Wavelet Methods for Time Series Analysis

Part III: Wavelet-Based Signal Extraction and Denoising

• overview of key ideas behind wavelet-based approach
• description of four basic models for signal estimation
• discussion of why wavelets can help estimate certain signals
• simple thresholding & shrinkage schemes for signal estimation
• wavelet-based thresholding and shrinkage
• discuss some extensions to basic approach

Wavelet-Based Signal Estimation: I

• DWT analysis of \(X \) yields \(W = \mathcal{W}X \)
• DWT synthesis \(X = \mathcal{W}^T W \) yields multiresolution analysis by splitting \(\mathcal{W}^T W \) into pieces associated with different scales
• DWT synthesis can also estimate ‘signal’ hidden in \(X \) if we can modify \(W \) to get rid of noise in the wavelet domain
• if \(W' \) is a ‘noise reduced’ version of \(W \), can form signal estimate via \(\mathcal{W}^T W' \)

Wavelet-Based Signal Estimation: II

• key ideas behind simple wavelet-based signal estimation
 – certain signals can be efficiently described by the DWT using
 * all of the scaling coefficients
 * a small number of ‘large’ wavelet coefficients
 – noise is manifested in a large number of ‘small’ wavelet coefficients
 – can either ‘threshold’ or ‘shrink’ wavelet coefficients to eliminate noise in the wavelet domain
• key ideas led to wavelet thresholding and shrinkage proposed by Donoho, Johnstone and coworkers in 1990s

Models for Signal Estimation: I

• will consider two types of signals:
 1. \(D \), an \(N \) dimensional deterministic signal
 2. \(C \), an \(N \) dimensional stochastic signal; i.e., a vector of random variables (RVs) with covariance matrix \(\Sigma_C \)
• will consider two types of noise:
 1. \(\epsilon \), an \(N \) dimensional vector of independent and identically distributed (IID) RVs with mean 0 and covariance matrix \(\Sigma_\epsilon = \sigma_\epsilon^2 I_N \)
 2. \(\eta \), an \(N \) dimensional vector of non-IID RVs with mean 0 and covariance matrix \(\Sigma_\eta \)
 * one form: RVs independent, but have different variances
 * another form of non-IID: RVs are correlated
Models for Signal Estimation: II

- leads to four basic ‘signal + noise’ models for X
 1. $X = D + \epsilon$
 2. $X = D + \eta$
 3. $X = C + \epsilon$
 4. $X = C + \eta$

- in the latter two cases, the stochastic signal C is assumed to be independent of the associated noise

Signal Representation via Wavelets: I

- consider deterministic signals D first
- signal estimation problem is simplified if we can assume that the important part of D is in its large values
- assumption is not usually viable in the original (i.e., time domain) representation D, but might be true in another domain
- an orthonormal transform O might be useful because
 - $O = O^T D$ is equivalent to D (since $D = O^T O$)
 - we might be able to find O such that the signal is isolated in $M \ll N$ large transform coefficients
- Q: how can we judge whether a particular O might be useful for representing D?

Signal Representation via Wavelets: II

- let O_j be the jth transform coefficient in $O = O D$
- let $O_{(0)}, O_{(1)}, \ldots, O_{(N-1)}$ be the O_j’s reordered by magnitude:
 \[|O_{(0)}| \geq |O_{(1)}| \geq \cdots \geq |O_{(N-1)}| \]
- example: if $O = [-3, 1, 4, -7, 2, -1]^T$, then $O_{(0)} = O_3 = -7$, $O_{(1)} = O_2 = 4$, $O_{(2)} = O_0 = -3$ etc.
- define a normalized partial energy sequence (NPES):
 \[C_{M-1} = \frac{\sum_{j=0}^{M-1} |O_{(j)}|^2}{\sum_{j=0}^{N-1} |O_{(j)}|^2} \]
 is energy in largest M terms
 total energy in signal
- let I_M be $N \times N$ diagonal matrix whose jth diagonal term is 1 if $|O_{(j)}|$ is one of the M largest magnitudes and is 0 otherwise

Signal Representation via Wavelets: III

- form $\hat{D}_M = O^T I_M O$, which is an approximation to D
- when $O = [-3, 1, 4, -7, 2, -1]^T$ and $M = 3$, we have
 \[I_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]
 and thus $\hat{D}_M = O^T$ with $M = 3$
- one interpretation for NPES:
 \[C_{M-1} = 1 - \frac{||D - \hat{D}_M||^2}{||D||^2} = 1 - \text{relative approximation error} \]
Signal Representation via Wavelets: IV

- consider three signals plotted above
- \(D_1 \) is a sinusoid, which can be represented succinctly by the discrete Fourier transform (DFT)
- \(D_2 \) is a bump (only a few nonzero values in the time domain)
- \(D_3 \) is a linear combination of \(D_1 \) and \(D_2 \)

Signal Representation via Wavelets: V

- consider three different orthonormal transforms
 - identity transform \(I \) (time)
 - the orthonormal DFT \(F \) (frequency), where \(F \) has \((k,t)\)th element \(\exp(-i2\pi tk/N)/\sqrt{N} \) for \(0 \leq k, t \leq N-1 \)
 - the LA(8) DWT \(W \) (wavelet)
- \# of terms \(M \) needed to achieve relative error < 1%:

\[
\begin{array}{ccc}
 \text{DFT} & 2 & 29 \\
 \text{identity} & 105 & 9 \\
 \text{LA(8) wavelet} & 22 & 14 \\
\end{array}
\]

Signal Representation via Wavelets: VI

- use NPESs to see how well these three signals are represented in the time, frequency (DFT) and wavelet (LA(8)) domains
- time (solid curves), frequency (dotted) and wavelet (dashed)

Signal Representation via Wavelets: VII

- example: vertical ocean shear time series
 - has ‘frequency-domain’ fluctuations
 - also has ‘time-domain’ turbulent activity
- next overhead shows
 - the signal \(D \) itself
 - its approximation \(\hat{D}_{100} \) from 100 LA(8) DWT coefficients
 - \(\hat{D}_{300} \) from 300 LA(8) DWT coefficients, giving \(C_{299} \approx 0.9983 \)
 - \(\hat{D}_{300} \) from 300 DFT coefficients, giving \(C_{299} \approx 0.9973 \)
- note that 300 coefficients is less than 5% of \(N = 6784 \)!
Signal Representation via Wavelets: VIII

- need 123 additional ODFT coefficients to match C_{299} for DWT

Signal Estimation via Thresholding: I

- assume model of deterministic signal plus IID noise: $X = D + \epsilon$
- let O be an $N \times N$ orthonormal matrix
- form $O\mathbf{X} = O\mathbf{D} + O\mathbf{\epsilon} \equiv \mathbf{d} + \mathbf{e}$
- component-wise, have $O_i = d_i + e_i$
- define signal to noise ratio (SNR):
 \[\frac{\|D\|^2}{E\{\|\epsilon\|^2\}} = \frac{\|\mathbf{d}\|^2}{E\{\|\mathbf{e}\|^2\}} = \frac{\sum_{l=0}^{N-1} d_l^2}{\sum_{l=0}^{N-1} E\{e_l^2\}} \]
- assume that SNR is large
- assume that \mathbf{d} has just a few large coefficients; i.e., large signal coefficients dominate O

Signal Representation via Wavelets: IX

- 2nd example: DFT $\hat{\mathbf{D}}_M$ (left-hand column) & $J_0 = 6$ LA(8) DWT $\hat{\mathbf{D}}_M$ (right) for NMR series \mathbf{X} (A. Maudsley, UCSF)

Signal Estimation via Thresholding: II

- recall simple estimator $\hat{\mathbf{D}}_M \equiv O^T I_M O$ and previous example:

 \[\hat{\mathbf{D}}_M = O^T \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} O = O^T \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

- let I_m be a set of m indices corresponding to places where jth diagonal element of I_m is 1
- in example above, we have $J_3 = \{0, 2, 3\}$
- strategy in forming $\hat{\mathbf{D}}_M$ is to keep a coefficient O_j if $j \in J_m$ but to replace it with 0 if $j \notin J_m$ ('kill' or 'keep' strategy)
Signal Estimation via Thresholding: III

- can pose a simple optimization problem whose solution
 1. is a ‘kill or keep’ strategy (and hence justifies this strategy)
 2. dictates that we use coefficients with the largest magnitudes
 3. tells us what M should be (once we set a certain parameter)
- optimization problem: find $\hat{\mathbf{D}}_M$ such that
 \[\gamma_m = \| \mathbf{X} - \hat{\mathbf{D}}_m \|^2 + m \delta^2 \]
 is minimized over all possible \mathcal{I}_m, $m = 0, \ldots, N$
- in the above δ^2 is a fixed parameter (set a priori)

Signal Estimation via Thresholding: IV

- $\| \mathbf{X} - \hat{\mathbf{D}}_m \|^2$ is a measure of ‘fidelity’
 - rationale for this term: under our assumption of a high SNR, $\hat{\mathbf{D}}_m$ shouldn’t stray too far from \mathbf{X}
 - fidelity increases (the measure decreases) as m increases
 - in minimizing γ_m, consideration of this term alone suggests that m should be large
- $m \delta^2$ is a penalty for too many terms
 - rationale: heuristic says d has only a few large coefficients
 - penalty increases as m increases
 - in minimizing γ_m, consideration of this term alone suggests that m should be small
- optimization problem: balance off fidelity & parsimony

Signal Estimation via Thresholding: V

- claim: $\gamma_m = \| \mathbf{X} - \hat{\mathbf{D}}_m \|^2 + m \delta^2$ is minimized when m is set to the number of coefficients O_j such that $O_j^2 > \delta^2$
- proof of claim: since $\mathbf{X} = \mathbf{O}^T \mathbf{O}$ & $\hat{\mathbf{D}}_m$ $\equiv \mathbf{O}^T \mathbf{I}_m \mathbf{O}$, have
 \[\gamma_m = \| \mathbf{X} - \hat{\mathbf{D}}_m \|^2 + m \delta^2 = \| \mathbf{O}^T \mathbf{O} - \mathbf{O}^T \mathbf{I}_m \mathbf{O} \|^2 + m \delta^2 \]
 \[= \| \mathbf{O}^T (I_N - \mathbf{I}_m) \mathbf{O} \|^2 + m \delta^2 \]
 \[= \sum_{j \notin \mathcal{J}_m} O_j^2 + \sum_{j \in \mathcal{J}_m} \delta^2 \]
- for any given j, if $j \notin \mathcal{J}_m$, we contribute O_j^2 to first sum; on the other hand, if $j \in \mathcal{J}_m$, we contribute δ^2 to second sum
- to minimize γ_m, we need to put j in \mathcal{J}_m if $O_j^2 > \delta^2$, thus establishing the claim

Thresholding Functions: I

- more generally, thresholding schemes involve
 1. computing $\mathbf{O} \equiv \mathbf{O} \mathbf{X}$
 2. defining $\mathbf{O}^{(t)}$ as vector with lth element
 \[O_l^{(t)} = \begin{cases} 0, & \text{if } |O_l| \leq \delta; \\ \text{some nonzero value}, & \text{otherwise,} \end{cases} \]
 where nonzero values are yet to be defined
 3. estimating \mathbf{D} via $\hat{\mathbf{D}}^{(t)} \equiv \mathbf{O}^T \mathbf{O}^{(t)}$
- simplest scheme is ‘hard thresholding’ (‘kill/keep’ strategy):
 \[O_l^{(ht)} = \begin{cases} 0, & \text{if } |O_l| \leq \delta; \\ O_l, & \text{otherwise.} \end{cases} \]
Thresholding Functions: II

- plot shows mapping from O_l to $O_l^{(ht)}$

\[
O_l^{(ht)}(O_l) \equiv \begin{cases}
30 & \text{if } O_l > 0; \\
20 & \text{if } O_l = 0; \\
0 & \text{if } O_l < 0.
\end{cases}
\]

Thresholding Functions: III

- alternative scheme is ‘soft thresholding:

\[
O_l^{(st)} = \text{sign} \{O_l\} (|O_l| - \delta)_+, \]

where

\[
\text{sign} \{O_l\} \equiv \begin{cases}
+1 & \text{if } O_l > 0; \\
0 & \text{if } O_l = 0; \\
-1 & \text{if } O_l < 0.
\end{cases}
\]

- one rationale for soft thresholding is that it fits into Stein’s class of estimators (will discuss later on)

Thresholding Functions: IV

- here is the mapping from O_l to $O_l^{(st)}$

\[
O_l^{(st)}(O_l) \equiv \begin{cases}
30 & \text{if } |O_l| > 2\delta; \\
20 & \text{if } 2|O_l| - \delta)_+, \\
|O_l| & \text{otherwise}
\end{cases}
\]

Thresholding Functions: V

- third scheme is ‘mid thresholding:

\[
O_l^{(mt)} = \text{sign} \{O_l\} (|O_l| - \delta)_{++}, \]

where

\[
(|O_l| - \delta)_{++} \equiv \begin{cases}
2(|O_l| - \delta)_+, & \text{if } |O_l| < 2\delta; \\
|O_l|, & \text{otherwise}
\end{cases}
\]

- provides compromise between hard and soft thresholding
Thresholding Functions: VI

- here is the mapping from O_l to O_l^{mt}

Universal Threshold: I

- Q: how do we go about setting δ?
- specialize to IID Gaussian noise \mathbf{e} with covariance $\sigma^2 I_N$
- can argue $\mathbf{e} \equiv \mathcal{O} \mathbf{e}$ is also IID Gaussian with covariance $\sigma^2 I_N$
- Donoho & Johnstone (1995) proposed $\delta^{(u)} \equiv \sqrt{2\sigma^2 \log(N)}$ ('log' here is 'log base e')
- rationale for $\delta^{(u)}$: because of Gaussianity, can argue that
 \[
 P \left[\max_l \{|e_l|\} > \delta^{(u)} \right] \leq \frac{1}{\sqrt{4\pi \log(N)}} \to 0 \quad \text{as} \quad N \to \infty
 \]
 and hence $P \left[\max_l \{|e_l|\} \leq \delta^{(u)} \right] \to 1 \quad \text{as} \quad N \to \infty$, so no noise will exceed threshold in the limit

Thresholding Functions: VII

- example of mid thresholding with $\delta = 1$

Universal Threshold: II

- suppose D is a vector of zeros so that $O_l = e_l$
- implies that $O_l^{(ht)} = 0$ with high probability as $N \to \infty$
- hence will estimate correct D with high probability
- critique of $\delta^{(u)}$:
 - consider lots of IID Gaussian series, $N = 128$: only 13% will have any values exceeding $\delta^{(u)}$
 - $\delta^{(u)}$ is slanted toward eliminating vast majority of noise, but, if we use, e.g., hard thresholding, any nonzero signal transform coefficient of a fixed magnitude will eventually get set to 0 as $N \to \infty$
- nonetheless: $\delta^{(u)}$ works remarkably well
Minimum Unbiased Risk: I

- second approach for setting δ is data-adaptive, but only works for selected thresholding functions
- assume model of deterministic signal plus non-IID noise: $X = D + \eta$ so that $O \equiv OX = OD + O\eta \equiv d + n$
- component-wise, have $O_l = d_l + n_l$
- further assume that n_l is an $N(0, \sigma^2_{n_l})$ RV, where $\sigma^2_{n_l}$ is assumed to be known, but we allow the possibility that n_l's are correlated
- let $O_l^{(\delta)}$ be estimator of d_l based on a (yet to be determined) threshold δ
- want to make $E\{ (O_l^{(\delta)} - d_l)^2 \}$ as small as possible

Minimum Unbiased Risk: II

- Stein (1981) considered estimators restricted to be of the form $O_l^{(\delta)} = O_l + A^{(\delta)}(O_l)$,
 where $A^{(\delta)}(\cdot)$ must be 'weakly differentiable' (basically, piecewise continuous plus a bit more)
- since $O_l = d_l + n_l$, above yields $O_l^{(\delta)} - d_l = n_l + A^{(\delta)}(O_l)$, so
 $E\{ (O_l^{(\delta)} - d_l)^2 \} = \sigma^2_{n_l} + 2E\{ n_l A^{(\delta)}(O_l) \} + E\{ A^{(\delta)}(O_l) \}^2$
- because of Gaussianity, can reduce middle term:
 $E\{ n_l A^{(\delta)}(O_l) \} = \sigma^2_{n_l} E\left\{ \left| \frac{d}{dx} A^{(\delta)}(x) \right|_{x=O_l} \right\}$

Minimum Unbiased Risk: III

- practical scheme: given realizations o_l of O_l, find δ minimizing estimate of
 $E \left\{ \sum_{l=0}^{N-1} (O_l^{(\delta)} - d_l)^2 \right\}$,
 which, in view of
 $E\{ (O_l^{(\delta)} - d_l)^2 \} = \sigma^2_{n_l} + 2\sigma^2_{n_l} E \left\{ \left| \frac{d}{dx} A^{(\delta)}(x) \right|_{x=O_l} \right\} + E\{ A^{(\delta)}(O_l) \}^2$,
 $\sum_{l=0}^{N-1} \mathcal{R}(\sigma_{n_l}, o_l, \delta) \equiv \sum_{l=0}^{N-1} \sigma^2_{n_l} + 2\sigma^2_{n_l} \frac{d}{dx} A^{(\delta)}(o_l) + [A^{(\delta)}(o_l)]^2$
 for a given δ, above is Stein's unbiased risk estimator (SURE)

Minimum Unbiased Risk: IV

- example: if we set
 $A^{(\delta)}(O_l) = \begin{cases} -O_l, & \text{if } |O_l| < \delta; \\ -\delta \text{sign}(O_l), & \text{if } |O_l| \geq \delta, \end{cases}$
 we obtain $O_l^{(\delta)} = O_l + A^{(\delta)}(O_l) = O_l^{(st)}$, i.e., soft thresholding
 for this case, can argue that
 $\mathcal{R}(\sigma_{n_l}, O_l, \delta) = O_l^2 - \sigma^2_{n_l} + (2\sigma^2_{n_l} - O_l^2 + \delta^2)1_{[\delta^2, \infty)}(O_l^2)$,
 where
 $1_{[\delta^2, \infty)}(x) \equiv \begin{cases} 1, & \text{if } \delta^2 \leq x < \infty; \\ 0, & \text{otherwise}. \end{cases}$
- only the last term depends on δ, and, as a function of δ, SURE is minimized when last term is minimized
Minimum Unbiased Risk: V

- data-adaptive scheme is to replace O_l with its realization, say o_l, and to set δ equal to the value, say $\delta(S)$, minimizing
 \[\sum_{l=0}^{N-1} (2\sigma_n^2 - o_l^2 + \delta^2)1_{[\delta^2, \infty)}(o_l^2), \]

- must have $\delta(S) = |o_l|$ for some l, so minimization is easy
- if n_l have a common variance, i.e., $\sigma_n^2 = \sigma_l^2$ for all l, need to find minimizer of the following function of δ:
 \[\sum_{l=0}^{N-1} (2\sigma_l^2 - o_l^2 + \delta^2)1_{[\delta^2, \infty)}(o_l^2), \]

 (in practice, σ_l^2 is usually unknown, so later on we will consider how to estimate this also)

Signal Estimation via Shrinkage

- so far, we have only considered signal estimation via thresholding rules, which will map some O_l to zeros
- will now consider shrinkage rules, which differ from thresholding only in that nonzero coefficients are mapped to nonzero values rather than exactly zero (but values can be very close to zero!)
- there are three approaches that lead us to shrinkage rules
 1. linear mean square estimation
 2. conditional mean and median
 3. Bayesian approach
- will only consider 1 and 2, but one form of Bayesian approach turns out to be identical to 2

Linear Mean Square Estimation: I

- assume model of stochastic signal plus non-IID noise:
 \[X = C + \eta \] so that $O = 0X = 0C + 0\eta \equiv R + n$
- component-wise, have $O_l = R_l + n_l$
- assume C and η are multivariate Gaussian with covariance matrices Σ_C and Σ_η
- implies R and n are also Gaussian RVs, but now with covariance matrices $0\Sigma_C0^T$ and $0\Sigma_\eta0^T$
- assume that $E\{R_l\} = 0$ for any component of interest and that R_l and n_l are uncorrelated
- suppose we estimate R_l via a simple scaling of O_l:
 \[\hat{R}_l \equiv a_l O_l, \] where a_l is a constant to be determined

Linear Mean Square Estimation: II

- let us select a_l by making $E\{(R_l - \hat{R}_l)^2\}$ as small as possible, which occurs when we set
 \[a_l = \frac{E\{R_l O_l\}}{E\{O_l^2\}} \]
- because R_l and n_l are uncorrelated with 0 means and because $O_l = R_l + n_l$, we have
 \[E\{R_l O_l\} = E\{R_l^2\} \] and $E\{O_l^2\} = E\{R_l^2\} + E\{n_l^2\}$, yielding
 \[\hat{R}_l = \frac{E\{R_l^2\}}{E\{R_l^2\} + E\{n_l^2\}} O_l = \frac{\sigma_l^2}{\sigma_l^2 + \sigma_n^2} O_l \]
- note: ‘optimum’ a_l shrinks O_l toward zero, with shrinkage increasing as the noise variance increases
Background on Conditional PDFs: I

- let X and Y be RVs with probability density functions (PDFs) $f_X(\cdot)$ and $f_Y(\cdot)$
- let $f_{X,Y}(x, y)$ be their joint PDF at the point (x, y)
- $f_X(\cdot)$ and $f_Y(\cdot)$ are called marginal PDFs and can be obtained from the joint PDF via integration:
 $$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy$$
- the conditional PDF of Y given $X = x$ is defined as
 $$f_{Y|X=x}(y) = \frac{f_{X,Y}(x, y)}{f_X(x)}$$
 (read ‘|’ as ‘given’ or ‘conditional on’)

Background on Conditional PDFs: II

- by definition RVs X and Y are said to be independent if
 $$f_{X,Y}(x, y) = f_X(x)f_Y(y),$$
in which case
 $$f_{Y|X=x}(y) = \frac{f_{X,Y}(x, y)}{f_X(x)} = \frac{f_X(x)f_Y(y)}{f_X(x)} = f_Y(y)$$
- thus X and Y are independent if knowing X doesn’t allow us to alter our probabilistic description of Y
- $f_{Y|X=x}(\cdot)$ is a PDF, so its mean value is
 $$E\{Y|X = x\} = \int_{-\infty}^{\infty} y f_{Y|X=x}(y) \, dy;$$
 the above is called the conditional mean of Y, given X

Background on Conditional PDFs: III

- suppose RVs X and Y are related, but we can only observe X
- suppose we want to approximate the unobservable Y based on some function of the observable X
- example: we observe part of a time series containing a signal buried in noise, and we want to approximate the unobservable signal component based upon a function of what we observed
- suppose we want our approximation to be the function of X, say $U_2(X)$, such that the mean square difference between Y and $U_2(X)$ is as small as possible; i.e., we want
 $$E\{(Y - U_2(X))^2\}$$
to be as small as possible

Background on Conditional PDFs: IV

- solution is to use $U_2(X) = E\{Y|X\}$; i.e., the conditional mean of Y given X is our best guess at Y in the sense of minimizing the mean square error (related to fact that $E\{(Y - a)^2\}$ is smallest when $a = E\{Y\}$)
- on the other hand, suppose we want the function $U_1(X)$ such that the mean absolute error $E|Y - U_1(X)|$ is as small as possible
- the solution now is to let $U_1(X)$ be the conditional median; i.e., we must solve
 $$\int_{-\infty}^{U_1(x)} f_{Y|X=x}(y) \, dy = 0.5$$
to figure out what $U_1(x)$ should be when $X = x$
Conditional Mean and Median Approach: I

- assume model of stochastic signal plus non-IID noise:
 \(X = C + \eta \) so that \(O = C = C + \eta = R + n \)
- component-wise, have \(O_t = R_t + n_t \)
- because \(C \) and \(\eta \) are independent, \(R \) and \(n \) must be also
- suppose we approximate \(R_t \) via \(\hat{R}_t = U_2(O_t) \), where \(U_2(O_t) \) is selected to minimize \(E\{(R_t - U_2(O_t))^2\} \)
- solution is to set \(U_2(O_t) \) equal to \(E\{R_t|O_t\} \), so let’s work out what form this conditional mean takes
- to get \(E\{R_t|O_t\} \), need the PDF of \(R_t \) given \(O_t \), which is
 \[
 f_{R_t|O_t} (r_t) = \frac{f_{R_t,O_t}(r_t, o_t)}{f_{O_t}(o_t)}
 \]

Conditional Mean and Median Approach: II

- joint PDF of \(R_t \) and \(O_t \) related to the joint PDF \(f_{R_t,n_t}(\cdot, \cdot) \) of \(R_t \) and \(n_t \) via
 \[
 f_{R_t,O_t}(r_t, o_t) = f_{R_t,n_t}(r_t, o_t - r_t) = f_{R_t}(r_t)f_{n_t}(o_t - r_t),
 \]
- with the 2nd equality following since \(R_t \) & \(n_t \) are independent
- marginal PDF for \(O_t \) can be obtained from joint PDF \(f_{R_t,O_t}(\cdot, \cdot) \) by integrating out the first argument:
 \[
 f_{O_t}(o_t) = \int_{-\infty}^{\infty} f_{R_t,O_t}(r_t, o_t) dr_t = \int_{-\infty}^{\infty} f_{R_t}(r_t)f_{n_t}(o_t - r_t) dr_t
 \]
- putting all these pieces together yields the conditional PDF
 \[
 f_{R_t|O_t} (r_t) = \frac{f_{R_t,O_t}(r_t, o_t)}{f_{O_t}(o_t)} = \frac{f_{R_t}(r_t)f_{n_t}(o_t - r_t)}{\int_{-\infty}^{\infty} f_{R_t}(r_t)f_{n_t}(o_t - r_t) dr_t}
 \]

Conditional Mean and Median Approach: III

- mean value of \(f_{R_t|O_t=0}(\cdot) \) yields estimator \(\hat{R}_t = E\{R_t|O_t\} \):
 \[
 E\{R_t|O_t = o_t\} = \int_{-\infty}^{\infty} r_t f_{R_t|O_t=0}(r_t) \, dr_t = \frac{\int_{-\infty}^{\infty} r_t f_{R_t}(r_t)f_{n_t}(o_t - r_t) \, dr_t}{\int_{-\infty}^{\infty} f_{R_t}(r_t)f_{n_t}(o_t - r_t) \, dr_t}
 \]
- to make further progress, we need a model for the wavelet-domain representation \(R_t \) of the signal
 - heuristic that signal in the wavelet domain has a few large values and lots of small values suggests a Gaussian mixture model

Conditional Mean and Median Approach: IV

- let \(I_t \) be an RV such that \(P[I_t = 1] = p_t \) & \(P[I_t = 0] = 1 - p_t \)
- under Gaussian mixture model, \(R_t \) has same distribution as
 \[
 I_t \mathcal{N}(0, \gamma_t^2 \sigma^2_{G_t}) + (1 - I_t) \mathcal{N}(0, \gamma_t^2 \sigma^2_{G_t})
 \]
 where \(\mathcal{N}(0, \sigma^2) \) is a Gaussian RV with mean 0 and variance \(\sigma^2 \)
 - 2nd component models small # of large signal coefficients
 - 1st component models large # of small coefficients \((\gamma_t^2 \ll 1) \)
- example: PDFs for case \(\sigma^2_{G_t} = 10, \gamma_t^2 \sigma^2_{G_t} = 1 \) and \(p_t = 0.75 \)
Conditional Mean and Median Approach: V

- to complete model, let \(n_l \) obey a Gaussian distribution with mean 0 and variance \(\sigma_n^2 \)
- conditional mean estimator of the signal RV \(R_l \) is given by
 \[
 E\{R_l|O_l = \bar{o}_l\} = \frac{a_l A_l(\bar{o}_l) + b_l B_l(\bar{o}_l)}{A_l(\bar{o}_l) + B_l(\bar{o}_l)} \bar{o}_l,
 \]
 where
 \[
 a_l \equiv \frac{\gamma_l^2 \sigma_G^2}{\gamma_l^2 \sigma_G^2 + \sigma_n^2} \quad \text{and} \quad b_l \equiv \frac{\sigma_G^2}{\sigma_G^2 + \sigma_n^2},
 \]
 \[
 A_l(\bar{o}_l) \equiv \frac{p_l}{\sqrt{2\pi[\gamma_l^2 \sigma_G^2 + \sigma_n^2]}} \cdot e^{-\frac{\bar{o}_l^2}{2[\gamma_l^2 \sigma_G^2 + \sigma_n^2]}}
 \]
 \[
 B_l(\bar{o}_l) \equiv \frac{1 - p_l}{\sqrt{2\pi[\sigma_G^2 + \sigma_n^2]}} \cdot e^{-\frac{\bar{o}_l^2}{2[\sigma_G^2 + \sigma_n^2]}}
 \]

Conditional Mean and Median Approach: VI

- let’s simplify to a ‘sparse’ signal model by setting \(\gamma_l = 0 \); i.e., large # of small coefficients are all zero
- distribution for \(R_l \) same as \((1 - T_l)N(0, \sigma_G^2) \)
- conditional mean estimator becomes \(E\{R_l|O_l = \bar{o}_l\} = \frac{b_l}{1 + c_l} \bar{o}_l \), where
 \[
 c_l = \frac{p_l \sqrt{\sigma_G^2 + \sigma_n^2}}{(1 - p_l) \sigma_n} \cdot e^{-\frac{\bar{o}_l^2}{2\sigma_n^2}}
 \]

Conditional Mean and Median Approach: VII

- conditional mean shrinkage rule for \(p_l = 0.95 \) (i.e., \(\approx 95\% \) of signal coefficients are 0); \(\sigma_n^2 = 1 \); and \(\sigma_G^2 = 5 \) (curve furthest from dotted diagonal), 10 and 25 (curve nearest to diagonal)
- as \(\sigma_G^2 \) gets large (i.e., large signal coefficients increase in size), shrinkage rule starts to resemble mid thresholding rule

Conditional Mean and Median Approach: VIII

- now suppose we estimate \(R_l \) via \(\hat{R}_l = U_1(O_l) \), where \(U_1(O_l) \) is selected to minimize \(E\{|R_l - U_1(O_l)|\} \)
- solution is to set \(U_1(\bar{o}_l) \) to the median of the PDF for \(R_l \) given \(O_l = \bar{o}_l \)
- to find \(U_1(\bar{o}_l) \), need to solve for it in the equation
 \[
 \int_{-\infty}^{\infty} f_{R_l|O_l=\bar{o}_l}(r_l) dr_l = \int_{-\infty}^{\infty} U_1(\bar{o}_l) f_{R_l}(r_l) f_{N_l}(\bar{o}_l - r_l) dr_l = \frac{1}{2}
 \]
Conditional Mean and Median Approach: IX

• simplifying to the sparse signal model, Godfrey & Rocca (1981) show that
 \[U_1(O_l) \approx \begin{cases}
 0, & \text{if } |O_l| \leq \delta; \\
 b_l O_l, & \text{otherwise},
 \end{cases} \]
 where
 \[\delta = \sigma_{n_l} \left[2 \log \left(\frac{p_l \sigma_{G_l}}{(1-p_l)\sigma_{n_l}} \right) \right]^{1/2} \text{ and } b_l = \frac{\sigma_{G_l}^2}{\sigma_{G_l}^2 + \sigma_{n_l}^2} \]
 • above approximation valid if \(p_l/(1-p_l) \gg \sigma_{n_l}^2/(\sigma_{G_l} \delta) \) and \(\sigma_{G_l}^2 \gg \sigma_{n_l}^2 \)
 • note that \(U_1(\cdot) \) is approximately a hard thresholding rule

MAD Scale Estimator: I

• procedure assumes \(\sigma_{\epsilon} \) is known, which is not usually the case
 • if unknown, use median absolute deviation (MAD) scale estimator to estimate \(\sigma_{\epsilon} \) using \(W_1 \)
 \[\hat{\sigma}_{(\text{mad})} = \frac{\text{median} \{ |W_{1,0}|, |W_{1,1}|, \ldots, |W_{1,N-1}| \}}{0.6745} \]
 – heuristic: bulk of \(W_{1,t} \)'s should be due to noise
 – ‘0.6745’ yields estimator such that \(E\{\hat{\sigma}_{(\text{mad})}\} = \sigma_{\epsilon} \) when \(W_{1,t} \)'s are IID Gaussian with mean 0 and variance \(\sigma_{\epsilon}^2 \)
 – designed to be robust against large \(W_{1,t} \)'s due to signal

Wavelet-Based Thresholding

• assume model of deterministic signal plus IID Gaussian noise with mean 0 and variance \(\sigma_{\epsilon}^2
\begin{align*}
 X &= D + \epsilon \\
 \text{using a DWT matrix } W, \text{ form } W = WX = WD + W\epsilon &\equiv d + e
\end{align*}
• because \(\epsilon \) IID Gaussian, so is \(e \)
• Donoho & Johnstone (1994) advocate the following:
 – form partial DWT of level \(J_0 \): \(W_1, \ldots, W_{J_0} \) and \(V_{J_0} \)
 – threshold \(W_j \)'s but leave \(V_{J_0} \) alone (i.e., administratively, all \(N/2^{J_0} \) scaling coefficients assumed to be part of \(d \))
 – use universal threshold \(\delta(u) = \sqrt{2\sigma_{\epsilon}^2 \log(N)} \)
 – use thresholding rule to form \(W_j^{(t)} \) (hard, etc.)
 – estimate \(D \) by inverse transforming \(W_1^{(t)}, \ldots, W_{J_0}^{(t)} \) and \(V_{J_0} \)

MAD Scale Estimator: II

• example: suppose \(W_1 \) has 7 small ‘noise’ coefficients & 2 large ‘signal’ coefficients (say, \(a \& b \), with \(2 \ll |a| < |b| \)):

\[W_1 = [1.23, -1.72, -0.80, -0.01, a, 0.30, 0.67, b, -1.33]^T \]

• ordering these by their magnitudes yields

\[0.01, 0.30, 0.67, 0.80, 1.23, 1.33, 1.72, |a|, |b| \]

• median of these absolute deviations is 1.23, so

\[\hat{\sigma}_{(\text{mad})} = 1.23/0.6745 \approx 1.82 \]

\(\hat{\sigma}_{(\text{mad})} \) not influenced adversely by \(a \) and \(b \); i.e., scale estimate depends largely on the many small coefficients due to noise
Examples of DWT-Based Thresholding: I

- top plot: NMR spectrum X
- middle: signal estimate using $J_0 = 6$ partial LA(8) DWT with hard thresholding and universal threshold level estimated by $\hat{\delta}^{(u)} = \sqrt{2\sigma_{\text{mad}}^2 \log(N)} \approx 6.13$
- bottom: same, but now using D(4) DWT with $\hat{\delta}^{(u)} \approx 6.49$

Examples of MODWT-Based Thresholding

- as in previous overhead, but using MODWT rather than DWT
- because of MODWT filters are normalized differently, universal threshold must be adjusted for each level:
 $$\hat{\delta}_j^{(u)} = \sqrt{2\sigma_{\text{mad}}^2 \log(2^j)} / 2^j \approx 6.50 / 2^j$$
- results are identical to what 'cycle spinning' would yield

Examples of DWT-Based Thresholding: II

- top: signal estimate using $J_0 = 6$ partial LA(8) DWT with hard thresholding (repeat of middle plot of previous overhead)
- middle: same, but now with soft thresholding
- bottom: same, but now with mid thresholding

VisuShrink

- Donoho & Johnstone (1994) recipe with soft thresholding is known as 'VisuShrink' (but really thresholding, not shrinkage)
- rather than using the universal threshold, can also determine $\hat{\delta}$ for VisuShrink by finding value $\hat{\delta}^{(S)}$ that minimizes SURE, i.e.,
 $$\sum_{j=1}^{J_0} \sum_{t=0}^{N_j-1} (2\sigma_{\text{mad}}^2 - W_{j,t}^2 + \delta^2) \log(2^j) (W_{j,t}^2),$$
 as a function of δ, with σ^2 estimated via MAD
Examples of DWT-Based Thresholding: III

- top: VisuShrink estimate based upon level $J_0 = 6$ partial LA(8) DWT and SURE with MAD estimate based upon W_1
- bottom: same, but now with MAD estimate based upon W_1, W_2, ..., W_6 (the common variance in SURE is assumed common to all wavelet coefficients)
- resulting signal estimate of bottom plot is less noisy than for top plot

Wavelet-Based Shrinkage: I

- assume model of stochastic signal plus Gaussian IID noise: $X = C + \epsilon$ so that $W = WX = WC + W\epsilon \equiv R + e$
- component-wise, have $W_{j,t} = R_{j,t} + e_{j,t}$
- form partial DWT of level J_0, shrink W_j's, but leave V_{J_0} alone
- assume $E\{R_{j,t}\} = 0$ (reasonable for W_j, but not for V_{J_0})
- use a conditional mean approach with the sparse signal model
 - $R_{j,t}$ has distribution dictated by $(1 - \mathcal{I}_{j,t})N(0, \sigma_{\epsilon}^2)$, where $\mathcal{P}[\mathcal{I}_{j,t} = 1] = p$ and $\mathcal{P}[\mathcal{I}_{j,t} = 0] = 1 - p$
 - $R_{j,t}$'s are assumed to be IID
 - model for $e_{j,t}$ is Gaussian with mean 0 and variance σ_{ϵ}^2
 - note: parameters do not vary with j or t

Wavelet-Based Shrinkage: II

- model has three parameters σ_{ϵ}^2, p and σ_{ϵ}^2, which need to be set
- let σ_R^2 and σ_W^2 be variances of RVs $R_{j,t}$ and $W_{j,t}$
- have relationships $\sigma_R^2 = (1 - p)\sigma_{\epsilon}^2$ and $\sigma_W^2 = \sigma_R^2 + \sigma_{\epsilon}^2$
 - set $\sigma_{\epsilon}^2 = \sigma_{\text{mad}}^2$ using W_1
 - let $\bar{\sigma}_W^2$ be sample mean of all $W_{j,t}^2$
 - given p, let $\hat{\sigma}_{\epsilon}^2 = (\bar{\sigma}_W^2 - \bar{\epsilon}^2)/(1 - p)$
 - p usually chosen subjectively, keeping in mind that p is proportion of noise-dominated coefficients (can set based on rough estimate of proportion of ‘small’ coefficients)

Examples of Wavelet-Based Shrinkage

- shrinkage signal estimates of the NMR spectrum based upon the level $J_0 = 6$ partial LA(8) DWT and the conditional mean with $p = 0.9$ (top plot), 0.95 (middle) and 0.99 (bottom)
- as $p \to 1$, we declare there are proportionately fewer significant signal coefficients, implying need for heavier shrinkage
Comments on ‘Next Generation’ Denoising: I

- ‘classical’ denoising looks at each $W_{j,t}$ alone; for ‘real world’ signals, coefficients often cluster within a given level and persist across adjacent levels (ECG series offers an example)

\[T^{-2}V_6 \]
\[T^{-2}W_6 \]
\[T^{-2}W_5 \]
\[T^{-2}W_4 \]
\[T^{-2}W_3 \]
\[T^{-2}W_2 \]
\[T^{-2}W_1 \]
\[X \]

Comments on ‘Next Generation’ Denoising: II

- here are some ‘next generation’ approaches that exploit these ‘real world’ properties:
 - Crouse et al. (1998) use hidden Markov models for stochastic signal DWT coefficients to handle clustering, persistence and non-Gaussianity
 - Huang and Cressie (2000) consider scale-dependent multi-scale graphical models to handle clustering and persistence
 - Cai and Silverman (2001) consider ‘block’ thresholding in which coefficients are thresholded in blocks rather than individually (handles clustering)
 - Dragotti and Vetterli (2003) introduce the notion of ‘wavelet footprints’ to track discontinuities in a signal across different scales (handles persistence)

References