Wavelet Methods for Time Series Analysis
Part IV: Wavelet-Based Decorrelation of Time Series

e DWT well-suited for decorrelating certain time series, including
ones generated from a fractionally differenced (FD) process

e on synthesis side, leads to

— DWT-based simulation of FD processes
— wavelet-based bootstrapping
e on analysis side, leads to
— wavelet-based estimators for FD parameters

— test for homogeneity of variance

— test for trends (won’t discuss — see Craigmile et al., 2004,
for details)

Wavelets and FD Processes: 1

e wavelet filters are approximate band-pass filters, with nominal
pass-bands [1/2/%1,1/2J] (called jth ‘octave band’)

e suppose { X;} has Sx(-) as its spectral density function (SDF)

e statistical properties of {W;;} are simple if Sx(-) has simple
structure within jth octave band
e example: FD process with SDF

2

X = 2P

WMTSA: 281-284 V-2

Wavelets and FD Processes: 11

e F'D process controlled by two parameters: ¢ and ag

e for small f, have Sx(f) =~ C|f|72‘5; i.e., a power law

e log(Sx(f)) vs. log(f) is approximately linear with slope —24

o for large 7;, wavelet variance at scale 75, namely V%(Tj), satis-
fies I/%(Tj) = CITJ25_1

e log (1/%((7']-)) vs. log (7;) is approximately linear, slope 26 — 1

e approximately ‘self-similar’ (or ‘fractal’)

e F'D process is stationary with ‘long memory” if 0 < 0 < 1/2:
correlation between Xy & X1+ dies down slowly as 7 increases

WMTSA: 297, 284 v-3

Wavelets and FD Processes: 111

e power law model ubiquitous in physical sciences
— voltage fluctuations across cell membranes
— density fluctuations in hour glass
— traffic fluctuations on Japanese expressway
— impedance fluctuations in geophysical borehole
— fluctuations in the rotation of the earth
— X-ray time variability of galaxies
e DWT well-suited to study FD and related processes
— ‘self-similar” filters used on ‘self-similar’ processes

— key idea: DW'T approximately decorrelates LMPs

WMTSA: 340 V-4




DWT of an FD Process: 1
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e realization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for 7 > 0,

SN T X Xpr
N—1 2
Zt:() Xt
e note that ACS dies down slowly
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WMTSA: 341-342 IV-5

DWT of an FD Process: 11
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e LA(8) DWT of FD(0.4) series and sample ACSs for each W
& V7, along with 95% confidence intervals for white noise

WMTSA: 341-342 V-6

MODWT of an FD Process
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e LA(8) MODWT of FD(0.4) series & sample ACSs for MODW'T
coeflicients, none of which are approximately uncorrelated
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DWT of an FD Process: III

e in contrast to X, ACSs for W consistent with white noise
e variance of W increases with j — can argue that
1 1/2

var {W]7t} ~ i 1/2j+1 SX(f) df = 0.7

27 2J+1
where C; is average value of Sx(-) over [1/20%1 1 /27]
1 1
e for FD process, have C] = SX(1/2=7+7), where 1/27772 is mid-
point of interval [1/2771 1/27]

WMTSA: 343-344 V-8




DWT of an FD Process: IV
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o plot shows var {W;} (circles) & Sx(1/27%2) (curve) versus
1
1/2772  along with 95% confidence intervals for var {W; }
e observed var {W;;} agrees well with theoretical var {W; ;}

WMTSA: 344-345 V-9

Correlations Within a Scale and Between Two Scales

e let {sx +} denote autocovariance sequence (ACVS) for {X¢};
ie, sy, =cov{Xy, X¢ir}
o let {h;;} denote equivalent wavelet filter for jth level
e to quantify decorrelation, can write
Lj,1 Lj/—l
cov (W Wyt = D R 15 X 0 (441)—1—2 (41) 10
=0 1I'=0

from which we can get ACVS (and hence within-scale correla-

tions) for {W ;}:

Lj—l L]‘—|m|—1
cov {Wj7t’ Wj7t+7} = Z SX 2ir+m Z thh j,l+|m|
m=*(Lj71) (=0
WMTSA: 345 V-10

Correlations Within a Scale
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e correlations between W 4 and W4, for an FD(0.4) process
e correlations within scale are slightly smaller for Haar

e maximum magnitude of correlation is less than 0.2

WMTSA: 345-346 v-11

Correlations Between Two Scales: 1
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e correlation between Haar wavelet coefficients W 4 and Wj’.t’
from FD(0.4) process and for levels satisfying 1 < j < j/ < 4
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Correlations Between Two Scales: II
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e same as before, but now for LA(8) wavelet coefficients

e correlations between scales decrease as L increases

WMTSA: 346-347 IV-13

Wavelet Domain Description of FD Process

e DWT acts as a decorrelating transform for FD process
(also true for fractional Gaussian noise, pure power law etc.)

e wavelet domain description is simple
— wavelet coefficients within a given scale approximately uncor-
related (refinement: assume 1st order autoregressive model)

— wavelet coefficients have scale-dependent variance controlled
by the two FD parameters (6 and o2)

— wavelet coefficients between scales also approximately uncor-
related (approximation improves as filter width L increases)

WMTSA: 345-350 IV-14

DWT-Based Simulation

e properties of DW'T of FD processes lead to schemes for simu-
lating time series X = [ Xy, ..., X N_l]T with zero mean and
with a multivariate Gaussian distribution

o with N = 27/, recall that X = WI'W, where

WMTSA: 355 1V-15

Basic DWT-Based Simulation Scheme

e assume W to contain N uncorrelated Gaussian (normal) ran-
dom variables (RVs) with zero mean

. ‘+l
e assume W; to have variance C; ~ Sy (1/2/72)

e assume single RV in V; to have variance C'j; (see Percival
and Walden, 2000, for details on how to set C'y 1)

e approximate FD time series X via Y = wT AL/ 27, where

—AV2i s N x N diagonal matrix with diagonal elements

1/2 12 1/2 1/2 12 1/2 A1/2 A1)2
Ol ""’Cl ,92 ,...,02 ,7""CJ—1’CJ—1’CJ Ol
% of these % of these 2 of these

— 7 is vector of deviations drawn from a Gaussian distribution
with zero mean and unit variance

WMTSA: 355 1V-16




Refinements to Basic Scheme: 1

e covariance matrix for approximation Y does not correspond to
that of a stationary process

e recall W treats X as if it were circular

e let 7 be N x N ‘circular shift’ matrix:

Yo Y Yo Ys
Yy Ys 2 | 1 Y3
T = T = . ete.
Y) Y3 Y) Yo
Y3 Yo Y3 Yy

e let k be uniformily distributed over 0,..., N — 1
o define Y = TFY
oY is stationary with ACVS given by, say, 55

WMTSA: 356-357 Iv-17

Refinements to Basic Scheme: II

e Q: how well does {3}777} match {sy -}?

e due to circularity, find that Sy S

JN—T - Y, r

e implies Sy _ cannot approximate sy  well for 7 close to NV

forr=1,...,N/2

e can patch up by simulating Y with M > N elements and then
extracting first N deviates (M = 4N works well)

WMTSA: 356-357 IvV-18

Refinements to Basic Scheme: III

L L | | L L L
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e plot shows true ACVS {sx -} (thick curves) for FD(0.4) process
and wavelet-based approximate ACVSs {3;7 T} (thin curves)

based on an LA(8) DWT in which an N = 64 series is ex-
tracted from M = N, M = 2N and M = 4N series

WMTSA: 356-357 1v-19

Example and Some Notes

L L L 1 L L L L L L 1 L L L
0 256 512 768 1024

e simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)
e notes:

— can form realizations faster than best exact method

— can efficiently simulate extremely long time series in ‘real-
time’ (e.g, N = 230 = 1,073, 741, 824 or even longer!)

— effect of random circular shifting is to render time series
slightly non-Gaussian (a Gaussian mixture model)

WMTSA: 358-361 V20




Wavelet-Domain Bootstrapping

e for many (but not all!) time series, DWT acts as a decorrelating
transform: to a good approximation, each W is a sample of a
white noise process, and coefficients from different sub-vectors
W, and Wj/ are also pairwise uncorrelated

e variance of coefficients in W depends on j

e scaling coefficients V j, are still autocorrelated, but there will
be just a few of them if Jy is selected to be large

e decorrelating property holds particularly well for FD and other
processes with long-range dependence

e above suggests the following recipe for wavelet-domain boot-
strapping of a statistic of interest, e.g., sample autocorrelation
sequence px  ab unit lag 7 =1

Iv-21

Recipe for Wavelet-Domain Bootstrapping

1. given X of length N = 27 compute level Jo DWT (the choice

Jo = J — 3 yields 8 coefficients in W ;, and 'V ;)

2. randomly sample with replacement from W; to create boot-

strapped vector Wéb), 7=1,...,Jy

3. create VFJIZ)) using lst-order autoregressive parametric bootstrap

4. apply WT to ng), e WS? and V(b) to obtain bootstrapped

Jo

time series X(®) and then form [)()?)1

e repeat above many times to build up sample distribution of
bootstrapped autocorrelations

V22

Illustration of Wavelet-Domain Bootstrapping

0 32 64 9% 128 0 32 64 96 128

e Haar DWT of FD(0.45) series X (left-hand column) and wavelet-
domain bootstrap thereof (right-hand)

1v-23

Wavelet-Domain Bootstrapping of FD Series

e approximations to true PDF using (a) Haar & (b) LA(8) wavelets

107 @ T o

vertical line
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e using 50 F'D time series and the Haar DW'T yields:

average of 50 sample means = 0.35  (truth = 0.53)
average of 50 sample SDs = 0.096 (truth = 0.107)

e using 50 FD time series and the LA(8) DWT yields:

average of 50 sample means = 0.43  (truth = 0.53)
average of 50 sample SDs = 0.098 (truth = 0.107)

V-24




MLEs of FD Parameters: 1

e F'D process depends on 2 parameters, namely, § and ng

g2

O G

o given X = [Xy, X1,... ,XN,l]T with N = 27, suppose we
want to estimate d and ag

e if X is stationary (i.e. d < 1/2) and multivariate Gaussian,
can use the maximum likelihood (ML) method

WMTSA: 361 IV-25

MLEs of FD Parameters: 11

e definition of Gaussian likelihood function:
1 ~XTngX/2
L(9, 2| X) = e x X/
0o 1) (2m)N/2|sx |12
where Yx is covariance matrix for X, with (s,#)th element
given by sx s, and [Ex| & Zil denote determinant & inverse

o ML estimators of 6 and o2 maximize L(d, o2 | X) or, equiva-
lently, mininize

—2log (L(8, 02 | X)) = Nlog (27) + log (|Sx|) + XTS5 X

e exact MLEs computationally intensive, mainly because of the
need to deal with |Xx| and Z)_(l

e good approximate MLEs of considerable interest

WMTSA: 361-362 IV-26

MULEs of FD Parameters: II1

e key ideas behind first wavelet-based approximate MLEs
— have seen that we can approximate FD time series X by
Y = wiAl/ 27, where AY2 55 a diagonal matrix, all of
whose diagonal elements are positive
— since covariance matrix for Z is I, the one for Y is
WEAZINWTAY2)T = WwEA2AL 2y = wTaw = B,
where A = AY2AY2 i also diagonal
— can consider ix to be an approximation to ¥x
e leads to approximation of log likelihood:

—2log (L(8,02 | X)) &~ N log (27) + log (|Sx]) + XTi)_(lX

WMTSA: 362363 V27

MLEs of FD Parameters: IV

e (): so how does this help us?
— easy to nvert ENIX:
o5 = (Waw) Ty iat (W) oA,
where A~ is another diagonal matrix, leading to
XTEX = XIWIaA—hwx = wia—iw
— easy to compute the determinant of iX:
[Sx| = WIAW] = [AWWT| = [ALy| = [A],

and the determinant of a diagonal matrix is just the product
of its diagonal elements

WMTSA: 362-363 1v-28




MLEs of FD Parameters: V

e define the following three functions of 9:

, /2 g+l 12 g
Cj(0) = /1/2j+1 mdf - /1/2J'+1 [2m 120 "

J
. NT(1-26) N,
Criq(0) = T20=0) chj@
=1
2 J 2!
) 1 V3, | Y ,

oz(0) = —+ W
5( ) N OZI+1(5) 205(5) —~ Jit

WMTSA: 362-363 V29

MLEs of FD Parameters: VI

e wavelet-based approximate MLE 6 for 4 is the value that min-
imizes the following function of §:

J
- N
— 2
1(6 | X) = N log(02(0)) + log(C"7,1(6)) + E 12—J
j:

e once 0 has been determined, MLE for o2 is given by ‘75(5)

e computer experiments indicate scheme works quite well

WMTSA: 363-364 IV-30

Other Wavelet-Based Estimators of FD Parameters

e second MLE approach: formulate likelihood directly in terms
of nonboundary wavelet coefficients

— handles stationary or nonstationary FD processes
(i.e., need not assume 6 < 1/2)
— handles certain deterministic trends
e alternative to MLEs are least square estimators (LSEs)
— recall that, for large 7 and for § = 26 — 1, have
log (v (1)) = ¢ + Blog (7))
— suggests determining § by regressing log (ﬁg( (74)) on log (75)
over range of 7;
— weighted LSE takes into account fact that variance of log ( A%(Tj))

depends upon scale 7; (increases as 7; increases)

WMTSA: 368-379 IV-31

Homogeneity of Variance: I

e because DW'T decorrelates LMPs, nonboundary coefficients in
W, should resemble white noise; i.e., cov {Wj.,t,Wj,t/} ~ 0
when ¢ # ¢/, and var {W; ¢} should not depend upon #

e can test for homogeneity of variance in X using W over a
range of levels j

e suppose Uy, . .., Upn_q are independent normal RVs with E{U;} =
0 and var {U;} = o7

e want to test null hypothesis

.2 2 2
HO . O’O = 0'1 = e e e — O'N_l
e can test Hy versus a variety of alternatives, e.g.,
.2 2 2 2
HlO—O:"':ak#ak+1:“‘:O_N—l

using normalized cumulative sum of squares

WMTSA: 379-380 1V-32




Homogeneity of Variance: 11

e to define test statistic D, start with

k 2
szzj‘@:—%, k=0, . N—2
2 =0 Uj
and then compute D = max (D", D7), where
k+1 _ k
Dt = —— =P, & D = Pr— ——
0</r<n<a1)V< 2 (N k) OS%%_Q ( FTN

e can reject Hy if observed D is ‘too large,” where ‘too large’ is
quantified by considering distribution of D under H

e need to find critical value x4 such that P[D > z,] = a for,
e.g., a=0.01, 0.05 or 0.1

WMTSA: 380-381 1V-33

)

Homogeneity of Variance: III

e once determined, can perform « level test of Hy:
— compute D statistic from data Uy, .
— reject Hy at level o if D > x4
— fail to reject Hy at level a if D <z,

5 UN—1

e can determine critical values x in two ways
— Monte Carlo simulations

— large sample approximation to distribution of D:

[0.9]
P(N/2)2D = o] m 1423 (—1)le™ 2
=1
(reasonable approximation for N > 128)

WMTSA: 380-381 IV-34

Homogeneity of Variance: IV

e idea: given time series {X¢}, compute D using nonboundary
wavelet coefficients W ; (there are M ]’ =N, — L;- of these):

k 2
thL;- Wj,t ,
P = S _Ly .,NJ—Q
Zt:L’ gt

e if null hypothesis rejected at level j, can use nonboundary
MODWT coefficients to locate change point based on

- Zf—L-71W2
Po==i M k-1, N2
k= 2 J

A

along with analogs Dk and D,; of Dz and Dy

WMTSA: 380-381 1V-35

Example — Annual Minima of Nile River: I

1; 0.1 _ ! i h }

600 1300

scale (years)
e left-hand plot: annual minima of Nile River

e new measuring device introduced around year 715

e right: Haar ﬁg((fj) before (x’s) and after (o’s) year 715.5, with
95% confidence intervals based upon X%B approximation

WMTSA: 326-327 IV-36




Example — Annual Minima of Nile River: II

—100

(6 | X) —300

—500

e based upon last 512 values (years 773 to 1284), plot shows
1(6 | X) versus § for the first wavelet-based approximate MLE
using the LA(8) wavelet (upper curve) and corresponding curve
for exact MLE (lower)

— wavelet-based approximate MLE is value minimizing upper
curve: § = 0.4532
-

— exact MLE is value minimizing lower curve: ¢ = 0.4452

WMTSA: 386388 IvV-37

Example — Annual Minima of Nile River: III
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e using last 512 values again, variance of wavelet coefficients com-
puted via LA(8) MLEs § and ¢2(4) (solid curve) as compared
to sample variances of LA(8) wavelet coefficients (circles)

e agreement is almost too good to be true!

WMTSA: 386-388 IV-38

Example — Annual Minima of Nile River: IV

e results of testing all Nile River minima for homogeneity of vari-
ance using the Haar wavelet filter with critical values deter-
mined by computer simulations

critical levels

7; M ]/ D 10% 5% 1%
1Tyear 331 0.1559 0.0945 0.1051 0.1262
2years 165 0.1754 0.1320 0.1469 0.1765
4years 82  0.1000 0.185 0.2068 0.2474
8years 41  0.2313 0.2572 0.2864 0.3436

e can reject null hypothesis of homogeneity of variance at level
of significance 0.05 for scales 71 & 7, but not at larger scales

WMTSA: 386-388 V-39

Example — Annual Minima of Nile River: V
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e Nile River minima (top plot) along with curves (constructed
per Equation (382)) for scales 71 & 7o (middle & bottom) to
identify change point via time of maximum deviation (vertical
lines denote year 715)

WMTSA: 386-388 IV-40




Summary

e DW'T approximately decorrelate certain time series, including
ones coming from FD and related processes

e leads to schemes for simulating time series and bootstrapping
e also leads to schemes for estimating parameters of FD process

— approximate maximum likelihood estimators (two varieties)

— weighted least squares estimator
e can also devise wavelet-based tests for
— homogeneity of variance
— trends (see Craigmile et al., 2004, for details)

WMTSA: 388-391 IV-41
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