Wavelet Methods for Time Series Analysis

Part II: Wavelet-Based Statistical Analysis of Time Series

- topics to covered:
 - wavelet variance (analysis phase of MODWT)
 - wavelet-based signal extraction (synthesis phase of DWT)
 - wavelet-based decorrelation of time series (analysis phase of DWT, but synthesis phase plays a role also)

Wavelet Variance: Overview

- review of decomposition of sample variance using wavelets
- theoretical wavelet variance for stochastic processes
 - stationary processes
 - nonstationary processes with stationary differences
- sampling theory for Gaussian processes
- real-world examples
- extensions and summary

Decomposing Sample Variance of Time Series

- let $X_0, X_1, \ldots, X_{N-1}$ represent time series with N values
- let \overline{X} denote sample mean of X_t 's: $\overline{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$
- let $\hat{\sigma}_X^2$ denote sample variance of X_t 's:

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2$$

- idea is to decompose (analyze, break up) $\hat{\sigma}_X^2$ into pieces that quantify how one time series might differ from another
- wavelet variance does analysis based upon differences between (possibly weighted) adjacent averages over scales

Empirical Wavelet Variance

• define empirical wavelet variance for scale $\tau_j \equiv 2^{j-1}$ as

$$\tilde{\nu}_X^2(\tau_j) \equiv \frac{1}{N} \sum_{t=0}^{N-1} \widetilde{W}_{j,t}^2, \text{ where } \widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l \mod N}$$

• if $N = 2^J$, obtain analysis (decomposition) of sample variance:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \sum_{j=1}^J \tilde{\nu}_X^2(\tau_j)$$

(if N not a power of 2, can analyze variance to any level J_0 , but need additional component involving scaling coefficients)

• interpretation: $\tilde{\nu}_X^2(\tau_j)$ is portion of $\hat{\sigma}_X^2$ due to changes in averages over scale τ_j ; i.e., 'scale by scale' analysis of variance

WMTSA: 298

Example of Empirical Wavelet Variance

• wavelet variances for time series X_t and Y_t of length N = 16, each with zero sample mean and same sample variance

Theoretical Wavelet Variance: I

• now assume X_t is a real-valued random variable (RV)

- let $\{X_t, t \in \mathbb{Z}\}$ denote a stochastic process, i.e., collection of RVs indexed by 'time' t (here \mathbb{Z} denotes the set of all integers)
- apply *j*th level equivalent MODWT filter $\{\tilde{h}_{j,l}\}$ to $\{X_t\}$ to create a new stochastic process:

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j - 1} \tilde{h}_{j,l} X_{t-l}, \quad t \in \mathbb{Z},$$

which should be contrasted with

$$\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j - 1} \widetilde{h}_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \dots, N - 1$$

Theoretical Wavelet Variance: II

- if Y is any RV, let $E\{Y\}$ denote its expectation
- let var $\{Y\}$ denote its variance: var $\{Y\} \equiv E\{(Y E\{Y\})^2\}$
- definition of time dependent wavelet variance:

$$\nu_{X,t}^2(\tau_j) \equiv \operatorname{var} \{ \overline{W}_{j,t} \},\$$

with conditions on X_t so that var $\{\overline{W}_{j,t}\}$ exists and is finite

- $\nu_{X,t}^2(\tau_j)$ depends on τ_j and t
- will focus on time independent wavelet variance

$$\nu_X^2(\tau_j) \equiv \operatorname{var}\left\{\overline{W}_{j,t}\right\}$$

(can adapt theory to handle time varying situation)

• $\nu_X^2(\tau_j)$ well-defined for stationary processes and certain related processes, so let's review concept of stationarity

Definition of a Stationary Process

• if U and V are two RVs, denote their covariance by $\operatorname{cov} \left\{ U,V \right\} = E\{(U-E\{U\})(V-E\{V\})\}$

• stochastic process X_t called stationary if

 $-E\{X_t\} = \mu_X \text{ for all } t, \text{ i.e., constant independent of } t$ $-\cos\{X_t, X_{t+\tau}\} = s_{X,\tau}, \text{ i.e., depends on lag } \tau, \text{ but not } t$

•
$$s_{X,\tau}, \tau \in \mathbb{Z}$$
, is autocovariance sequence (ACVS)

•
$$s_{X,0} = \operatorname{cov}\{X_t, X_t\} = \operatorname{var}\{X_t\}$$
; i.e., variance same for all t

Wavelet Variance for Stationary Processes

• for stationary processes, wavelet variance decomposes var $\{X_t\}$:

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \operatorname{var} \{X_t\},\,$$

which is similar to

$$\sum_{j=1}^J \tilde{\nu}_X^2(\tau_j) = \hat{\sigma}_X^2$$

ν²_X(τ_j) is thus contribution to var {X_t} due to scale τ_j
note: ν²_X(τ_j) and X²_t have same units (can be important for interpretability)

White Noise Process

- simplest example of a stationary process is 'white noise'
- process X_t said to be white noise if
 - it has a constant mean $E\{X_t\} = \mu_X$
 - it has a constant variance var $\{X_t\} = \sigma_X^2$
 - $-\cos \{X_t, X_{t+\tau}\} = 0$ for all t and nonzero τ ; i.e., distinct RVs in the process are uncorrelated
- ACVS for white noise takes a very simple form:

$$s_{X,\tau} = \operatorname{cov} \{X_t, X_{t+\tau}\} = \begin{cases} \sigma_X^2, & \tau = 0; \\ 0, & \text{otherwise.} \end{cases}$$

Wavelet Variance for White Noise Process: I

• for a white noise process, can show that

$$\nu_X^2(\tau_j) = \frac{\operatorname{var}\{X_t\}}{2^j} \propto \tau_j^{-1} \text{ since } \tau_j = 2^{j-1}$$

• note that

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \operatorname{var} \{X_t\} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots\right) = \operatorname{var} \{X_t\},\$$

as required

• note also that

$$\log\left(\nu_X^2(\tau_j)\right) \propto -\log\left(\tau_j\right),$$

so plot of log $(\nu_X^2(\tau_j))$ vs. log (τ_j) is linear with a slope of -1

Wavelet Variance for White Noise Process: II

- $\nu_X^2(\tau_j)$ versus τ_j for j = 1, ..., 8 (left-hand plot), along with sample of length N = 256 of Gaussian white noise
- largest contribution to var $\{X_t\}$ is at smallest scale τ_1
- note: later on, we will discuss fractionally differenced (FD) processes that are characterized by a parameter δ ; when $\delta = 0$, an FD process is the same as a white noise process

Generalization to Certain Nonstationary Processes

- if wavelet filter is properly chosen, $\nu_X^2(\tau_j)$ well-defined for certain processes with stationary backward differences (increments); these are also known as intrinsically stationary processes
- first order backward difference of X_t is process defined by

$$X_t^{(1)} = X_t - X_{t-1}$$

• second order backward difference of X_t is process defined by $X_t^{(2)} = X_t^{(1)} - X_{t-1}^{(1)} = X_t - 2X_{t-1} + X_{t-2}$

• X_t said to have dth order stationary backward differences if

$$Y_t \equiv \sum_{k=0}^d \binom{d}{k} (-1)^k X_{t-k}$$

forms a stationary process (d is a nonnegative integer)

WMTSA: 287-289

Examples of Processes with Stationary Increments

1st column shows, from top to bottom, realizations from
(a) random walk: X_t = Σ^t_{u=1} ε_u, & ε_t is zero mean white noise
(b) like (a), but now ε_t has mean of -0.2
(c) random run: X_t = Σ^t_{u=1} Y_u, where Y_t is a random walk

• 2nd & 3rd columns show 1st & 2nd differences $X_t^{(1)}$ and $X_t^{(2)}$

Wavelet Variance for Processes with Stationary Backward Differences: I

- let $\{X_t\}$ be nonstationary with dth order stationary differences
- if we use a Daubechies wavelet filter of width L satisfying $L \geq 2d$, then $\nu_X^2(\tau_j)$ is well-defined and finite for all τ_j , but now

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \infty$$

• works because there is a backward difference operator of order d = L/2 embedded within $\{\tilde{h}_{j,l}\}$, so this filter reduces X_t to

$$\sum_{k=0}^{d} \binom{d}{k} (-1)^k X_{t-k} = Y_t$$

and then creates localized weighted averages of Y_t 's

WMTSA: 305

Wavelet Variance for Random Walk Process: I

• random walk process $X_t = \sum_{u=1}^t \epsilon_u$ has first order (d = 1) stationary differences since $X_t - X_{t-1} = \epsilon_t$ (i.e., white noise)

• $L \ge 2d$ holds for all wavelets when d = 1; for Haar (L = 2), $\nu_X^2(\tau_j) = \frac{\operatorname{var}\left\{\epsilon_t\right\}}{6} \left(\tau_j + \frac{1}{2\tau_j}\right) \approx \frac{\operatorname{var}\left\{\epsilon_t\right\}}{6} \tau_j,$

with the approximation becoming better as τ_j increases

- note that $\nu_X^2(\tau_j)$ increases as τ_j increases
- $\log(\nu_X^2(\tau_j)) \propto \log(\tau_j)$ approximately, so plot of $\log(\nu_X^2(\tau_j))$ vs. $\log(\tau_j)$ is approximately linear with a slope of +1
- as required, also have

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \frac{\operatorname{var}\left\{\epsilon_t\right\}}{6} \left(1 + \frac{1}{2} + 2 + \frac{1}{4} + 4 + \frac{1}{8} + \cdots\right) = \infty$$

WMTSA: 337

Wavelet Variance for Random Walk Process: II

- $\nu_X^2(\tau_j)$ versus τ_j for j = 1, ..., 8 (left-hand plot), along with sample of length N = 256 of a Gaussian random walk process
- smallest contribution to var $\{X_t\}$ is at smallest scale τ_1
- note: a fractionally differenced process with parameter $\delta=1$ is the same as a random walk process

Fractionally Differenced (FD) Processes: I

- can create a continuum of processes that 'interpolate' between white noise and random walks and 'extrapolate' beyond them using notion of 'fractional differencing' (Granger and Joyeux, 1980; Hosking, 1981)
- FD(δ) process is determined by 2 parameters, namely, δ and σ_{ϵ}^2 , where $-\infty < \delta < \infty$ and $\sigma_{\epsilon}^2 > 0$ (σ_{ϵ}^2 is less important than δ)
- if $\delta < 1/2$, FD process $\{X_t\}$ is stationary, and, in particular,
 - reduces to white noise if $\delta = 0$
 - has 'long memory' or 'long range dependence' if $\delta > 0$
 - is 'antipersistent' if $\delta < 0$ (i.e., cov $\{X_t, X_{t+1}\} < 0$)

Fractionally Differenced (FD) Processes: II

- if $\delta \geq 1/2$, FD process $\{X_t\}$ is nonstationary with dth order stationary backward differences $\{Y_t\}$
 - here $d = \lfloor \delta + 1/2 \rfloor$, where $\lfloor x \rfloor$ is integer part of x
 - $\{Y_t\}$ is stationary $FD(\delta d)$ process
- if $\delta = 1$, FD process is the same as a random walk process
- except possibly for two or three smallest scales, have

$$\nu_X^2(\tau_j) \approx C \tau_j^{2\delta - 1}$$

• thus $\log(\nu_X^2(\tau_j)) \approx \log(C) + (2\delta - 1) \log(\tau_j)$, so a log/log plot of $\nu_X^2(\tau_j)$ vs. τ_j looks approximately linear with slope $2\delta - 1$ for τ_j large enough

LA(8) Wavelet Variance for 2 FD Processes

see overhead 12 for δ = 0 (white noise), which has slope = -1
δ = ¹/₄ has slope -¹/₂
δ = ¹/₂ has slope 0 (related to so-called 'pink noise')

WMTSA: 287-288, 297

LA(8) Wavelet Variance for 2 More FD Processes

- $\delta = \frac{5}{6}$ has slope $\frac{2}{3}$ (related to Kolmogorov turbulence)
- $\delta = 1$ has slope 1 (random walk)
- nonnegative slopes indicate nonstationarity, while negative slopes indicate stationarity

Wavelet Variance for Processes with Stationary Backward Differences: II

- summary: $\nu_X^2(\tau_j)$ well-defined for process $\{X_t\}$ that is
 - stationary
 - nonstationary with $d{\rm th}$ order stationary increments, but width of wavelet filter must satisfy $L\geq 2d$
- if $\{X_t\}$ is stationary, then

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \operatorname{var} \{X_t\} < \infty$$

(recall that each RV in a stationary process must have the same finite variance)

Wavelet Variance for Processes with Stationary Backward Differences: III

• if $\{X_t\}$ is nonstationary, then

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \infty$$

• with a suitable construction, we can take variance of nonstationary process with dth order stationary increments to be ∞

• using this construction, we have

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \operatorname{var} \{X_t\}$$

for both the stationary and nonstationary cases

Background on Gaussian Random Variables

- $\mathcal{N}(\mu, \sigma^2)$ denotes a Gaussian (normal) RV with mean μ and variance σ^2
- will write

$$X \stackrel{\mathrm{d}}{=} \mathcal{N}(\mu, \sigma^2)$$

to mean 'RV X has same distribution as Gaussian RV'

- RV $\mathcal{N}(0,1)$ often written as Z (called standard Gaussian or standard normal)
- let $\Phi(\cdot)$ be Gaussian cumulative distribution function

$$\Phi(z) \equiv \mathbf{P}[Z \le z] = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

• inverse $\Phi^{-1}(\cdot)$ of $\Phi(\cdot)$ is such that $\mathbf{P}[Z \leq \Phi^{-1}(p)] = p$

• $\Phi^{-1}(p)$ called $p \times 100\%$ percentage point

WMTSA: 256–257

Background on Chi-Square Random Variables

• X said to be a chi-square RV with η degrees of freedom if its probability density function (PDF) is given by

$$f_X(x;\eta) = \frac{1}{2^{\eta/2} \Gamma(\eta/2)} x^{(\eta/2)-1} e^{-x/2}, \quad x \ge 0, \ \eta > 0$$

• χ^2_{η} denotes RV with above PDF

• if Z_1, Z_2, \ldots, Z_η are independent standard Gaussian RVs, then

$$Z_1^2 + Z_2^2 + \dots + Z_\eta^2 \stackrel{d}{=} \chi_\eta^2$$

• two important facts: $E\{\chi_{\eta}^2\} = \eta$ and $\operatorname{var}\{\chi_{\eta}^2\} = 2\eta$

• let $Q_{\eta}(p)$ denote the *p*th percentage point for the RV χ_{η}^2 : $\mathbf{P}[\chi_{\eta}^2 \leq Q_{\eta}(p)] = p$

Expected Value of Wavelet Coefficients

- in preparation for considering problem of estimating $\nu_X^2(\tau_j)$ given an observed time series, need to consider $E\{\overline{W}_{j,t}\}$
- if $\{X_t\}$ is nonstationary but has dth order stationary increments, let $\{Y_t\}$ be stationary process obtained by differencing $\{X_t\}$ d times; if $\{X_t\}$ is stationary (d = 0 case), let $Y_t = X_t$

• with
$$\mu_Y \equiv E\{Y_t\}$$
, have

- $-E\{\overline{W}_{j,t}\} = 0 \text{ if either (i) } L > 2d \text{ or (ii) } L = 2d \text{ and } \mu_Y = 0$ $-E\{\overline{W}_{j,t}\} \neq 0 \text{ if } \mu_Y \neq 0 \text{ and } L = 2d$
- thus have $E\{\overline{W}_{j,t}\} = 0$ if L is picked large enough (L > 2d is sufficient, but might not be necessary)
- knowing $E\{\overline{W}_{j,t}\} = 0$ eases job of estimating $\nu_X^2(\tau_j)$ considerably

Unbiased Estimator of Wavelet Variance: I

- given a realization of $X_0, X_1, \ldots, X_{N-1}$ from a process with dth order stationary differences, want to estimate $\nu_X^2(\tau_j)$
- for wavelet filter such that $L \ge 2d$ and $E\{\overline{W}_{j,t}\} = 0$, have

$$\nu_X^2(\tau_j) = \operatorname{var}\left\{\overline{W}_{j,t}\right\} = E\{\overline{W}_{j,t}^2\}$$

• can base estimator on squares of

$$\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j - 1} \widetilde{h}_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \dots, N - 1$$

• recall that

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j - 1} \tilde{h}_{j,l} X_{t-l}, \qquad t \in \mathbb{Z}$$

Unbiased Estimator of Wavelet Variance: II

• comparing

$$\widetilde{W}_{j,t} = \sum_{l=0}^{L_j - 1} \widetilde{h}_{j,l} X_{t-l \mod N} \text{ with } \overline{W}_{j,t} \equiv \sum_{l=0}^{L_j - 1} \widetilde{h}_{j,l} X_{t-l}$$

says that $\widetilde{W}_{j,t} = \overline{W}_{j,t}$ if 'mod N' not needed; this happens when $L_j - 1 \le t < N$ (recall that $L_j = (2^j - 1)(L - 1) + 1$)

• if $N - L_j \ge 0$, unbiased estimator of $\nu_X^2(\tau_j)$ is

$$\hat{\nu}_X^2(\tau_j) \equiv \frac{1}{N - L_j + 1} \sum_{t=L_j - 1}^{N-1} \widetilde{W}_{j,t}^2 = \frac{1}{M_j} \sum_{t=L_j - 1}^{N-1} \overline{W}_{j,t}^2,$$

where $M_j \equiv N - L_j + 1$

Statistical Properties of $\hat{\nu}_X^2(\tau_j)$

- assume that $\{\overline{W}_{j,t}\}$ is Gaussian stationary process with mean zero and ACVS $\{s_{j,\tau}\}$
- suppose $\{s_{j,\tau}\}$ is such that

$$A_j \equiv \sum_{\tau = -\infty}^{\infty} s_{j,\tau}^2 < \infty$$

(if $A_j = \infty$, can make it finite usually by just increasing L) • can show that $\hat{\nu}_X^2(\tau_j)$ is asymptotically Gaussian with mean $\nu_X^2(\tau_j)$ and large sample variance $2A_j/M_j$; i.e.,

$$\frac{\hat{\nu}_X^2(\tau_j) - \nu_X^2(\tau_j)}{(2A_j/M_j)^{1/2}} = \frac{M_j^{1/2}(\hat{\nu}_X^2(\tau_j) - \nu_X^2(\tau_j))}{(2A_j)^{1/2}} \stackrel{\text{d}}{=} \mathcal{N}(0, 1)$$
approximately for large $M_j \equiv N - L_j + 1$

WMTSA: 307

Estimation of A_j

- in practical applications, need to estimate $A_j = \sum_{\tau} s_{j,\tau}^2$
- can argue that, for large M_i , the estimator

$$\hat{A}_{j} \equiv \frac{\left(\hat{s}_{j,0}^{(p)}\right)^{2}}{2} + \sum_{\tau=1}^{M_{j}-1} \left(\hat{s}_{j,\tau}^{(p)}\right)^{2},$$

is approximately unbiased, where

$$\hat{s}_{j,\tau}^{(p)} \equiv \frac{1}{M_j} \sum_{t=L_j-1}^{N-1-|\tau|} \widetilde{W}_{j,t} \widetilde{W}_{j,t+|\tau|}, \quad 0 \le |\tau| \le M_j - 1$$

• Monte Carlo results: \hat{A}_j reasonably good for $M_j \ge 128$

Confidence Intervals for $\nu_X^2(\tau_j)$: I

• based upon large sample theory, can form a 100(1-2p)% confidence interval (CI) for $\nu_X^2(\tau_j)$:

$$\left[\hat{\nu}_X^2(\tau_j) - \Phi^{-1}(1-p)\frac{\sqrt{2A_j}}{\sqrt{M_j}}, \hat{\nu}_X^2(\tau_j) + \Phi^{-1}(1-p)\frac{\sqrt{2A_j}}{\sqrt{M_j}}\right];$$

i.e., random interval traps unknown $\nu_X^2(\tau_j)$ with probability 1-2p

- if A_j replaced by \hat{A}_j , get approximate 100(1-2p)% CI
- critique: lower limit of CI can very well be negative even though $\nu_X^2(\tau_j) \ge 0$ always
- can avoid this problem by using a χ^2 approximation

Confidence Intervals for $\nu_X^2(\tau_j)$: II

• χ_{η}^2 useful for approximating distribution of sum of squared Gaussian RVs, which is what we are dealing with here:

$$\hat{\nu}_X^2(\tau_j) = \frac{1}{M_j} \sum_{t=L_j-1}^{N-1} \overline{W}_{j,t}^2$$

- idea is to assume $\hat{\nu}_X^2(\tau_j) \stackrel{d}{=} a\chi_\eta^2$, where a and η are constants to be set via moment matching
- because $E\{\chi_{\eta}^2\} = \eta$ and var $\{\chi_{\eta}^2\} = 2\eta$, we have $E\{a\chi_{\eta}^2\} = a\eta$ and var $\{a\chi_{\eta}^2\} = 2a^2\eta$
- can equate $E\{\hat{\nu}_X^2(\tau_j)\}$ & var $\{\hat{\nu}_X^2(\tau_j)\}$ to $a\eta$ & $2a^2\eta$ to determine a & η

Confidence Intervals for $\nu_X^2(\tau_j)$: III

• obtain

$$\eta = \frac{2\left(E\{\hat{\nu}_X^2(\tau_j)\}\right)^2}{\operatorname{var}\{\hat{\nu}_X^2(\tau_j)\}} = \frac{2\nu_X^4(\tau_j)}{\operatorname{var}\{\hat{\nu}_X^2(\tau_j)\}} \text{ and } a = \frac{\nu_X^2(\tau_j)}{\eta}$$

• after η has been determined, can obtain a CI for $\nu_X^2(\tau_j)$: with probability 1 - 2p, the random interval

$$\left[\frac{\eta\hat{\nu}_X^2(\tau_j)}{Q_\eta(1-p)}, \frac{\eta\hat{\nu}_X^2(\tau_j)}{Q_\eta(p)}\right]$$

traps the true unknown $\nu_X^2(\tau_j)$

- lower limit is now nonnegative
- as $N \to \infty$, above CI and Gaussian-based CI converge

WMTSA: 313

Three Ways to Set η

1. use large sample theory with appropriate estimates:

$$\eta = \frac{2\nu_X^4(\tau_j)}{\operatorname{var}\left\{\hat{\nu}_X^2(\tau_j)\right\}} \approx \frac{2\nu_X^4(\tau_j)}{2A_j/M_j} \text{ suggests } \hat{\eta}_1 = \frac{M_j\hat{\nu}_X^4(\tau_j)}{\hat{A}_j}$$

2. make an assumption about the effect of wavelet filter on $\{X_t\}$ to obtain simple approximation

$$\eta_3 = \max\{M_j/2^j, 1\}$$

(this effective – but conservative – approach is valuable if there are insufficient data to reliably estimate A_i)

3. third way requires assuming shape of spectral density function associated with $\{X_t\}$ (questionable assumption, but common practice in, e.g., atomic clock literature)

Atomic Clock Deviates: I

Atomic Clock Deviates: II

- top plot: errors $\{X_t\}$ in time kept by atomic clock 571 (measured in microseconds: 1,000,000 microseconds = 1 second)
- middle: 1st backward differences $\{X_t^{(1)}\}$ in nanoseconds (1000 nanoseconds = 1 microsecond)
- bottom: 2nd backward differences $\{X_t^{(2)}\}$, also in nanoseconds
- if $\{X_t\}$ nonstationary with dth order stationary increments, need $L \ge 2d$, but might need L > 2d to get $E\{\overline{W}_{j,t}\} = 0$
- might regard $\{X_t^{(1)}\}$ as realization of stationary process, but, if so, with a mean value far from 0; $\{X_t^{(2)}\}$ resembles realization of stationary process, but mean value still might not be 0 if we believe there is a linear trend in $\{X_t^{(1)}\}$; thus might need $L \ge 6$, but could get away with $L \ge 4$

WMTSA: 317–318
Atomic Clock Deviates: III

WMTSA: 319

Atomic Clock Deviates: IV

- square roots of wavelet variance estimates for atomic clock time errors $\{X_t\}$ based upon unbiased MODWT estimator with
 - Haar wavelet (\mathbf{x} 's in left-hand plot, with linear fit)
 - D(4) wavelet (circles in left- and right-hand plots)
 - D(6) wavelet (pluses in left-hand plot).
- Haar wavelet inappropriate
 - need $\{X_t^{(1)}\}$ to be a realization of a stationary process with mean 0 (stationarity might be OK, but mean 0 is way off)
 - linear appearance can be explained in terms of nonzero mean
- 95% confidence intervals in the right-hand plot are the square roots of intervals computed using the chi-square approximation with η given by $\hat{\eta}_1$ for $j = 1, \ldots, 6$ and by η_3 for j = 7 & 8

WMTSA: 319

Annual Minima of Nile River

- left-hand plot: annual minima of Nile River
- right: Haar $\hat{\nu}_X^2(\tau_j)$ before (**x**'s) and after (**o**'s) year 715.5, with 95% confidence intervals based upon $\chi^2_{\eta_3}$ approximation

Wavelet Variance Analysis of Time Series with Time-Varying Statistical Properties

- each wavelet coefficient $\widetilde{W}_{j,t}$ formed using portion of X_t
- suppose X_t associated with actual time $t_0 + t \Delta t$
 - * t_0 is actual time of first observation X_0
 - * Δt is spacing between adjacent observations
- suppose $\tilde{h}_{j,l}$ is least asymmetric Daubechies wavelet
- can associate $\widetilde{W}_{j,t}$ with an interval of width $2\tau_j \Delta t$ centered at $t_0 + (2^j(t+1) 1 |\nu_j^{(H)}| \mod N) \Delta t$,

where, e.g., $|\nu_j^{(H)}| = [7(2^j - 1) + 1]/2$ for LA(8) wavelet

• can thus form 'localized' wavelet variance analysis (implicitly assumes stationarity or stationary increments locally)

WMTSA: 114–115

Subtidal Sea Level Fluctuations: I

- subtidal sea level fluctuations **X** for Crescent City, CA, collected by National Ocean Service with permanent tidal gauge
- N = 8746 values from Jan 1980 to Dec 1991 (almost 12 years)
- one value every 12 hours, so $\Delta t = 1/2$ day
- 'subtidal' is what remains after diurnal & semidiurnal tides are removed by low-pass filter (filter seriously distorts frequency band corresponding to first physical scale $\tau_1 \Delta t = 1/2$ day)

Subtidal Sea Level Fluctuations: II

• level $J_0 = 7 \text{ LA}(8)$ MODWT multiresolution analysis

Subtidal Sea Level Fluctuations: III

- estimated time-dependent LA(8) wavelet variances for physical scale $\tau_2 \Delta t = 1$ day based upon averages over monthly blocks (30.5 days, i.e., 61 data points)
- plot also shows a representative 95% confidence interval based upon a hypothetical wavelet variance estimate of 1/2 and a chi-square distribution with $\nu = 15.25$

Subtidal Sea Level Fluctuations: IV

 2^{j-2} days, $j = 2, \ldots, 7$, grouped by calendar month

Some Extensions

- wavelet cross-covariance and cross-correlation (Whitcher, Guttorp and Percival, 2000; Serroukh and Walden, 2000a, 2000b)
- asymptotic theory for non-Gaussian processes satisfying a certain 'mixing' condition (Serroukh, Walden and Percival, 2000)
- biased estimators of wavelet variance (Aldrich, 2005)
- unbiased estimator of wavelet variance for 'gappy' time series (Mondal and Percival, 2010a)
- robust estimation (Mondal and Percival, 2010b)
- wavelet variance for random fields (Mondal and Percival, 2010c)
- wavelet-based characteristic scales (Keim and Percival, 2010)

Summary

- wavelet variance gives scale-based analysis of variance
- presented statistical theory for Gaussian processes with stationary increments
- in addition to the applications we have considered, the wavelet variance has been used to analyze
 - genome sequences
 - changes in variance of soil properties
 - canopy gaps in forests
 - accumulation of snow fields in polar regions
 - boundary layer atmospheric turbulence
 - regular and semiregular variable stars

Wavelet-Based Signal Extraction: Overview

- outline key ideas behind wavelet-based approach
- description of four basic models for signal estimation
- discussion of why wavelets can help estimate certain signals
- \bullet simple thresholding & shrinkage schemes for signal estimation
- wavelet-based thresholding and shrinkage
- discuss some extensions to basic approach

Wavelet-Based Signal Estimation: I

- DWT analysis of \mathbf{X} yields $\mathbf{W} = \mathcal{W}\mathbf{X}$
- DWT synthesis $\mathbf{X} = \mathcal{W}^T \mathbf{W}$ yields multiresolution analysis by splitting $\mathcal{W}^T \mathbf{W}$ into pieces associated with different scales
- DWT synthesis can also estimate 'signal' hidden in \mathbf{X} if we can modify \mathbf{W} to get rid of noise in the wavelet domain
- if $\mathbf{W'}$ is a 'noise reduced' version of \mathbf{W} , can form signal estimate via $\mathcal{W}^T \mathbf{W'}$

Wavelet-Based Signal Estimation: II

- key ideas behind simple wavelet-based signal estimation
 - certain signals can be efficiently described by the DWT using
 - * all of the scaling coefficients
 - * a small number of 'large' wavelet coefficients
 - noise is manifested in a large number of 'small' wavelet coefficients
 - can either 'threshold' or 'shrink' wavelet coefficients to eliminate noise in the wavelet domain
- key ideas led to wavelet thresholding and shrinkage proposed by Donoho, Johnstone and coworkers in 1990s

Models for Signal Estimation: I

- will consider two types of signals:
 - 1. **D**, an N dimensional deterministic signal
 - 2. C, an N dimensional stochastic signal; i.e., a vector of random variables (RVs) with covariance matrix $\Sigma_{\mathbf{C}}$
- will consider two types of noise:
 - 1. ϵ , an N dimensional vector of independent and identically distributed (IID) RVs with mean 0 and covariance matrix $\Sigma_{\epsilon} = \sigma_{\epsilon}^2 I_N$
 - 2. $\boldsymbol{\eta}$, an N dimensional vector of non-IID RVs with mean 0 and covariance matrix $\Sigma_{\boldsymbol{\eta}}$
 - * one form: RVs independent, but have different variances* another form of non-IID: RVs are correlated

Models for Signal Estimation: II

- leads to four basic 'signal + noise' models for \mathbf{X}
 - 1. $\mathbf{X} = \mathbf{D} + \boldsymbol{\epsilon}$
 - 2. $\mathbf{X} = \mathbf{D} + \boldsymbol{\eta}$
 - 3. $\mathbf{X} = \mathbf{C} + \boldsymbol{\epsilon}$
 - 4. $\mathbf{X} = \mathbf{C} + \boldsymbol{\eta}$
- in the latter two cases, the stochastic signal \mathbf{C} is assumed to be independent of the associated noise

Signal Representation via Wavelets: I

- consider $\mathbf{X} = \mathbf{D} + \boldsymbol{\epsilon}$ first, and concentrate on signal \mathbf{D}
- signal estimation problem is simplified if we can assume that the important part of \mathbf{D} is in its large values
- assumption is not usually viable in the original (i.e., time domain) representation **D**, but might be true in another domain
- \bullet an orthonormal transform ${\mathcal O}$ might be useful because
 - $-\mathbf{d} = \mathcal{O}\mathbf{D}$ is equivalent to \mathbf{D} (since $\mathbf{D} = \mathcal{O}^T\mathbf{d}$)
 - we might be able to find \mathcal{O} such that the signal is isolated in $M \ll N$ large transform coefficients
- Q: how can we judge whether a particular \mathcal{O} might be useful for representing \mathbf{D} ?

Signal Representation via Wavelets: II

- let d_j be the *j*th transform coefficient in $\mathbf{d} = \mathcal{O}\mathbf{D}$
- let $d_{(0)}, d_{(1)}, \dots, d_{(N-1)}$ be the d_j 's reordered by magnitude: $|d_{(0)}| \ge |d_{(1)}| \ge \dots \ge |d_{(N-1)}|$
- example: if $\mathbf{d} = [-3, 1, 4, -7, 2, -1]^T$, then $d_{(0)} = d_3 = -7$, $d_{(1)} = d_2 = 4$, $d_{(2)} = d_0 = -3$ etc.
- define a normalized partial energy sequence (NPES):

$$C_{M-1} \equiv \frac{\sum_{j=0}^{M-1} |d_{(j)}|^2}{\sum_{j=0}^{N-1} |d_{(j)}|^2} = \frac{\text{energy in largest } M \text{ terms}}{\text{total energy in signal}}$$

• let \mathcal{I}_M be $N \times N$ diagonal matrix whose *j*th diagonal term is 1 if $|d_j|$ is one of the *M* largest magnitudes and is 0 otherwise

Signal Representation via Wavelets: III

• one interpretation for NPES:

$$C_{M-1} = 1 - \frac{\|\mathbf{D} - \widehat{\mathbf{D}}_M\|^2}{\|\mathbf{D}\|^2} = 1 - \text{relative approximation error}$$

Signal Representation via Wavelets: IV

- consider three signals plotted above
- \mathbf{D}_1 is a sinusoid, which can be represented succinctly by the discrete Fourier transform (DFT)
- \mathbf{D}_2 is a bump (only a few nonzero values in the time domain)
- \mathbf{D}_3 is a linear combination of \mathbf{D}_1 and \mathbf{D}_2

Signal Representation via Wavelets: V

• consider three different orthonormal transforms

- identity transform I (time)
- the orthonormal DFT \mathcal{F} (frequency), where \mathcal{F} has (k, t)th element $\exp(-i2\pi t k/N)/\sqrt{N}$ for $0 \le k, t \le N-1$

- the LA(8) DWT \mathcal{W} (wavelet)

• # of terms M needed to achieve relative error < 1%:

	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
DFT	2	29	28
identity	105	9	75
LA(8) wavelet	22	14	21

Signal Representation via Wavelets: VI

- use NPESs to see how well these three signals are represented in the time, frequency (DFT) and wavelet (LA(8)) domains
- time (solid curves), frequency (dotted) and wavelet (dashed)

Signal Representation via Wavelets: IX

• example: DFT $\widehat{\mathbf{D}}_M$ (left-hand column) & $J_0 = 6$ LA(8) DWT $\widehat{\mathbf{D}}_M$ (right) for NMR series **X** (A. Maudsley, UCSF)

Signal Estimation via Thresholding: I

• thresholding schemes involve

1. computing $\mathbf{O} \equiv \mathcal{O}\mathbf{X}$ 2. defining $\mathbf{O}^{(t)}$ as vector with *l*th element

$$O_l^{(t)} = \begin{cases} 0, & \text{if } |O_l| \le \delta \\ \text{some nonzero value, otherwise,} \end{cases}$$

where nonzero values are yet to be defined 3. estimating \mathbf{D} via $\widehat{\mathbf{D}}^{(t)} \equiv \mathcal{O}^T \mathbf{O}^{(t)}$

• simplest scheme is 'hard thresholding' ('kill/keep' strategy):

$$O_l^{(ht)} = \begin{cases} 0, & \text{if } |O_l| \le \delta; \\ O_l, & \text{otherwise.} \end{cases}$$

Hard Thresholding Function

• plot shows mapping from O_l to $O_l^{(ht)}$

Signal Estimation via Thresholding: II

• hard thresholding is strategy that arises from solution to simple optimization problem, namely, find $\widehat{\mathbf{D}}_M$ such that

$$\gamma_m \equiv \|\mathbf{X} - \widehat{\mathbf{D}}_m\|^2 + m\delta^2$$

is minimized over all possible $\widehat{\mathbf{D}}_m = \mathcal{O}^T \mathcal{I}_m \mathbf{O}, \ m = 0, \dots, N$

- δ is a fixed parameter that is set *a priori* (we assume $\delta > 0$)
- $\|\mathbf{X} \widehat{\mathbf{D}}_m\|^2$ is a measure of 'fidelity'
 - rationale for this term: $\widehat{\mathbf{D}}_m$ shouldn't stray too far from **X** (particularly if signal-to-noise ratio is high)
 - fidelity increases (the measure decreases) as m increases
 - in minimizing γ_m , consideration of this term alone suggests that m should be large

Signal Estimation via Thresholding: III

- $m\delta^2$ is a penalty for too many terms
 - rationale: heuristic says $\mathbf{d}=\mathcal{O}\mathbf{D}$ consists of just a few large coefficients
 - penalty increases as m increases
 - in minimizing γ_m , consideration of this term alone suggests that m should be small
- optimization problem: balance off fidelity & parsimony
- can show that $\gamma_m = \|\mathbf{X} \widehat{\mathbf{D}}_m\|^2 + m\delta^2$ is minimized when m is set such that \mathcal{I}_m picks out all coefficients satisfying $O_j^2 > \delta^2$

Signal Estimation via Thresholding: IV

• alternative scheme is 'soft thresholding:'

$$O_l^{(st)} = \operatorname{sign} \{O_l\} (|O_l| - \delta)_+,$$

where

$$\operatorname{sign} \{O_l\} \equiv \begin{cases} +1, & \text{if } O_l > 0; \\ 0, & \text{if } O_l = 0; \\ -1, & \text{if } O_l < 0. \end{cases} \text{ and } (x)_+ \equiv \begin{cases} x, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$$

• one rationale for soft thresholding: fits into Stein's class of estimators, for which unbiased estimation of risk is possible

Soft Thresholding Function

• here is the mapping from O_l to $O_l^{(st)}$

II-64

Signal Estimation via Thresholding: V

• third scheme is 'mid thresholding:'

$$O_l^{(mt)} = \operatorname{sign} \{O_l\} (|O_l| - \delta)_{++},$$

where

$$(|O_l| - \delta)_{++} \equiv \begin{cases} 2(|O_l| - \delta)_+, & \text{if } |O_l| < 2\delta; \\ |O_l|, & \text{otherwise} \end{cases}$$

• provides compromise between hard and soft thresholding

Mid Thresholding Function

• here is the mapping from O_l to $O_l^{(mt)}$

WMTSA: 399–400

II-66

Signal Estimation via Thresholding: VI

• example of mid thresholding with $\delta = 1$

Universal Threshold

- Q: how do we go about setting δ ?
- specialize to IID Gaussian noise $\boldsymbol{\epsilon}$ with covariance $\sigma_{\epsilon}^2 I_N$
- can argue $\mathbf{e} \equiv \mathcal{O} \boldsymbol{\epsilon}$ is also IID Gaussian with covariance $\sigma_{\epsilon}^2 I_N$
- Donoho & Johnstone (1995) proposed $\delta^{(u)} \equiv \sqrt{[2\sigma_{\epsilon}^2 \log(N)]}$ ('log' here is 'log base e')
- rationale for $\delta^{(u)}$: because of Gaussianity, can argue that

$$\mathbf{P}\left[\max_{l}\{|e_{l}|\} > \delta^{(u)}\right] \leq \frac{1}{\sqrt{[4\pi \log(N)]}} \to 0 \text{ as } N \to \infty$$

and hence
$$\mathbf{P}\left[\max_{l}\{|e_{l}\}| \leq \delta^{(u)}\right] \to 1 \text{ as } N \to \infty, \text{ so no noise}$$

will exceed threshold in the limit

Wavelet-Based Thresholding

- assume model of deterministic signal plus IID Gaussian noise with mean 0 and variance σ_{ϵ}^2 : $\mathbf{X} = \mathbf{D} + \boldsymbol{\epsilon}$
- using a DWT matrix \mathcal{W} , form $\mathbf{W} = \mathcal{W}\mathbf{X} = \mathcal{W}\mathbf{D} + \mathcal{W}\boldsymbol{\epsilon} \equiv \mathbf{d} + \mathbf{e}$
- because $\boldsymbol{\epsilon}$ IID Gaussian, so is \mathbf{e}
- Donoho & Johnstone (1994) advocate the following:
 - form partial DWT of level J_0 : $\mathbf{W}_1, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0}
 - threshold \mathbf{W}_j 's but leave \mathbf{V}_{J_0} alone (i.e., administratively, all $N/2^{J_0}$ scaling coefficients assumed to be part of \mathbf{d})
 - use universal threshold $\delta^{(u)} = \sqrt{2\sigma_{\epsilon}^2 \log(N)}$
 - use thresholding rule to form $\mathbf{W}_{i}^{(t)}$ (hard, etc.)

- estimate **D** by inverse transforming $\mathbf{W}_1^{(t)}, \ldots, \mathbf{W}_{J_0}^{(t)}$ and \mathbf{V}_{J_0}

MAD Scale Estimator: I

- procedure assumes σ_{ϵ} is know, which is not usually the case
- if unknown, use median absolute deviation (MAD) scale estimator to estimate σ_{ϵ} using \mathbf{W}_1

$$\hat{\sigma}_{\text{(mad)}} \equiv \frac{\text{median}\left\{|W_{1,0}|, |W_{1,1}|, \dots, |W_{1,\frac{N}{2}-1}|\right\}}{0.6745}$$

- heuristic: bulk of $W_{1,t}$'s should be due to noise
- '0.6745' yields estimator such that $E\{\hat{\sigma}_{(\text{mad})}\} = \sigma_{\epsilon}$ when $W_{1,t}$'s are IID Gaussian with mean 0 and variance σ_{ϵ}^2 - designed to be robust against large $W_{1,t}$'s due to signal

MAD Scale Estimator: II

• example: suppose \mathbf{W}_1 has 7 small 'noise' coefficients & 2 large 'signal' coefficients (say, a & b, with $2 \ll |a| < |b|$):

 $\mathbf{W}_1 = [1.23, -1.72, -0.80, -0.01, a, 0.30, 0.67, b, -1.33]^T$

• ordering these by their magnitudes yields

0.01, 0.30, 0.67, 0.80, 1.23, 1.33, 1.72, |a|, |b|

• median of these absolute deviations is 1.23, so

 $\hat{\sigma}_{(\text{mad})} = 1.23/0.6745 \doteq 1.82$

• $\hat{\sigma}_{(mad)}$ not influenced adversely by a and b; i.e., scale estimate depends largely on the many small coefficients due to noise

Examples of DWT-Based Thresholding: I

• NMR spectrum
Examples of DWT-Based Thresholding: II

• signal estimate using $J_0 = 6$ partial D(4) DWT with hard thresholding and universal threshold level estimated by $\hat{\delta}^{(u)} = \sqrt{[2\hat{\sigma}^2_{(\text{mad})} \log(N)]} \doteq 6.49$

Examples of DWT-Based Thresholding: III

• same as before, but now using LA(8) DWT with $\hat{\delta}^{(u)} \doteq 6.13$

Examples of DWT-Based Thresholding: IV

• signal estimate using $J_0 = 6$ partial LA(8) DWT, but now with soft thresholding

Examples of DWT-Based Thresholding: V

• signal estimate using $J_0 = 6$ partial LA(8) DWT, but now with mid thresholding

MODWT-Based Thresholding

- can base thresholding procedure on MODWT rather than DWT, yielding signal estimators $\widetilde{\mathbf{D}}^{(ht)}$, $\widetilde{\mathbf{D}}^{(st)}$ and $\widetilde{\mathbf{D}}^{(mt)}$
- because MODWT filters are normalized differently, universal threshold must be adjusted for each level:

$$\tilde{\delta}_{j}^{(u)} \equiv \sqrt{[2\tilde{\sigma}_{(\mathrm{mad})}^{2}\log{(N)}/2^{j}]},$$

where now MAD scale estimator is based on unit scale MODWT wavelet coefficients

• results are identical to what 'cycle spinning' would yield

Examples of MODWT-Based Thresholding: I

• signal estimate using $J_0 = 6 \text{ LA}(8) \text{ MODWT}$ with hard thresholding

Examples of MODWT-Based Thresholding: II

• same as before, but now with soft thresholding

Examples of MODWT-Based Thresholding: III

• same as before, but now with mid thresholding

Signal Estimation via Shrinkage: I

- so far, we have only considered signal estimation via threshold-ing rules, which will map some O_l to zeros
- will now consider shrinkage rules, which differ from thresholding only in that nonzero coefficients are mapped to nonzero values rather than exactly zero (but values can be *very* close to zero!)
- several ways in which shrinkage rules arise will consider a conditional mean approach (identical to a Bayesian approach)

Background on Conditional PDFs: I

- let X and Y be RVs with marginal probability density functions (PDFs) $f_X(\cdot)$ and $f_Y(\cdot)$
- let $f_{X,Y}(x,y)$ be their joint PDF at the point (x,y)
- conditional PDF of Y given X = x is defined as

$$f_{Y|X=x}(y) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

• $f_{Y|X=x}(\cdot)$ is a PDF, so its mean value is

$$E\{Y|X=x\} = \int_{-\infty}^{\infty} y f_{Y|X=x}(y) \, dy;$$

the above is called the conditional mean of Y, given X

Background on Conditional PDFs: II

- suppose RVs X and Y are related, but we can only observe X
- want to approximate unobservable Y based on function of X
- example: X represents a stochastic signal Y buried in noise
- suppose we want our approximation to be the function of X, say $U_2(X)$, such that the mean square difference between Yand $U_2(X)$ is as small as possible; i.e., we want

$$E\{(Y - U_2(X))^2\}$$

to be as small as possible

• solution is to use $U_2(X) = E\{Y|X\}$; i.e., the conditional mean of Y given X is our best guess at Y in the sense of minimizing the mean square error (related to fact that $E\{(Y - a)^2\}$ is smallest when $a = E\{Y\}$)

Conditional Mean Approach: I

- assume model of stochastic signal plus non-IID noise: $\mathbf{X} = \mathbf{C} + \boldsymbol{\eta}$ so that $\mathbf{O} = \mathcal{O}\mathbf{X} = \mathcal{O}\mathbf{C} + \mathcal{O}\boldsymbol{\eta} \equiv \mathbf{R} + \mathbf{n}$
- component-wise, have $O_l = R_l + n_l$
- because **C** and η are independent, **R** and **n** must be also
- suppose we approximate R_l via $\hat{R}_l \equiv U_2(O_l)$, where $U_2(O_l)$ is selected to minimize $E\{(R_l U_2(O_l))^2\}$
- solution is to set $U_2(O_l)$ equal to $E\{R_l|O_l\}$, so let's work out what form this conditional mean takes
- to get $E\{R_l|O_l\}$, need the PDF of R_l given O_l , which is $f_{R_l|O_l=o_l}(r_l) = \frac{f_{R_l,O_l}(r_l,o_l)}{f_{O_l}(o_l)} = \frac{f_{R_l}(r_l)f_{n_l}(o_l-r_l)}{\int_{-\infty}^{\infty} f_{R_l}(r_l)f_{n_l}(o_l-r_l) dr_l}$

Conditional Mean Approach: II

• mean value of $f_{R_l|O_l=o_l}(\cdot)$ yields estimator $\widehat{R}_l = E\{R_l|O_l\}$:

$$E\{R_{l}|O_{l} = o_{l}\} = \int_{-\infty}^{\infty} r_{l}f_{R_{l}|O_{l} = o_{l}}(r_{l}) dr_{l}$$
$$= \frac{\int_{-\infty}^{\infty} r_{l}f_{R_{l}}(r_{l})f_{n_{l}}(o_{l} - r_{l})dr_{l}}{\int_{-\infty}^{\infty} f_{R_{l}}(r_{l})f_{n_{l}}(o_{l} - r_{l}) dr_{l}}$$

- to make further progress, we need a model for the waveletdomain representation R_l of the signal
- heuristic that signal in the wavelet domain has a few large values and lots of small values suggests a Gaussian mixture model

Conditional Mean Approach: III

- let \mathcal{I}_l be an RV such that $\mathbf{P}\left[\mathcal{I}_l = 1\right] = p_l \& \mathbf{P}\left[\mathcal{I}_l = 0\right] = 1 p_l$
- under Gaussian mixture model, R_l has same distribution as

$$\mathcal{I}_l \mathcal{N}(0, \gamma_l^2 \sigma_{G_l}^2) + (1 - \mathcal{I}_l) \mathcal{N}(0, \sigma_{G_l}^2)$$

where $\mathcal{N}(0, \sigma^2)$ is a Gaussian RV with mean 0 and variance σ^2 - 2nd component models small # of large signal coefficients - 1st component models large # of small coefficients ($\gamma_l^2 \ll 1$) • example: PDFs for case $\sigma_{G_l}^2 = 10$, $\gamma_l^2 \sigma_{G_l}^2 = 1$ and $p_l = 0.75$

WMTSA: 410

Conditional Mean Approach: VI

- let's simplify to a 'sparse' signal model by setting $\gamma_l = 0$; i.e., large # of small coefficients are all zero
- distribution for R_l same as $(1 \mathcal{I}_l)\mathcal{N}(0, \sigma_{G_l}^2)$
- \bullet to complete model, let n_l obey a Gaussian distribution with mean 0 and variance $\sigma_{n_l}^2$
- conditional mean estimator becomes $E\{R_l|O_l = o_l\} = \frac{b_l}{1+c_l}o_l$, where

$$c_{l} = \frac{p_{l} \sqrt{(\sigma_{G_{l}}^{2} + \sigma_{n_{l}}^{2})}}{(1 - p_{l})\sigma_{n_{l}}} e^{-o_{l}^{2} b_{l} / (2\sigma_{n_{l}}^{2})}$$

Conditional Mean Approach: VII

- conditional mean shrinkage rule for $p_l = 0.95$ (i.e., $\approx 95\%$ of signal coefficients are 0); $\sigma_{n_l}^2 = 1$; and $\sigma_{G_l}^2 = 5$ (curve furthest from dotted diagonal), 10 and 25 (curve nearest to diagonal)
- as $\sigma_{G_l}^2$ gets large (i.e., large signal coefficients increase in size), shrinkage rule starts to resemble mid thresholding rule

WMTSA: 411-412

Wavelet-Based Shrinkage: I

• assume model of stochastic signal plus Gaussian IID noise: $\mathbf{X} = \mathbf{C} + \boldsymbol{\epsilon}$ so that $\mathbf{W} = \mathcal{W}\mathbf{X} = \mathcal{W}\mathbf{C} + \mathcal{W}\boldsymbol{\epsilon} \equiv \mathbf{R} + \mathbf{e}$

• component-wise, have $W_{j,t} = R_{j,t} + e_{j,t}$

- form partial DWT of level J_0 , shrink \mathbf{W}_j 's, but leave \mathbf{V}_{J_0} alone
- assume $E\{R_{j,t}\} = 0$ (reasonable for \mathbf{W}_j , but not for \mathbf{V}_{J_0})
- use a conditional mean approach with the sparse signal model
 - $R_{j,t}$ has distribution dictated by $(1 \mathcal{I}_{j,t})\mathcal{N}(0, \sigma_G^2)$, where $\mathbf{P}\left[\mathcal{I}_{j,t} = 1\right] = p$ and $\mathbf{P}\left[\mathcal{I}_{j,t} = 0\right] = 1 - p$
 - $-R_{j,t}$'s are assumed to be IID
 - model for $e_{i,t}$ is Gaussian with mean 0 and variance σ_{ϵ}^2
 - note: parameters do not vary with j or t

WMTSA: 424

Wavelet-Based Shrinkage: II

- model has three parameters σ_G^2 , p and σ_{ϵ}^2 , which need to be set
- let σ_R^2 and σ_W^2 be variances of RVs $R_{j,t}$ and $W_{j,t}$
- \bullet have relationships $\sigma_R^2 = (1-p)\sigma_G^2$ and $\sigma_W^2 = \sigma_R^2 + \sigma_\epsilon^2$

$$- \operatorname{set} \hat{\sigma}_{\epsilon}^2 = \hat{\sigma}_{(\mathrm{mad})}^2 \operatorname{using} \mathbf{W}_1$$

- let $\hat{\sigma}_W^2$ be sample mean of all $W_{i,t}^2$
- given p, let $\hat{\sigma}_G^2 = (\hat{\sigma}_W^2 \hat{\sigma}_\epsilon^2)/(1-p)$
- -p usually chosen subjectively, keeping in mind that p is proportion of noise-dominated coefficients (can set based on rough estimate of proportion of 'small' coefficients)

Examples of Wavelet-Based Shrinkage: I

• shrinkage signal estimates of NMR spectrum based upon level $J_0 = 6$ partial LA(8) DWT and conditional mean with p = 0.9

Examples of Wavelet-Based Shrinkage: II

• same as before, but now with p = 0.95

Examples of Wavelet-Based Shrinkage: III

• same as before, but now with p = 0.99 (as $p \rightarrow 1$, we declare there are proportionately fewer significant signal coefficients, implying need for heavier shrinkage)

Comments on 'Next Generation' Denoising: I

• 'classical' denoising looks at each $W_{j,t}$ alone; for 'real world' signals, coefficients often cluster within a given level and persist across adjacent levels (ECG series offers an example)

Comments on 'Next Generation' Denoising: II

- here are some 'next generation' approaches that exploit these 'real world' properties:
 - Crouse *et al.* (1998) use hidden Markov models for stochastic signal DWT coefficients to handle clustering, persistence and non-Gaussianity
 - Huang and Cressie (2000) consider scale-dependent multiscale graphical models to handle clustering and persistence
 - Cai and Silverman (2001) consider 'block' thesholding in which coefficients are thresholded in blocks rather than individually (handles clustering)
 - Dragotti and Vetterli (2003) introduce the notion of 'wavelet footprints' to track discontinuities in a signal across different scales (handles persistence)

Comments on 'Next Generation' Denoising: III

- 'classical' denoising also suffers from problem of overall significance of multiple hypothesis tests
- 'next generation' work integrates idea of 'false discovery rate' (Benjamini and Hochberg, 1995) into denoising (see Wink and Roerdink, 2004, for an applications-oriented discussion)
- for more recent developments (there are a lot!!!), see
 - review article by Antoniadis (2007)
 - Chapters 3 and 4 of book by Nason (2008)
 - October 2009 issue of *Statistica Sinica*, which has a special section entitled 'Multiscale Methods and Statistics: A Productive Marriage'

Wavelet-Based Decorrelation of Time Series: Overview

- DWT well-suited for decorrelating certain time series, including ones generated from a fractionally differenced (FD) process
- on synthesis side, leads to
 - DWT-based simulation of FD processes
 - wavelet-based bootstrapping
- on analysis side, leads to
 - wavelet-based estimators for FD parameters
 - test for homogeneity of variance (will cover briefly)
 - test for trends (won't discuss see Craigmile *et al.*, 2004, for details)

DWT of an FD Process: I

• realization of an FD(0.4) time series **X** along with its sample autocorrelation sequence (ACS): for $\tau \ge 0$,

$$\hat{\rho}_{X,\tau} \equiv \frac{\sum_{t=0}^{N-1-\tau} X_t X_{t+\tau}}{\sum_{t=0}^{N-1} X_t^2}$$

• note that ACS dies down slowly

DWT of an FD Process: II

• LA(8) DWT of FD(0.4) series and sample ACSs for each \mathbf{W}_j & \mathbf{V}_7 , along with 95% confidence intervals for white noise

WMTSA: 341–342

MODWT of an FD Process

• LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT coefficients, none of which are approximately uncorrelated

DWT of an FD Process: III

- in contrast to \mathbf{X} , ACSs for \mathbf{W}_j consistent with white noise
- variance of RVs in \mathbf{W}_{j} increases with j: for FD process,

$$\operatorname{var} \{ W_{j,t} \} \approx c \tau_j^{2\delta} \equiv C_j,$$

where c is a constant depending on δ but not j, and $\tau_j = 2^{j-1}$ is scale associated with \mathbf{W}_j

- for white noise $(\delta = 0)$, var $\{W_{j,t}\}$ is the same for all j
- dependence in \mathbf{X} thus manifests itself in wavelet domain by different variances for wavelet coefficients at different scales

Correlations Within a Scale and Between Two Scales

- let $\{s_{X,\tau}\}$ denote autocovariance sequence (ACVS) for $\{X_t\}$; i.e., $s_{X,\tau} = \operatorname{cov} \{X_t, X_{t+\tau}\}$
- let $\{h_{j,l}\}$ denote equivalent wavelet filter for jth level
- to quantify decorrelation, can write

$$\operatorname{cov}\left\{W_{j,t}, W_{j',t'}\right\} = \sum_{l=0}^{L_j - 1} \sum_{l'=0}^{L_{j'} - 1} h_{j,l} h_{j',l'} s_{X,2^j(t+1) - l - 2^{j'}(t'+1) + l'},$$

from which we can get ACVS (and hence within-scale correlations) for $\{W_{i,t}\}$:

$$\cos\{W_{j,t}, W_{j,t+\tau}\} = \sum_{m=-(L_j-1)}^{L_j-1} s_{X,2^j\tau+m} \sum_{l=0}^{L_j-|m|-1} h_{j,l}h_{j,l+|m|}$$

Correlations Within a Scale

• correlations between $W_{j,t}$ and $W_{j,t+\tau}$ for an FD(0.4) process

- correlations within scale are slightly smaller for Haar
- maximum magnitude of correlation is less than 0.2

Correlations Between Two Scales: I

$$j' = 2 j' = 3 j' = 4 0.2 0.0 j = 1 0.2 0.0 j = 2 0.0 j = 2 0.0 j = 2 0.0 j = 2 0.0 0.2 0.0 j = 3 0.2 0.2 0.2 0.2 0.3 0.2 0.3$$

• correlation between Haar wavelet coefficients $W_{j,t}$ and $W_{j',t'}$ from FD(0.4) process and for levels satisfying $1 \le j < j' \le 4$

Correlations Between Two Scales: II

$$j' = 2 j' = 3 j' = 4 0.2 0.0 j = 1 0.2 0.0 j = 2 0.0 j = 3 0.2 0.2 0.3 0.2 0.3$$

- same as before, but now for LA(8) wavelet coefficients
- correlations between scales decrease as L increases

Wavelet Domain Description of FD Process

- DWT acts as a decorrelating transform for FD processes and other (but not all!) intrinsically stationary processes
- wavelet domain description is simple
 - wavelet coefficients within a given scale approximately uncorrelated (refinement: assume 1st order autoregressive model)
 - wavelet coefficients have scale-dependent variance controlled by the two FD parameters (δ and σ_{ε}^2)
 - wavelet coefficients between scales also approximately uncorrelated (approximation improves as filter width L increases)

DWT-Based Simulation

- properties of DWT of FD processes lead to schemes for simulating time series $\mathbf{X} \equiv [X_0, \dots, X_{N-1}]^T$ with zero mean and with a multivariate Gaussian distribution
- with $N = 2^J$, recall that $\mathbf{X} = \mathcal{W}^T \mathbf{W}$, where

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_j \\ \vdots \\ \mathbf{W}_J \\ \mathbf{V}_J \end{bmatrix}$$

Basic DWT-Based Simulation Scheme

- assume \mathbf{W} to contain N uncorrelated Gaussian (normal) random variables (RVs) with zero mean
- assume \mathbf{W}_j to have variance $C_j = c\tau_j^{2\delta}$
- assume single RV in \mathbf{V}_J to have variance C_{J+1} (see Percival and Walden, 2000, for details on how to set C_{J+1})
- approximate FD time series **X** via $\mathbf{Y} \equiv \mathcal{W}^T \Lambda^{1/2} \mathbf{Z}$, where $-\Lambda^{1/2}$ is $N \times N$ diagonal matrix with diagonal elements 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

$$\underbrace{C_1^{1/2}, \dots, C_1^{1/2}}_{\frac{N}{2} \text{ of these}}, \underbrace{C_2^{1/2}, \dots, C_2^{1/2}}_{\frac{N}{4} \text{ of these}}, \dots, \underbrace{C_{J-1}^{1/2}, C_{J-1}^{1/2}}_{2 \text{ of these}}, C_J^{1/2}, C_{J+1}^{1/2}$$

- ${\bf Z}$ is vector of deviations drawn from a Gaussian distribution with zero mean and unit variance
Refinements to Basic Scheme: I

- \bullet covariance matrix for approximation ${\bf Y}$ does not correspond to that of a stationary process
- \bullet recall ${\mathcal W}$ treats ${\mathbf X}$ as if it were circular
- let \mathcal{T} be $N \times N$ 'circular shift' matrix:

$$\mathcal{T}\begin{bmatrix}Y_0\\Y_1\\Y_2\\Y_3\end{bmatrix} = \begin{bmatrix}Y_1\\Y_2\\Y_3\\Y_0\end{bmatrix}; \quad \mathcal{T}^2\begin{bmatrix}Y_0\\Y_1\\Y_2\\Y_3\end{bmatrix} = \begin{bmatrix}Y_2\\Y_3\\Y_0\\Y_1\end{bmatrix}; \quad \text{etc.}$$

- let κ be uniformily distributed over $0, \ldots, N-1$
- define $\widetilde{\mathbf{Y}} \equiv \mathcal{T}^{\kappa} \mathbf{Y}$
- $\widetilde{\mathbf{Y}}$ is stationary with ACVS given by, say, $s_{\widetilde{Y},\tau}$

Refinements to Basic Scheme: II

- Q: how well does $\{s_{\widetilde{Y},\tau}\}$ match $\{s_{X,\tau}\}$?
- due to circularity, find that $s_{\widetilde{Y},N-\tau} = s_{\widetilde{Y},\tau}$ for $\tau = 1,\ldots,N/2$
- \bullet implies $s_{\widetilde{Y},\tau}$ cannot approximate $s_{X,\tau}$ well for τ close to N
- can patch up by simulating $\widetilde{\mathbf{Y}}$ with M > N elements and then extracting first N deviates (M = 4N works well)

Refinements to Basic Scheme: III

• plot shows true ACVS $\{s_{X,\tau}\}$ (thick curves) for FD(0.4) process and wavelet-based approximate ACVSs $\{s_{\widetilde{Y},\tau}\}$ (thin curves) based on an LA(8) DWT in which an N = 64 series is extracted from M = N, M = 2N and M = 4N series

Example and Some Notes

• simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)

• notes:

- can form realizations faster than best exact method
- can efficiently simulate extremely long time series in 'real-time' (e.g, $N = 2^{30} = 1,073,741,824$ or even longer!)
- effect of random circular shifting is to render time series slightly non-Gaussian (a Gaussian mixture model)

Wavelet-Domain Bootstrapping

- for many (but not all!) time series, DWT acts as a decorrelating transform: to a good approximation, each \mathbf{W}_j is a sample of a white noise process, and coefficients from different sub-vectors \mathbf{W}_j and $\mathbf{W}_{j'}$ are also pairwise uncorrelated
- variance of coefficients in \mathbf{W}_j depends on j
- scaling coefficients \mathbf{V}_{J_0} are still autocorrelated, but there will be just a few of them if J_0 is selected to be large
- decorrelating property holds particularly well for FD and other processes with long-range dependence
- above suggests the following recipe for wavelet-domain bootstrapping of a statistic of interest, e.g., sample autocorrelation sequence $\hat{\rho}_{X,\tau}$ at unit lag $\tau = 1$

Recipe for Wavelet-Domain Bootstrapping

- 1. given **X** of length $N = 2^J$, compute level J_0 DWT (the choice $J_0 = J 3$ yields 8 coefficients in \mathbf{W}_{J_0} and \mathbf{V}_{J_0})
- 2. randomly sample with replacement from \mathbf{W}_j to create bootstrapped vector $\mathbf{W}_j^{(b)}$, $j = 1, \ldots, J_0$
- 3. create V^(b)_{J₀} using 1st-order autoregressive parametric bootstrap
 4. apply W^T to W^(b)₁, ..., W^(b)_{J₀} and V^(b)_{J₀} to obtain bootstrapped time series X^(b) and then form ρ^(b)_{X,1}
 - repeat above many times to build up sample distribution of bootstrapped autocorrelations

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

• Haar DWT of FD(0.45) series \mathbf{X} (left-hand column) and waveletdomain bootstrap thereof (right-hand)

Wavelet-Domain Bootstrapping of FD Series

• approximations to true PDF using (a) Haar & (b) LA(8) wavelets

vertical line indicates $\hat{\rho}_{X,1}$

• using 50 FD time series and the Haar DWT yields:

average of 50 sample means $\doteq 0.35$ (truth $\doteq 0.53$) average of 50 sample SDs $\doteq 0.096$ (truth $\doteq 0.107$)

• using 50 FD time series and the LA(8) DWT yields:

average of 50 sample means $\doteq 0.43$ (truth $\doteq 0.53$) average of 50 sample SDs $\doteq 0.098$ (truth $\doteq 0.107$)

MLEs of FD Parameters: I

- FD process depends on 2 parameters, namely, δ and σ_{ε}^2
- given $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ with $N = 2^J$, suppose we want to estimate δ and σ_{ε}^2
- if X is stationary (i.e. $\delta < 1/2$) and multivariate Gaussian, can use the maximum likelihood (ML) method

MLEs of FD Parameters: II

• definition of Gaussian likelihood function:

$$L(\delta, \sigma_{\varepsilon}^{2} \mid \mathbf{X}) \equiv \frac{1}{(2\pi)^{N/2} |\Sigma_{\mathbf{X}}|^{1/2}} e^{-\mathbf{X}^{T} \Sigma_{\mathbf{X}}^{-1} \mathbf{X}/2}$$

where $\Sigma_{\mathbf{X}}$ is covariance matrix for \mathbf{X} , with (s, t)th element given by $s_{X,s-t}$, and $|\Sigma_{\mathbf{X}}| \& \Sigma_{\mathbf{X}}^{-1}$ denote determinant & inverse

• ML estimators of δ and σ_{ε}^2 maximize $L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X})$ or, equivalently, minimize

$$-2\log\left(L(\delta,\sigma_{\varepsilon}^{2} \mid \mathbf{X})\right) = N\log\left(2\pi\right) + \log\left(|\Sigma_{\mathbf{X}}|\right) + \mathbf{X}^{T}\Sigma_{\mathbf{X}}^{-1}\mathbf{X}$$

- exact MLEs computationally intensive, mainly because of the need to deal with $|\Sigma_{\mathbf{X}}|$ and $\Sigma_{\mathbf{X}}^{-1}$
- good approximate MLEs of considerable interest

MLEs of FD Parameters: III

- key ideas behind first wavelet-based approximate MLEs
 - have seen that we can approximate FD time series \mathbf{X} by $\mathbf{Y} = \mathcal{W}^T \Lambda^{1/2} \mathbf{Z}$, where $\Lambda^{1/2}$ is a diagonal matrix, all of whose diagonal elements are positive
 - since covariance matrix for \mathbf{Z} is I_N , the one for \mathbf{Y} is

 $\mathcal{W}^T \Lambda^{1/2} I_N (\mathcal{W}^T \Lambda^{1/2})^T = \mathcal{W}^T \Lambda^{1/2} \Lambda^{1/2} \mathcal{W} = \mathcal{W}^T \Lambda \mathcal{W} \equiv \widetilde{\Sigma}_{\mathbf{X}},$ where $\Lambda \equiv \Lambda^{1/2} \Lambda^{1/2}$ is also diagonal – can consider $\widetilde{\Sigma}_{\mathbf{X}}$ to be an approximation to $\Sigma_{\mathbf{X}}$

• leads to approximation of log likelihood:

$$-2\log\left(L(\delta,\sigma_{\varepsilon}^{2} \mid \mathbf{X})\right) \approx N\log\left(2\pi\right) + \log\left(|\widetilde{\Sigma}_{\mathbf{X}}|\right) + \mathbf{X}^{T}\widetilde{\Sigma}_{\mathbf{X}}^{-1}\mathbf{X}$$

MLEs of FD Parameters: IV

- Q: so how does this help us?
 - easy to invert $\widetilde{\Sigma}_{\mathbf{X}}$:

$$\widetilde{\Sigma}_{\mathbf{X}}^{-1} = \left(\mathcal{W}^T \Lambda \mathcal{W} \right)^{-1} = \left(\mathcal{W} \right)^{-1} \Lambda^{-1} \left(\mathcal{W}^T \right)^{-1} = \mathcal{W}^T \Lambda^{-1} \mathcal{W},$$

where Λ^{-1} is another diagonal matrix, leading to

$$\mathbf{X}^T \widetilde{\boldsymbol{\Sigma}}_{\mathbf{X}}^{-1} \mathbf{X} = \mathbf{X}^T \mathcal{W}^T \boldsymbol{\Lambda}^{-1} \mathcal{W} \mathbf{X} = \mathbf{W}^T \boldsymbol{\Lambda}^{-1} \mathbf{W}$$

– easy to compute the determinant of $\widetilde{\Sigma}_{\mathbf{X}}$:

$$|\widetilde{\Sigma}_{\mathbf{X}}| = |\mathcal{W}^T \Lambda \mathcal{W}| = |\Lambda \mathcal{W} \mathcal{W}^T| = |\Lambda I_N| = |\Lambda|,$$

and the determinant of a diagonal matrix is just the product of its diagonal elements

MLEs of FD Parameters: V

• define the following three functions of δ :

$$C'_{j}(\delta) \equiv \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[4\sin^{2}(\pi f)]^{\delta}} df \approx \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[2\pi f]^{2\delta}} df$$
$$C'_{J+1}(\delta) \equiv \frac{N\Gamma(1-2\delta)}{\Gamma^{2}(1-\delta)} - \sum_{j=1}^{J} \frac{N}{2^{j}} C'_{j}(\delta)$$
$$\sigma_{\varepsilon}^{2}(\delta) \equiv \frac{1}{N} \left(\frac{V_{J,0}^{2}}{C'_{J+1}(\delta)} + \sum_{j=1}^{J} \frac{1}{C'_{j}(\delta)} \sum_{t=0}^{N-1} W_{j,t}^{2} \right)$$

MLEs of FD Parameters: VI

• wavelet-based approximate MLE $\tilde{\delta}$ for δ is the value that minimizes the following function of δ :

$$\tilde{l}(\delta \mid \mathbf{X}) \equiv N \log(\sigma_{\varepsilon}^{2}(\delta)) + \log(C'_{J+1}(\delta)) + \sum_{j=1}^{J} \frac{N}{2^{j}} \log(C'_{j}(\delta))$$

- once $\tilde{\delta}$ has been determined, MLE for σ_{ε}^2 is given by $\sigma_{\varepsilon}^2(\tilde{\delta})$
- computer experiments indicate scheme works quite well

Other Wavelet-Based Estimators of FD Parameters

- second MLE approach: formulate likelihood directly in terms of nonboundary wavelet coefficients
 - handles stationary or nonstationary FD processes (i.e., need not assume $\delta < 1/2$)
 - handles certain deterministic trends
- alternative to MLEs are least square estimators (LSEs)

- recall that, for large
$$\tau$$
 and for $\beta = 2\delta - 1$, have
 $\log(\nu_X^2(\tau_j)) \approx \zeta + \beta \log(\tau_j)$

- suggests determining δ by regressing $\log(\hat{\nu}_X^2(\tau_j))$ on $\log(\tau_j)$ over range of τ_j
- weighted LSE takes into account fact that variance of $\log(\hat{\nu}_X^2(\tau_j))$ depends upon scale τ_j (increases as τ_j increases)

Homogeneity of Variance: I

• because DWT decorrelates FD and related processes, nonboundary coefficients in \mathbf{W}_{i} should resemble white noise; i.e.,

 $\operatorname{cov}\left\{W_{j,t}, W_{j,t'}\right\} \approx 0$

when $t \neq t'$, and var $\{W_{j,t}\}$ should not depend upon t

- \bullet can test for homogeneity of variance in ${\bf X}$ using ${\bf W}_j$ over a range of levels j
- suppose U_0, \ldots, U_{N-1} are independent normal RVs with $E\{U_t\} = 0$ and var $\{U_t\} = \sigma_t^2$
- want to test null hypothesis $H_0: \sigma_0^2 = \sigma_1^2 = \cdots = \sigma_{N-1}^2$
- can test H_0 versus a variety of alternatives, e.g., $H_1: \sigma_0^2 = \cdots = \sigma_k^2 \neq \sigma_{k+1}^2 = \cdots = \sigma_{N-1}^2$ using normalized cumulative sum of squares

Homogeneity of Variance: II

• to define test statistic D, start with

$$\mathcal{P}_k \equiv \frac{\sum_{j=0}^k U_j^2}{\sum_{j=0}^{N-1} U_j^2}, \quad k = 0, \dots, N-2$$

and then compute $D \equiv \max(D^+, D^-)$, where

$$D^+ \equiv \max_{0 \le k \le N-2} \left(\frac{k+1}{N-1} - \mathcal{P}_k \right) \& D^- \equiv \max_{0 \le k \le N-2} \left(\mathcal{P}_k - \frac{k}{N-1} \right)$$

- can reject H_0 if observed D is 'too large,' where 'too large' is quantified by considering distribution of D under H_0
- need to find critical value x_{α} such that $\mathbf{P}[D \ge x_{\alpha}] = \alpha$ for, e.g., $\alpha = 0.01, 0.05$ or 0.1

Homogeneity of Variance: III

• once determined, can perform α level test of H_0 :

- compute D statistic from data U_0, \ldots, U_{N-1}
- reject H_0 at level α if $D \ge x_{\alpha}$
- fail to reject H_0 at level α if $D < x_{\alpha}$
- can determine critical values x_{α} in two ways
 - Monte Carlo simulations
 - large sample approximation to distribution of D:

$$\mathbf{P}[(N/2)^{1/2}D \ge x] \approx 1 + 2\sum_{l=1}^{\infty} (-1)^l e^{-2l^2 x^2}$$

(reasonable approximation for $N \ge 128$)

Homogeneity of Variance: IV

• idea: given time series $\{X_t\}$, compute D using nonboundary wavelet coefficients $W_{j,t}$ (there are $M'_j \equiv N_j - L'_j$ of these):

$$\mathcal{P}_k \equiv \frac{\sum_{t=L'_j}^k W_{j,t}^2}{\sum_{t=L'_j}^{N_j - 1} W_{j,t}^2}, \quad k = L'_j, \dots, N_j - 2$$

• if null hypothesis rejected at level j, can use nonboundary MODWT coefficients to locate change point based on

$$\widetilde{\mathcal{P}}_k \equiv \frac{\sum_{t=L_j-1}^k \widetilde{W}_{j,t}^2}{\sum_{t=L_j-1}^{N-1} \widetilde{W}_{j,t}^2}, \quad k = L_j - 1, \dots, N - 2$$

along with analogs \widetilde{D}_k^+ and \widetilde{D}_k^- of D_k^+ and D_k^-

WMTSA: 380-381

Example – Annual Minima of Nile River: I

- left-hand plot: annual minima of Nile River
- new measuring device introduced around year 715
- right: Haar $\hat{\nu}_X^2(\tau_j)$ before (**x**'s) and after (**o**'s) year 715.5, with 95% confidence intervals based upon $\chi^2_{\eta_3}$ approximation

Example – Annual Minima of Nile River: II

- based upon last 512 values (years 773 to 1284), plot shows $\tilde{l}(\delta \mid \mathbf{X})$ versus δ for the first wavelet-based approximate MLE using the LA(8) wavelet (upper curve) and corresponding curve for exact MLE (lower)
 - wavelet-based approximate MLE is value minimizing upper curve: $\tilde{\delta} \doteq 0.4532$

- exact MLE is value minimizing lower curve: $\hat{\delta} \doteq 0.4452$

Example – Annual Minima of Nile River: III

• results of testing all Nile River minima for homogeneity of variance using the Haar wavelet filter with critical values determined by computer simulations

				critical levels	
$ au_j$	M'_j	D	10%	5%	1%
1 year	331	0.1559	0.0945	0.1051	0.1262
2 years	165	0.1754	0.1320	0.1469	0.1765
4 years	82	0.1000	0.1855	0.2068	0.2474
8 years	41	0.2313	0.2572	0.2864	0.3436

• can reject null hypothesis of homogeneity of variance at level of significance 0.05 for scales $\tau_1 \& \tau_2$, but not at larger scales

Example – Annual Minima of Nile River: IV

• Nile River minima (top plot) along with curves (constructed per Equation (382)) for scales $\tau_1 \& \tau_2$ (middle & bottom) to identify change point via time of maximum deviation (vertical lines denote year 715)

Summary

- DWT approximately decorrelate certain time series, including ones coming from FD and related processes
- leads to schemes for simulating time series and bootstrapping
- also leads to schemes for estimating parameters of FD process
 - approximate maximum likelihood estimators (two varieties)
 - weighted least squares estimator
- can also devise wavelet-based tests for
 - homogeneity of variance
 - trends (see Craigmile *et al.*, 2004, for details)

References: I

- fractionally differenced processes
 - C. W. J. Granger and R. Joyeux (1980), 'An Introduction to Long-Memory Time Series Models and Fractional Differencing,' *Journal of Time Series Analysis*, 1, pp. 15–29
 - J. R. M. Hosking (1981), 'Fractional Differencing,' Biometrika, 68, pp. 165–76
- wavelet cross-covariance and cross-correlation
 - B. J Whitcher, P. Guttorp and D. B. Percival (2000), 'Wavelet Analysis of Covariance with Application to Atmospheric Time Series,' *Journal of Geophysical Research*, **105**, D11, pp. 14,941–62
 - A. Serroukh and A. T. Walden (2000a), 'Wavelet Scale Analysis of Bivariate Time Series
 I: Motivation and Estimation,' *Journal of Nonparametric Statistics*, 13, pp. 1–36
 - A. Serroukh and A. T. Walden (2000b), 'Wavelet Scale Analysis of Bivariate Time Series II: Statistical Properties for Linear Processes,' *Journal of Nonparametric Statistics*, 13, pp. 37–56
- asymptotic theory for non-Gaussian processes
 - A. Serroukh, A. T. Walden and D. B. Percival (2000), 'Statistical Properties and Uses of the Wavelet Variance Estimator for the Scale Analysis of Time Series,' *Journal of* the American Statistical Association, **95**, pp. 184–96

References: II

- biased estimators of wavelet variance
 - E. M. Aldrich (2005), 'Alternative Estimators of Wavelet Variance,' Masters Thesis, Department of Statistics, University of Washington
- unbiased estimator of wavelet variance for 'gappy' time series
 - D. Mondal and D. B. Percival (2010a), 'Wavelet Variance Analysis for Gappy Time Series,' to appear in Annals of the Institute of Statistical Mathematics
- robust estimation
 - D. Mondal and D. B. Percival (2010b), 'M-Estimation of Wavelet Variance,' to appear in Annals of the Institute of Statistical Mathematics
- wavelet variance for random fields
 - D. Mondal and D. B. Percival (2010c), 'Wavelet Variance Analysis for Random Fields,' under review
- wavelet-based characteristic scales
 - M. J. Keim and D. B. Percival (2010), 'Assessing Characteristic Scales Using Wavelets,' under preparation

References: III

• wavelet-based denoising

- A. Antoniadis (2007), 'Wavelet Methods in Statistics: Some Recent Developments and Their Applications,' *Statistical Surveys*, 1, pp. 16–55
- Y. Benjamini and Y. Hochberg (1995), 'Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing,' *Journal of the Royal Statistical Society, Series B*, 57, pp. 289–300
- T. Cai and B. W. Silverman (2001), 'Incorporating Information on Neighboring Coefficients into Wavelet Estimation,' Sankhya Series B, 63, pp. 127–48
- M. S. Crouse, R. D. Nowak and R. G. Baraniuk (1998), 'Wavelet-Based Statistical Signal Processing Using Hidden Markov Models,' *IEEE Transactions on Signal Processing*, 46, pp. 886–902
- P. L. Dragotti and M. Vetterli (2003), 'Wavelet Footprints: Theory, Algorithms, and Applications,' *IEEE Transactions on Signal Processing*, **51**, pp. 1306–23
- H.-C. Huang and N. Cressie (2000), 'Deterministic/Stochastic Wavelet Decomposition for Recovery of Signal from Noisy Data,' *Technometrics*, 42, pp. 262–76
- G. P. Nason (2008), Wavelet Methods in Statistics with R, Springer, Berlin

References: IV

- A. M. Wink and J. B. T. M. Roerdink (2004), 'Denoising Functional MR Images: A Comparison of Wavelet Denoising and Gaussian Smoothing,' *IEEE Transactions on Medical Imaging*, **23**(3), pp. 374–87
- bootstrapping
 - A. C. Davison and D. V. Hinkley (1997), Bootstrap Methods and their Applications, Cambridge, England: Cambridge University Press
 - D. B. Percival, S. Sardy and A. C. Davison (2001), 'Wavestrapping Time Series: Adaptive Wavelet-Based Bootstrapping,' in *Nonlinear and Nonstationary Signal Processing*, edited by W. J. Fitzgerald, R. L. Smith, A. T. Walden and P. C. Young. Cambridge, England: Cambridge University Press, pp. 442–70
 - A. M. Sabatini (1999), 'Wavelet-Based Estimation of 1/f-Type Signal Parameters: Confidence Intervals Using the Bootstrap,' *IEEE Transactions on Signal Processing*, 47(12), pp. 3406–9
 - A. M. Sabatini (2006), 'A Wavelet-Based Bootstrap Method Applied to Inertial Sensor Stochastic Error Modelling Using the Allan Variance,' *Measurement Science and Technology*, 17, pp. 2980–2988
 - B. J Whitcher (2006), 'Wavelet-Based Bootstrapping of Spatial Patterns on a Finite Lattice,' Computational Statistics & Data Analysis, 50(9), pp. 2399–421

References: V

- decorrelation property of DWTs
 - P. F. Craigmile and D. B. Percival (2005), 'Asymptotic Decorrelation of Between-Scale Wavelet Coefficients', *IEEE Transactions on Information Theory*, **51**, pp. 1039–48
- parameter estimation for FD processes
 - P. F. Craigmile, P. Guttorp and D. B. Percival (2005), 'Wavelet-Based Parameter Estimation for Polynomial Contaminated Fractionally Differenced Processes,' *IEEE Transactions on Signal Processing*, **53**, pp. 3151–61
- testing for homogeneity of variance
 - B. J Whitcher, S. D. Byers, P. Guttorp and D. B. Percival (2002), 'Testing for Homogeneity of Variance in Time Series: Long Memory, Wavelets and the Nile River,' *Water Resources Research*, 38, 10.1029/2001WR000509.
- wavelet-based trend assessment
 - P. F. Craigmile, P. Guttorp and D. B. Percival (2004), 'Trend Assessment in a Long Memory Dependence Model using the Discrete Wavelet Transform,' *Environmetrics*, 15, pp. 313–35