and for $\beta = 2\delta 1$, have $\log (\nu_X^2(\tau_j)) \approx \zeta + \beta \log (\tau_j)$
- suggests determining δ by regressing $\log(\hat{\nu}_X^2(\tau_j))$ on $\log(\tau_j)$ over range of τ_j
- weighted LSE takes into account fact that variance of $\log(\hat{\nu}_X^2(\tau_j))$ depends upon scale τ_j (increases as τ_j increases)

WMTSA: 368-379

MLEs of FD Parameters: VI

• wavelet-based approximate MLE $\tilde{\delta}$ for δ is the value that minimizes the following function of δ :

$$\tilde{l}(\delta \mid \mathbf{X}) \equiv N \log(\sigma_{\varepsilon}^{2}(\delta)) + \log(C'_{J+1}(\delta)) + \sum_{j=1}^{J} \frac{N}{2^{j}} \log(C'_{j}(\delta))$$

• once $\tilde{\delta}$ has been determined, MLE for σ_{ε}^2 is given by $\sigma_{\varepsilon}^2(\tilde{\delta})$

• computer experiments indicate scheme works quite well

WMTSA: 363–364

IV-30

Homogeneity of Variance: I

- because DWT decorrelates LMPs, nonboundary coefficients in \mathbf{W}_j should resemble white noise; i.e., cov $\{W_{j,t}, W_{j,t'}\} \approx 0$ when $t \neq t'$, and var $\{W_{j,t}\}$ should not depend upon t
- \bullet can test for homogeneity of variance in ${\bf X}$ using ${\bf W}_j$ over a range of levels j
- suppose U_0, \ldots, U_{N-1} are independent normal RVs with $E\{U_t\} = 0$ and var $\{U_t\} = \sigma_t^2$
- want to test null hypothesis

$$H_0: \sigma_0^2 = \sigma_1^2 = \dots = \sigma_{N-1}^2$$

• can test H_0 versus a variety of alternatives, e.g., $H_1: \sigma_0^2 = \cdots = \sigma_k^2 \neq \sigma_{k+1}^2 = \cdots = \sigma_{N-1}^2$

using normalized cumulative sum of squares

WMTSA: 379–380

Homogeneity of Variance: II

• to define test statistic D, start with

$$\mathcal{P}_k \equiv \frac{\sum_{j=0}^k U_j^2}{\sum_{j=0}^{N-1} U_j^2}, \quad k = 0, \dots, N-2$$

and then compute $D \equiv \max(D^+, D^-)$, where

$$D^{+} \equiv \max_{0 \le k \le N-2} \left(\frac{k+1}{N-1} - \mathcal{P}_{k} \right) \& D^{-} \equiv \max_{0 \le k \le N-2} \left(\mathcal{P}_{k} - \frac{k}{N-1} \right)$$

- can reject H_0 if observed D is 'too large,' where 'too large' is quantified by considering distribution of D under H_0
- need to find critical value x_{α} such that $\mathbf{P}[D \ge x_{\alpha}] = \alpha$ for, e.g., $\alpha = 0.01, 0.05$ or 0.1

WMTSA: 380–381

IV-33

Homogeneity of Variance: IV

• idea: given time series $\{X_t\}$, compute D using nonboundary wavelet coefficients $W_{j,t}$ (there are $M'_j \equiv N_j - L'_j$ of these):

$$\mathcal{P}_k \equiv \frac{\sum_{t=L'_j}^k W_{j,t}^2}{\sum_{t=L'_j}^{N_j - 1} W_{j,t}^2}, \quad k = L'_j, \dots, N_j - 2$$

• if null hypothesis rejected at level j, can use nonboundary MODWT coefficients to locate change point based on

$$\widetilde{\mathcal{P}}_k \equiv \frac{\sum_{t=L_j-1}^k \widetilde{W}_{j,t}^2}{\sum_{t=L_j-1}^{N-1} \widetilde{W}_{j,t}^2}, \quad k = L_j - 1, \dots, N - 2$$

along with analogs \widetilde{D}_k^+ and \widetilde{D}_k^- of D_k^+ and D_k^-

WMTSA: 380–381

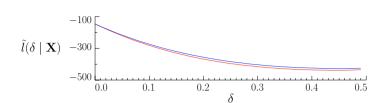
Homogeneity of Variance: III

- once determined, can perform α level test of H_0 :
 - compute D statistic from data U_0, \ldots, U_{N-1}
- reject H_0 at level α if $D \ge x_{\alpha}$
- fail to reject H_0 at level α if $D < x_{\alpha}$
- can determine critical values x_{α} in two ways
 - Monte Carlo simulations
 - large sample approximation to distribution of D:

$$\mathbf{P}[(N/2)^{1/2}D \ge x] \approx 1 + 2\sum_{l=1}^{\infty} (-1)^l e^{-2l^2 x^2}$$

(reasonable approximation for $N \ge 128$)

WMTSA: 380–381


IV-34

Example – Annual Minima of Nile River: I

- left-hand plot: annual minima of Nile River
- new measuring device introduced around year 715
- right: Haar $\hat{\nu}_X^2(\tau_j)$ before (**x**'s) and after (**o**'s) year 715.5, with 95% confidence intervals based upon $\chi^2_{\eta_3}$ approximation

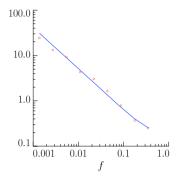
WMTSA: 326-327

• based upon last 512 values (years 773 to 1284), plot shows $\tilde{l}(\delta \mid \mathbf{X})$ versus δ for the first wavelet-based approximate MLE using the LA(8) wavelet (upper curve) and corresponding curve for exact MLE (lower)

Example – Annual Minima of Nile River: II

- wavelet-based approximate MLE is value minimizing upper curve: $\tilde{\delta}\doteq 0.4532$
- exact MLE is value minimizing lower curve: $\hat{\delta} \doteq 0.4452$

WMTSA: 386–388

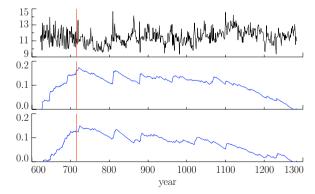

IV-37

Example – Annual Minima of Nile River: IV

• results of testing all Nile River minima for homogeneity of variance using the Haar wavelet filter with critical values determined by computer simulations

				critical levels	
$ au_j$	M'_j	D	10%	5%	1%
1 year	331	0.1559	0.0945	0.1051	0.1262
2 years	165		0.1320	0.1469	0.1765
4 years	82	0.1000	0.1855	0.2068	0.2474
8 years	41	0.2313	0.2572	0.2864	0.3436

• can reject null hypothesis of homogeneity of variance at level of significance 0.05 for scales $\tau_1 \& \tau_2$, but not at larger scales



- using last 512 values again, variance of wavelet coefficients computed via LA(8) MLEs $\tilde{\delta}$ and $\sigma_{\varepsilon}^2(\tilde{\delta})$ (solid curve) as compared to sample variances of LA(8) wavelet coefficients (circles)
- agreement is almost too good to be true!

WMTSA: 386–388

IV-38

Example – Annual Minima of Nile River: V

• Nile River minima (top plot) along with curves (constructed per Equation (382)) for scales $\tau_1 \& \tau_2$ (middle & bottom) to identify change point via time of maximum deviation (vertical lines denote year 715)

WMTSA: 386–388

Summary

- DWT approximately decorrelate certain time series, including ones coming from FD and related processes
- leads to schemes for simulating time series and bootstrapping
- also leads to schemes for estimating parameters of FD process
 - approximate maximum likelihood estimators (two varieties)
 - weighted least squares estimator
- can also devise wavelet-based tests for
- homogeneity of variance
- trends (see Craigmile *et al.*, 2004, for details)

References: I

- bootstrapping
 - A. C. Davison and D. V. Hinkley (1997), Bootstrap Methods and their Applications, Cambridge, England: Cambridge University Press
 - D. B. Percival, S. Sardy and A. C. Davison (2001), 'Wavestrapping Time Series: Adaptive Wavelet-Based Bootstrapping,' in *Nonlinear and Nonstationary Signal Processing*, edited by W. J. Fitzgerald, R. L. Smith, A. T. Walden and P. C. Young. Cambridge, England: Cambridge University Press, pp. 442–70
 - A. M. Sabatini (1999), 'Wavelet-Based Estimation of 1/f-Type Signal Parameters: Confidence Intervals Using the Bootstrap,' *IEEE Transactions on Signal Processing*, 47(12), pp. 3406–9
 - A. M. Sabatini (2006), 'A Wavelet-Based Bootstrap Method Applied to Inertial Sensor Stochastic Error Modelling Using the Allan Variance,' *Measurement Science and Technology*, **17**, pp. 2980–2988
 - B. J Whitcher (2006), 'Wavelet-Based Bootstrapping of Spatial Patterns on a Finite Lattice,' Computational Statistics & Data Analysis, 50(9), pp. 2399–421

IV-42

References: II

IV-41

• decorrelation property of DWTs

WMTSA: 388-391

- P. F. Craigmile and D. B. Percival (2005), 'Asymptotic Decorrelation of Between-Scale Wavelet Coefficients', *IEEE Transactions on Information Theory*, **51**, pp. 1039–48
- parameter estimation for FD processes
 - P. F. Craigmile, P. Guttorp and D. B. Percival (2005), 'Wavelet-Based Parameter Estimation for Polynomial Contaminated Fractionally Differenced Processes,' *IEEE Transactions on Signal Processing*, **53**, pp. 3151–61
- testing for homogeneity of variance
 - B. J Whitcher, S. D. Byers, P. Guttorp and D. B. Percival (2002), 'Testing for Homogeneity of Variance in Time Series: Long Memory, Wavelets and the Nile River,' *Water Resources Research*, **38**, 10.1029/2001WR000509.
- wavelet-based trend assessment
 - P. F. Craigmile, P. Guttorp and D. B. Percival (2004), 'Trend Assessment in a Long Memory Dependence Model using the Discrete Wavelet Transform,' *Environmetrics*, 15, pp. 313–35