# Wavelet Methods for Time Series Analysis Wavelet Variance: Overview Part II: Wavelet-Based Statistical Analysis of Time Series • review of decomposition of sample variance using wavelets • theoretical wavelet variance for stochastic processes • topics to covered: - stationary processes - wavelet variance (analysis phase of MODWT) - nonstationary processes with stationary differences - wavelet-based signal extraction (synthesis phase of DWT) • sampling theory for Gaussian processes - wavelet-based decorrelation of time series (analysis phase of • real-world examples DWT, but synthesis phase plays a role also) • extensions and summary II–1 II-2**Decomposing Sample Variance of Time Series Empirical Wavelet Variance** • define empirical wavelet variance for scale $\tau_i \equiv 2^{j-1}$ as • let $X_0, X_1, \ldots, X_{N-1}$ represent time series with N values $\tilde{\nu}_X^2(\tau_j) \equiv \frac{1}{N} \sum_{t=0}^{N-1} \widetilde{W}_{j,t}^2, \text{ where } \widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l \bmod N}$ • let $\overline{X}$ denote sample mean of $X_t$ 's: $\overline{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$ • let $\hat{\sigma}_X^2$ denote sample variance of $X_t$ 's: • if $N = 2^J$ , obtain analysis (decomposition) of sample variance: $\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left( X_t - \overline{X} \right)^2$ $\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} \left( X_t - \overline{X} \right)^2 = \sum_{i=1}^J \tilde{\nu}_X^2(\tau_j)$ $\bullet$ idea is to decompose (analyze, break up) $\hat{\sigma}_X^2$ into pieces that quantify how one time series might differ from another (if N not a power of 2, can analyze variance to any level $J_0$ , but need additional component involving scaling coefficients) • wavelet variance does analysis based upon differences between • interpretation: $\tilde{\nu}_X^2(\tau_j)$ is portion of $\hat{\sigma}_X^2$ due to changes in averages over scale $\tau_j$ ; i.e., 'scale by scale' analysis of variance (possibly weighted) adjacent averages over scales

#### **Example of Empirical Wavelet Variance**

• wavelet variances for time series  $X_t$  and  $Y_t$  of length N = 16, each with zero sample mean and same sample variance



Theoretical Wavelet Variance: II

II-5

- if Y is any RV, let  $E\{Y\}$  denote its expectation
- let var  $\{Y\}$  denote its variance: var  $\{Y\} \equiv E\{(Y E\{Y\})^2\}$
- definition of time dependent wavelet variance:

$$\nu_{X,t}^2(\tau_j) \equiv \operatorname{var} \{ \overline{W}_{j,t} \},\$$

- with conditions on  $X_t$  so that var  $\{\overline{W}_{j,t}\}$  exists and is finite
- $\nu_{X.t}^2(\tau_j)$  depends on  $\tau_j$  and t
- will focus on time independent wavelet variance

$$\nu_X^2(\tau_j) \equiv \operatorname{var}\left\{\overline{W}_{j,t}\right\}$$

(can adapt theory to handle time varying situation)

•  $\nu_X^2(\tau_j)$  well-defined for stationary processes and certain related processes, so let's review concept of stationarity

#### WMTSA: 295–296

WMTSA: 298

#### Theoretical Wavelet Variance: I

- now assume  $X_t$  is a real-valued random variable (RV)
- let  $\{X_t, t \in \mathbb{Z}\}$  denote a stochastic process, i.e., collection of RVs indexed by 'time' t (here  $\mathbb{Z}$  denotes the set of all integers)
- apply *j*th level equivalent MODWT filter  $\{\tilde{h}_{j,l}\}$  to  $\{X_t\}$  to create a new stochastic process:

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l}, \quad t \in \mathbb{Z},$$

which should be contrasted with

$$\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \widetilde{h}_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, \dots, N-1$$

WMTSA: 295–296

II-6

#### **Definition of a Stationary Process**

 $\bullet$  if U and V are two RVs, denote their covariance by

$$cov \{U, V\} = E\{(U - E\{U\})(V - E\{V\})\}\$$

- stochastic process  $X_t$  called stationary if
- $-E\{X_t\} = \mu_X$  for all t, i.e., constant independent of t
- $-\cos\{X_t, X_{t+\tau}\} = s_{X,\tau}$ , i.e., depends on lag  $\tau$ , but not t
- $s_{X,\tau}, \tau \in \mathbb{Z}$ , is autocovariance sequence (ACVS)

• 
$$s_{X,0} = \operatorname{cov}\{X_t, X_t\} = \operatorname{var}\{X_t\}$$
; i.e., variance same for all t

#### Wavelet Variance for Stationary Processes

• for stationary processes, wavelet variance decomposes var  $\{X_t\}$ :

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \operatorname{var} \{X_t\},\,$$

which is similar to

$$\sum_{j=1}^{J} \tilde{\nu}_X^2(\tau_j) = \hat{\sigma}_X^2$$

- $\nu_X^2(\tau_j)$  is thus contribution to var  $\{X_t\}$  due to scale  $\tau_j$
- note:  $\nu_X^2(\tau_j)$  and  $X_t^2$  have same units (can be important for interpretability)

WMTSA: 296–297

II–9

#### Wavelet Variance for White Noise Process: I

• for a white noise process, can show that

$$\nu_X^2(\tau_j) = \frac{\operatorname{var}\{X_t\}}{2j} \propto \tau_j^{-1} \text{ since } \tau_j = 2^{j-1}$$

• note that

~~

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \operatorname{var} \{X_t\} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots\right) = \operatorname{var} \{X_t\}$$

as required

• note also that

$$\log\left(\nu_X^2(\tau_j)\right) \propto -\log\left(\tau_j\right),$$

so plot of  $\log(\nu_X^2(\tau_j))$  vs.  $\log(\tau_j)$  is linear with a slope of -1

#### White Noise Process

- simplest example of a stationary process is 'white noise'
- process  $X_t$  said to be white noise if
  - it has a constant mean  $E\{X_t\} = \mu_X$
  - it has a constant variance var  $\{X_t\} = \sigma_X^2$
- $-\cos \{X_t, X_{t+\tau}\} = 0$  for all t and nonzero  $\tau$ ; i.e., distinct RVs in the process are uncorrelated
- ACVS for white noise takes a very simple form:

$$s_{X,\tau} = \operatorname{cov} \{X_t, X_{t+\tau}\} = \begin{cases} \sigma_X^2, & \tau = 0; \\ 0, & \text{otherwise.} \end{cases}$$

WMTSA: 268

II-10

#### Wavelet Variance for White Noise Process: II



- $\nu_X^2(\tau_j)$  versus  $\tau_j$  for  $j = 1, \dots, 8$  (left-hand plot), along with sample of length N = 256 of Gaussian white noise
- largest contribution to var  $\{X_t\}$  is at smallest scale  $\tau_1$
- note: later on, we will discuss fractionally differenced (FD) processes that are characterized by a parameter  $\delta$ ; when  $\delta = 0$ , an FD process is the same as a white noise process

WMTSA: 296-297, 337

#### Generalization to Certain Nonstationary Processes

- if wavelet filter is properly chosen,  $\nu_X^2(\tau_j)$  well-defined for certain processes with stationary backward differences (increments); these are also known as intrinsically stationary processes
- first order backward difference of  $X_t$  is process defined by

$$X_t^{(1)} = X_t - X_{t-}$$

• second order backward difference of  $X_t$  is process defined by

$$X_t^{(2)} = X_t^{(1)} - X_{t-1}^{(1)} = X_t - 2X_{t-1} + X_{t-2}$$

•  $X_t$  said to have dth order stationary backward differences if

$$Y_t \equiv \sum_{k=0}^d \binom{d}{k} (-1)^k X_{t-k}$$

forms a stationary process (d is a nonnegative integer)

WMTSA: 287–289

II-13

#### Wavelet Variance for Processes with Stationary Backward Differences: I

- let  $\{X_t\}$  be nonstationary with dth order stationary differences
- if we use a Daubechies wavelet filter of width L satisfying  $L \ge 2d$ , then  $\nu_X^2(\tau_j)$  is well-defined and finite for all  $\tau_j$ , but now

$$\sum_{j=1}^{\infty}\nu_X^2(\tau_j)=\infty$$

• works because there is a backward difference operator of order d = L/2 embedded within  $\{\tilde{h}_{j,l}\}$ , so this filter reduces  $X_t$  to

$$\sum_{k=0}^{d} \binom{d}{k} (-1)^k X_{t-k} = Y_t$$

and then creates localized weighted averages of  $Y_t$ 's

#### WMTSA: 305

#### **Examples of Processes with Stationary Increments**



1st column shows, from top to bottom, realizations from

(a) random walk: X<sub>t</sub> = Σ<sup>t</sup><sub>u=1</sub> ε<sub>u</sub>, & ε<sub>t</sub> is zero mean white noise
(b) like (a), but now ε<sub>t</sub> has mean of -0.2
(c) random run: X<sub>t</sub> = Σ<sup>t</sup><sub>u=1</sub> Y<sub>u</sub>, where Y<sub>t</sub> is a random walk

2nd & 3rd columns show 1st & 2nd differences X<sup>(1)</sup><sub>t</sub> and X<sup>(2)</sup><sub>t</sub>

II-14

#### Wavelet Variance for Random Walk Process: I

- random walk process  $X_t = \sum_{u=1}^t \epsilon_u$  has first order (d = 1) stationary differences since  $X_t X_{t-1} = \epsilon_t$  (i.e., white noise)
- $L \ge 2d$  holds for all wavelets when d = 1; for Haar (L = 2),

$$\nu_X^2(\tau_j) = \frac{\operatorname{var}\left\{\epsilon_t\right\}}{6} \left(\tau_j + \frac{1}{2\tau_j}\right) \approx \frac{\operatorname{var}\left\{\epsilon_t\right\}}{6} \tau_j,$$

with the approximation becoming better as  $\tau_i$  increases

- note that  $\nu_X^2(\tau_j)$  increases as  $\tau_j$  increases
- $\log(\nu_X^2(\tau_j)) \propto \log(\tau_j)$  approximately, so plot of  $\log(\nu_X^2(\tau_j))$  vs.  $\log(\tau_j)$  is approximately linear with a slope of +1
- $\bullet$  as required, also have

$$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \frac{\operatorname{var}\left\{\epsilon_t\right\}}{6} \left(1 + \frac{1}{2} + 2 + \frac{1}{4} + 4 + \frac{1}{8} + \cdots\right) = \infty$$



II-20

WMTSA: 287-288, 297



WMTSA: 256–257

II-24

WMTSA: 299-301, 305

II-23

#### **Background on Chi-Square Random Variables**

• X said to be a chi-square RV with  $\eta$  degrees of freedom if its probability density function (PDF) is given by

$$f_X(x;\eta) = \frac{1}{2^{\eta/2} \Gamma(\eta/2)} x^{(\eta/2)-1} e^{-x/2}, \quad x \ge 0, \ \eta > 0$$

- $\chi_n^2$  denotes RV with above PDF
- two important facts:  $E\{\chi_{\eta}^2\} = \eta$  and  $\operatorname{var}\{\chi_{\eta}^2\} = 2\eta$
- let  $Q_{\eta}(p)$  denote the *p*th percentage point for the RV  $\chi_{\eta}^2$ :

$$\mathbf{P}[\chi_{\eta}^2 \le Q_{\eta}(p)] = p$$

WMTSA: 263–264

II-25

#### Unbiased Estimator of Wavelet Variance: I

- given a realization of  $X_0, X_1, \ldots, X_{N-1}$  from a process with dth order stationary differences, want to estimate  $\nu_X^2(\tau_j)$
- for wavelet filter such that  $L \ge 2d$  and  $E\{\overline{W}_{i,t}\} = 0$ , have

$$\nu_X^2(\tau_j) = \operatorname{var}\left\{\overline{W}_{j,t}\right\} = E\{\overline{W}_{j,t}^2\}$$

• can base estimator on squares of

$$\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \widetilde{h}_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, \dots, N-1$$

• recall that

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l}, \qquad t \in \mathbb{Z}$$

WMTSA: 306

II-27

#### **Expected Value of Wavelet Coefficients**

- in preparation for considering problem of estimating  $\nu_X^2(\tau_j)$  given an observed time series, need to consider  $E\{\overline{W}_{j,t}\}$
- if  $\{X_t\}$  is nonstationary but has dth order stationary increments, let  $\{Y_t\}$  bestationary process obtained by differencing  $\{X_t\}$  d times; if  $\{X_t\}$  is stationary (d = 0 case), let  $Y_t = X_t$
- with  $\mu_Y \equiv E\{Y_t\}$ , have
  - $-E\{\overline{W}_{j,t}\} = 0 \text{ if either (i) } L > 2d \text{ or (ii) } L = 2d \text{ and } \mu_Y = 0$  $-E\{\overline{W}_{j,t}\} \neq 0 \text{ if } \mu_Y \neq 0 \text{ and } L = 2d$
- thus have  $E{\overline{W}_{j,t}} = 0$  if L is picked large enough (L > 2d is sufficient, but might not be necessary)
- knowing  $E\{\overline{W}_{j,t}\} = 0$  eases job of estimating  $\nu_X^2(\tau_j)$  considerably

```
WMTSA: 304–305
```

II-26

#### Unbiased Estimator of Wavelet Variance: II

• comparing

$$\widetilde{W}_{j,t} = \sum_{l=0}^{L_j - 1} \widetilde{h}_{j,l} X_{t-l \mod N} \text{ with } \overline{W}_{j,t} \equiv \sum_{l=0}^{L_j - 1} \widetilde{h}_{j,l} X_{t-l}$$

says that  $\widetilde{W}_{j,t} = \overline{W}_{j,t}$  if 'mod N' not needed; this happens when  $L_j - 1 \leq t < N$  (recall that  $L_j = (2^j - 1)(L - 1) + 1$ )

• if  $N - L_j \ge 0$ , unbiased estimator of  $\nu_X^2(\tau_j)$  is

$$\hat{\nu}_X^2(\tau_j) \equiv \frac{1}{N - L_j + 1} \sum_{t=L_j - 1}^{N-1} \widetilde{W}_{j,t}^2 = \frac{1}{M_j} \sum_{t=L_j - 1}^{N-1} \overline{W}_{j,t}^2$$

where  $M_j \equiv N - L_j + 1$ 

WMTSA: 306

II-28

# Statistical Properties of $\hat{\nu}_X^2(\tau_j)$

- assume that  $\{\overline{W}_{j,t}\}$  is Gaussian stationary process with mean zero and ACVS  $\{s_{j,\tau}\}$
- suppose  $\{s_{j,\tau}\}$  is such that

$$A_j \equiv \sum_{\tau = -\infty}^{\infty} s_{j,\tau}^2 < \infty$$

(if  $A_j = \infty$ , can make it finite usually by just increasing L) • can show that  $\hat{\nu}_X^2(\tau_j)$  is asymptotically Gaussian with mean  $\nu_X^2(\tau_j)$  and large sample variance  $2A_j/M_j$ ; i.e.,  $\hat{\nu}_X^2(\tau_j) - \nu_X^2(\tau_j) - \frac{M_j^{1/2}(\hat{\nu}_X^2(\tau_j) - \nu_X^2(\tau_j))}{2} \stackrel{\text{d}}{=} \mathcal{N}(0, 1)$ 

$$\frac{A(j) - A(j)}{(2A_j/M_j)^{1/2}} = \frac{(j - (A + j))}{(2A_j)^{1/2}} \stackrel{\text{def}}{=} \mathcal{N}$$
  
approximately for large  $M_j \equiv N - L_j + 1$ 

WMTSA: 307

# Confidence Intervals for $\nu_X^2(\tau_j)$ : I

II-29

• based upon large sample theory, can form a 100(1-2p)% confidence interval (CI) for  $\nu_X^2(\tau_j)$ :

$$\left[\hat{\nu}_X^2(\tau_j) - \Phi^{-1}(1-p)\frac{\sqrt{2A_j}}{\sqrt{M_j}}, \hat{\nu}_X^2(\tau_j) + \Phi^{-1}(1-p)\frac{\sqrt{2A_j}}{\sqrt{M_j}}\right];$$

- i.e., random interval traps unknown  $\nu_X^2(\tau_j)$  with probability 1-2p
- if  $A_j$  replaced by  $\hat{A}_j$ , get approximate 100(1-2p)% CI
- critique: lower limit of CI can very well be negative even though  $\nu_X^2(\tau_j) \ge 0$  always
- $\bullet$  can avoid this problem by using a  $\chi^2$  approximation

## Estimation of $A_j$

- in practical applications, need to estimate  $A_j = \sum_{\tau} s_{j,\tau}^2$
- can argue that, for large  $M_j$ , the estimator

$$\hat{A}_{j} \equiv \frac{\left(\hat{s}_{j,0}^{(p)}\right)^{2}}{2} + \sum_{\tau=1}^{M_{j}-1} \left(\hat{s}_{j,\tau}^{(p)}\right)^{2},$$

is approximately unbiased, where

$$\hat{s}_{j,\tau}^{(p)} \equiv \frac{1}{M_j} \sum_{t=L_j-1}^{N-1-|\tau|} \widetilde{W}_{j,t} \widetilde{W}_{j,t+|\tau|}, \quad 0 \le |\tau| \le M_j - 1$$

• Monte Carlo results:  $\hat{A}_j$  reasonably good for  $M_j \ge 128$ 

WMTSA: 312

II-30

# Confidence Intervals for $\nu_X^2(\tau_j)$ : II

•  $\chi^2_{\eta}$  useful for approximating distribution of sum of squared Gaussian RVs, which is what we are dealing with here:

$$\hat{\nu}_X^2(\tau_j) = \frac{1}{M_j} \sum_{t=L_j-1}^{N-1} \overline{W}_{j,t}^2$$

- idea is to assume  $\hat{\nu}_X^2(\tau_j) \stackrel{d}{=} a \chi_{\eta}^2$ , where a and  $\eta$  are constants to be set via moment matching
- because  $E\{\chi_{\eta}^2\} = \eta$  and var  $\{\chi_{\eta}^2\} = 2\eta$ , we have  $E\{a\chi_{\eta}^2\} = a\eta$ and var  $\{a\chi_{\eta}^2\} = 2a^2\eta$
- can equate  $E\{\hat{\nu}_X^2(\tau_j)\}$  & var  $\{\hat{\nu}_X^2(\tau_j)\}$  to  $a\eta$  &  $2a^2\eta$  to determine a &  $\eta$

# Confidence Intervals for $\nu_X^2(\tau_i)$ : III

• obtain

$$\eta = \frac{2\left(E\{\hat{\nu}_X^2(\tau_j)\}\right)^2}{\operatorname{var}\{\hat{\nu}_X^2(\tau_j)\}} = \frac{2\nu_X^4(\tau_j)}{\operatorname{var}\{\hat{\nu}_X^2(\tau_j)\}} \text{ and } a = \frac{\nu_X^2(\tau_j)}{\nu}$$

• after  $\eta$  has been determined, can obtain a CI for  $\nu_X^2(\tau_i)$ : with probability 1-2p, the random interval

$$\left[\frac{\eta\hat{\nu}_X^2(\tau_j)}{Q_\eta(1-p)},\frac{\eta\hat{\nu}_X^2(\tau_j)}{Q_\eta(p)}\right]$$

traps the true unknown  $\nu_X^2(\tau_i)$ 

• lower limit is now nonnegative

• as  $N \to \infty$ , above CI and Gaussian-based CI converge

WMTSA: 313

II-33



#### Three Ways to Set $\eta$

1. use large sample theory with appropriate estimates:

$$\eta = \frac{2\nu_X^4(\tau_j)}{\operatorname{var}\left\{\hat{\nu}_X^2(\tau_j)\right\}} \approx \frac{2\nu_X^4(\tau_j)}{2A_j/M_j} \text{ suggests } \hat{\eta}_1 = \frac{M_j\hat{\nu}_X^4(\tau_j)}{\hat{A}_j}$$

2. make an assumption about the effect of wavelet filter on  $\{X_t\}$ to obtain simple approximation

$$\eta_3 = \max\{M_j/2^j, 1\}$$

(this effective – but conservative – approach is valuable if there are insufficient data to reliably estimate  $A_i$ )

3. third way requires assuming shape of spectral density function associated with  $\{X_t\}$  (questionable assumption, but common practice in, e.g., atomic clock literature)

WMTSA: 313-315

II-34

## Atomic Clock Deviates: II

- top plot: errors  $\{X_t\}$  in time kept by atomic clock 571 (measured in microseconds: 1,000,000 microseconds = 1 second)
- middle: 1st backward differences  $\{X_t^{(1)}\}$  in nanoseconds (1000 nanoseconds = 1 microsecond)
- bottom: 2nd backward differences  $\{X_t^{(2)}\}$ , also in nanoseconds
- if  $\{X_t\}$  nonstationary with dth order stationary increments, need  $L \ge 2d$ , but might need L > 2d to get  $E\{\overline{W}_{i,t}\} = 0$
- might regard  $\{X_t^{(1)}\}$  as realization of stationary process, but, if so, with a mean value far from 0;  $\{X_t^{(2)}\}$  resembles realization of stationary process, but mean value still might not be 0 if we believe there is a linear trend in  $\{X_t^{(1)}\}$ ; thus might need  $L \geq 6$ , but could get away with  $L \geq 4$ WMTSA: 317-318

II-36



#### Atomic Clock Deviates: IV

square roots of wavelet variance estimates for atomic clock time errors {X<sub>t</sub>} based upon unbiased MODWT estimator with

Haar wavelet (x's in left-hand plot, with linear fit)
D(4) wavelet (circles in left- and right-hand plots)
D(6) wavelet (pluses in left-hand plot).

Haar wavelet inappropriate

need {X<sub>t</sub><sup>(1)</sup>} to be a realization of a stationary process with mean 0 (stationarity might be OK, but mean 0 is way off)
linear appearance can be explained in terms of nonzero mean

95% confidence intervals in the right-hand plot are the square roots of intervals computed using the chi-square approximation with η given by η̂<sub>1</sub> for j = 1,..., 6 and by η<sub>3</sub> for j = 7 & 8

#### Wavelet Variance Analysis of Time Series with Time-Varying Statistical Properties

- each wavelet coefficient  $\widetilde{W}_{j,t}$  formed using portion of  $X_t$
- suppose  $X_t$  associated with actual time  $t_0 + t \Delta t$ 
  - $* t_0$  is actual time of first observation  $X_0$
  - $\ast \, \Delta t$  is spacing between adjacent observations
- suppose  $\tilde{h}_{j,l}$  is least asymmetric Daubechies wavelet
- can associate  $\widetilde{W}_{j,t}$  with an interval of width  $2\tau_j \Delta t$  centered at  $t_0 + (2^j(t+1) - 1 - |\nu_j^{(H)}| \mod N) \Delta t$ ,
- where, e.g.,  $|\nu_j^{(H)}| = [7(2^j 1) + 1]/2$  for LA(8) wavelet
- can thus form 'localized' wavelet variance analysis (implicitly assumes stationarity or stationary increments locally)

WMTSA: 114–115



#### Some Extensions

- wavelet cross-covariance and cross-correlation (Whitcher, Guttorp and Percival, 2000; Serroukh and Walden, 2000a, 2000b)
- asymptotic theory for non-Gaussian processes satisfying a certain 'mixing' condition (Serroukh, Walden and Percival, 2000)
- biased estimators of wavelet variance (Aldrich, 2005)
- unbiased estimator of wavelet variance for 'gappy' time series (Mondal and Percival, 2010a)
- robust estimation (Mondal and Percival, 2010b)
- wavelet variance for random fields (Mondal and Percival, 2010c)
- wavelet-based characteristic scales (Keim and Percival, 2010)

II-45

#### Wavelet-Based Signal Extraction: Overview

- outline key ideas behind wavelet-based approach
- description of four basic models for signal estimation
- discussion of why wavelets can help estimate certain signals
- simple thresholding & shrinkage schemes for signal estimation
- wavelet-based thresholding and shrinkage
- discuss some extensions to basic approach

#### Summary

- wavelet variance gives scale-based analysis of variance
- presented statistical theory for Gaussian processes with stationary increments
- in addition to the applications we have considered, the wavelet variance has been used to analyze
- genome sequences
- changes in variance of soil properties
- canopy gaps in forests
- accumulation of snow fields in polar regions
- boundary layer atmospheric turbulence
- regular and semiregular variable stars

II-46

#### Wavelet-Based Signal Estimation: I

- DWT analysis of  $\mathbf{X}$  yields  $\mathbf{W} = \mathcal{W}\mathbf{X}$
- DWT synthesis  $\mathbf{X} = \mathcal{W}^T \mathbf{W}$  yields multiresolution analysis by splitting  $\mathcal{W}^T \mathbf{W}$  into pieces associated with different scales
- DWT synthesis can also estimate 'signal' hidden in  $\mathbf{X}$  if we can modify  $\mathbf{W}$  to get rid of noise in the wavelet domain
- if  $\mathbf{W}'$  is a 'noise reduced' version of  $\mathbf{W}$ , can form signal estimate via  $\mathcal{W}^T \mathbf{W}'$

#### Wavelet-Based Signal Estimation: II

- key ideas behind simple wavelet-based signal estimation
- certain signals can be efficiently described by the DWT using
  - \* all of the scaling coefficients
  - \* a small number of 'large' wavelet coefficients
- noise is manifested in a large number of 'small' wavelet coefficients
- can either 'threshold' or 'shrink' wavelet coefficients to eliminate noise in the wavelet domain
- key ideas led to wavelet thresholding and shrinkage proposed by Donoho, Johnstone and coworkers in 1990s

WMTSA: 393-394

II-49

#### Models for Signal Estimation: II

- leads to four basic 'signal + noise' models for  $\mathbf{X}$
- 1.  $\mathbf{X} = \mathbf{D} + \boldsymbol{\epsilon}$
- 2.  $\mathbf{X} = \mathbf{D} + \boldsymbol{\eta}$
- 3.  $\mathbf{X} = \mathbf{C} + \boldsymbol{\epsilon}$
- 4.  $\mathbf{X} = \mathbf{C} + \boldsymbol{\eta}$
- in the latter two cases, the stochastic signal **C** is assumed to be independent of the associated noise

#### Models for Signal Estimation: I

- will consider two types of signals:
  - 1. **D**, an N dimensional deterministic signal
- 2. **C**, an *N* dimensional stochastic signal; i.e., a vector of random variables (RVs) with covariance matrix  $\Sigma_{\mathbf{C}}$
- will consider two types of noise:
  - 1.  $\boldsymbol{\epsilon}$ , an N dimensional vector of independent and identically distributed (IID) RVs with mean 0 and covariance matrix  $\Sigma_{\boldsymbol{\epsilon}} = \sigma_{\epsilon}^2 I_N$
- 2.  $\boldsymbol{\eta}$ , an N dimensional vector of non-IID RVs with mean 0 and covariance matrix  $\Sigma_{\boldsymbol{\eta}}$ 
  - \* one form: RVs independent, but have different variances
  - $\ast$  another form of non-IID: RVs are correlated

WMTSA: 393–394

II-50

## Signal Representation via Wavelets: I

- consider  $\mathbf{X} = \mathbf{D} + \boldsymbol{\epsilon}$  first
- signal estimation problem is simplified if we can assume that the important part of **D** is in its large values
- assumption is not usually viable in the original (i.e., time domain) representation **D**, but might be true in another domain
- $\bullet$  an orthonormal transform  ${\cal O}$  might be useful because
  - $-\mathbf{d} = \mathcal{O}\mathbf{D}$  is equivalent to  $\mathbf{D}$  (since  $\mathbf{D} = \mathcal{O}^T\mathbf{d}$ )
  - we might be able to find  ${\cal O}$  such that the signal is isolated in  $M\ll N$  large transform coefficients
- Q: how can we judge whether a particular  $\mathcal{O}$  might be useful for representing **D**?

#### Signal Representation via Wavelets: II

- let  $d_j$  be the *j*th transform coefficient in  $\mathbf{d} = \mathcal{O}\mathbf{D}$
- let  $d_{(0)}, d_{(1)}, \dots, d_{(N-1)}$  be the  $d_j$ 's reordered by magnitude:  $|d_{(0)}| \ge |d_{(1)}| \ge \dots \ge |d_{(N-1)}|$
- example: if  $\mathbf{d} = [-3, 1, 4, -7, 2, -1]^T$ , then  $d_{(0)} = d_3 = -7$ ,  $d_{(1)} = d_2 = 4$ ,  $d_{(2)} = d_0 = -3$  etc.
- define a normalized partial energy sequence (NPES):

$$C_{M-1} \equiv \frac{\sum_{j=0}^{M-1} |d_{(j)}|^2}{\sum_{j=0}^{N-1} |d_{(j)}|^2} = \frac{\text{energy in largest } M \text{ terms}}{\text{total energy in signal}}$$

• let  $\mathcal{I}_M$  be  $N \times N$  diagonal matrix whose *j*th diagonal term is 1 if  $|d_j|$  is one of the *M* largest magnitudes and is 0 otherwise

WMTSA: 394–395

II-53

#### Signal Representation via Wavelets: IV



- consider three signals plotted above
- $\mathbf{D}_1$  is a sinusoid, which can be represented succinctly by the discrete Fourier transform (DFT)
- $\mathbf{D}_2$  is a bump (only a few nonzero values in the time domain)
- $\mathbf{D}_3$  is a linear combination of  $\mathbf{D}_1$  and  $\mathbf{D}_2$

#### Signal Representation via Wavelets: III

## Signal Representation via Wavelets: V

- consider three different orthonormal transforms
  - identity transform I (time)
  - the orthonormal DFT  $\mathcal{F}$  (frequency), where  $\mathcal{F}$  has (k, t)th element  $\exp(-i2\pi tk/N)/\sqrt{N}$  for  $0 \le k, t \le N-1$
  - the LA(8) DWT  $\mathcal{W}$  (wavelet)
- # of terms M needed to achieve relative error < 1%:

|               | $\mathbf{D}_1$ | $\mathbf{D}_2$ | $\mathbf{D}_3$ |
|---------------|----------------|----------------|----------------|
| DFT           | 2              | 29             | 28             |
| identity      | 105            | 9              | 75             |
| LA(8) wavelet | 22             | 14             | 21             |

WMTSA: 395-396



#### Signal Estimation via Thresholding: II

• hard thresholding is strategy that arises from solution to simple optimization problem, namely, find  $\widehat{\mathbf{D}}_M$  such that

$$\gamma_m \equiv \|\mathbf{X} - \widehat{\mathbf{D}}_m\|^2 + m\delta^2$$

is minimized over all possible  $\widehat{\mathbf{D}}_m = \mathcal{O}^T \mathcal{I}_m \mathbf{O}, \ m = 0, \dots, N$ 

- $\delta$  is a fixed parameter that is set *a priori* (we assume  $\delta > 0$ )
- $\|\mathbf{X} \widehat{\mathbf{D}}_m\|^2$  is a measure of 'fidelity'
- rationale for this term:  $\widehat{\mathbf{D}}_m$  shouldn't stray too far from **X** (particularly if signal-to-noise ratio is high)
- fidelity increases (the measure decreases) as m increases
- in minimizing  $\gamma_m$ , consideration of this term alone suggests that m should be large

WMTSA: 398

II-61

#### Signal Estimation via Thresholding: IV

• alternative scheme is 'soft thresholding:'

$$O_l^{(st)} = \operatorname{sign} \{O_l\} (|O_l| - \delta)_+,$$

where

$$\operatorname{sign} \{O_l\} \equiv \begin{cases} +1, & \text{if } O_l > 0; \\ 0, & \text{if } O_l = 0; \\ -1, & \text{if } O_l < 0. \end{cases} \text{ and } (x)_+ \equiv \begin{cases} x, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$$

• one rationale for soft thresholding: fits into Stein's class of estimators, for which unbiased estimation of risk is possible

### Signal Estimation via Thresholding: III

- $m\delta^2$  is a penalty for too many terms
  - rationale: heuristic says  $\mathbf{d}=\mathcal{O}\mathbf{D}$  consists of just a few large coefficients
  - penalty increases as m increases
  - in minimizing  $\gamma_m$ , consideration of this term alone suggests that m should be small
- optimization problem: balance off fidelity & parsimony
- can show that  $\gamma_m = \|\mathbf{X} \widehat{\mathbf{D}}_m\|^2 + m\delta^2$  is minimized when m is set such that  $\mathcal{I}_m$  picks out all coefficients satisfying  $O_i^2 > \delta^2$

WMTSA: 398

II-62

#### Soft Thresholding Function



WMTSA: 399–400

### Signal Estimation via Thresholding: V

• third scheme is 'mid thresholding:'

$$O_l^{(mt)} = \operatorname{sign} \{O_l\} (|O_l| - \delta)_{++},$$

where

$$(|O_l| - \delta)_{++} \equiv \begin{cases} 2(|O_l| - \delta)_+, & \text{if } |O_l| < 2\delta \\ |O_l|, & \text{otherwise} \end{cases}$$

• provides compromise between hard and soft thresholding

WMTSA: 399–400

#### II-65

#### Signal Estimation via Thresholding: VI

• example of mid thresholding with  $\delta = 1$ 





## Universal Threshold

- Q: how do we go about setting  $\delta$ ?
- specialize to IID Gaussian noise  $\boldsymbol{\epsilon}$  with covariance  $\sigma_{\boldsymbol{\epsilon}}^2 I_N$
- can argue  $\mathbf{e} \equiv \mathcal{O} \boldsymbol{\epsilon}$  is also IID Gaussian with covariance  $\sigma_{\boldsymbol{\epsilon}}^2 I_N$
- Donoho & Johnstone (1995) proposed  $\delta^{(u)} \equiv \sqrt{[2\sigma_{\epsilon}^2 \log(N)]}$ ('log' here is 'log base e')
- rationale for  $\delta^{(u)}$ : because of Gaussianity, can argue that

$$\mathbf{P}\left[\max_{l}\{|e_{l}|\} > \delta^{(u)}\right] \le \frac{1}{\sqrt{[4\pi\log\left(N\right)]}} \to 0 \text{ as } N \to \infty$$

and hence  $\mathbf{P}\left[\max_{l}\{|e_{l}\}| \leq \delta^{(u)}\right] \to 1 \text{ as } N \to \infty$ , so no noise will exceed threshold in the limit

WMTSA: 400–402



WMTSA: 418

II-72



#### **MODWT-Based Thresholding**

- can base thresholding procedure on MODWT rather than DWT, yielding signal estimators  $\widetilde{\mathbf{D}}^{(ht)}$ ,  $\widetilde{\mathbf{D}}^{(st)}$  and  $\widetilde{\mathbf{D}}^{(mt)}$
- because MODWT filters are normalized differently, universal threshold must be adjusted for each level:

$$\tilde{\delta}_{j}^{(u)} \equiv \sqrt{[2\tilde{\sigma}_{(\mathrm{mad})}^{2}\log{(N)}/2^{j}]},$$

where now MAD scale estimator is based on unit scale MODWT wavelet coefficients

II-77

**Examples of MODWT-Based Thresholding: II** 

• results are identical to what 'cycle spinning' would yield

Examples of MODWT-Based Thresholding: I



 $\bullet$  signal estimate using  $J_0=6$  LA(8) MODWT with hard thresholding

II-78





• same as before, but now with soft thresholding

## Examples of MODWT-Based Thresholding: III



• same as before, but now with mid thresholding

WMTSA: 429-430

WMTSA: 429-430

WMTSA: 429-430

WMTSA: 429-430

#### Signal Estimation via Shrinkage: I

- so far, we have only considered signal estimation via thresholding rules, which will map some  $O_l$  to zeros
- will now consider shrinkage rules, which differ from thresholding only in that nonzero coefficients are mapped to nonzero values rather than exactly zero (but values can be *very* close to zero!)
- several ways in which shrinkage rules arise will consider a conditional mean approach (identical to a Bayesian approach)

#### Background on Conditional PDFs: II

II-81

- $\bullet$  suppose RVs X and Y are related, but we can only observe X
- want to approximate unobservable Y based on function of X
- example: X represents a stochastic signal Y buried in noise
- suppose we want our approximation to be the function of X, say  $U_2(X)$ , such that the mean square difference between Yand  $U_2(X)$  is as small as possible; i.e., we want

$$E\{(Y - U_2(X))^2\}$$

to be as small as possible

• solution is to use  $U_2(X) = E\{Y|X\}$ ; i.e., the conditional mean of Y given X is our best guess at Y in the sense of minimizing the mean square error (related to fact that  $E\{(Y - a)^2\}$  is smallest when  $a = E\{Y\}$ )

#### WMTSA: 260

#### Background on Conditional PDFs: I

- let X and Y be RVs with marginal probability density functions (PDFs)  $f_X(\cdot)$  and  $f_Y(\cdot)$
- let  $f_{X,Y}(x,y)$  be their joint PDF at the point (x,y)
- conditional PDF of Y given X = x is defined as

$$f_{Y|X=x}(y) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

•  $f_{Y|X=x}(\cdot)$  is a PDF, so its mean value is

$$E\{Y|X=x\} = \int_{-\infty}^{\infty} y f_{Y|X=x}(y) \, dy;$$

the above is called the conditional mean of Y, given X

#### WMTSA: 258-260

II-82

#### Conditional Mean Approach: I

- assume model of stochastic signal plus non-IID noise:  $\mathbf{X} = \mathbf{C} + \boldsymbol{\eta}$  so that  $\mathbf{O} = \mathcal{O}\mathbf{X} = \mathcal{O}\mathbf{C} + \mathcal{O}\boldsymbol{\eta} \equiv \mathbf{R} + \mathbf{n}$
- component-wise, have  $O_l = R_l + n_l$
- because **C** and  $\eta$  are independent, **R** and **n** must be also
- suppose we approximate  $R_l$  via  $\hat{R}_l \equiv U_2(O_l)$ , where  $U_2(O_l)$  is selected to minimize  $E\{(R_l U_2(O_l))^2\}$
- solution is to set  $U_2(O_l)$  equal to  $E\{R_l|O_l\}$ , so let's work out what form this conditional mean takes
- to get  $E\{R_l|O_l\}$ , need the PDF of  $R_l$  given  $O_l$ , which is

$$f_{R_l|O_l=o_l}(r_l) = \frac{f_{R_l,O_l}(r_l,o_l)}{f_{O_l}(o_l)} = \frac{f_{R_l}(r_l)f_{n_l}(o_l-r_l)}{\int_{-\infty}^{\infty} f_{R_l}(r_l)f_{n_l}(o_l-r_l)\,dr_l}$$

WMTSA: 408–409

#### Conditional Mean Approach: II

• mean value of 
$$f_{R_l|O_l=o_l}(\cdot)$$
 yields estimator  $\widehat{R}_l = E\{R_l|O_l\}$ :

$$E\{R_{l}|O_{l} = o_{l}\} = \int_{-\infty}^{\infty} r_{l}f_{R_{l}|O_{l} = o_{l}}(r_{l}) dr_{l}$$
$$= \frac{\int_{-\infty}^{\infty} r_{l}f_{R_{l}}(r_{l})f_{n_{l}}(o_{l} - r_{l})dr_{l}}{\int_{-\infty}^{\infty} f_{R_{l}}(r_{l})f_{n_{l}}(o_{l} - r_{l}) dr_{l}}$$

- $\bullet$  to make further progress, we need a model for the wavelet-domain representation  $R_l$  of the signal
- heuristic that signal in the wavelet domain has a few large values and lots of small values suggests a Gaussian mixture model

#### WMTSA: 410

II-85

#### Conditional Mean Approach: VI

- let's simplify to a 'sparse' signal model by setting  $\gamma_l = 0$ ; i.e., large # of small coefficients are all zero
- distribution for  $R_l$  same as  $(1 \mathcal{I}_l)\mathcal{N}(0, \sigma_{G_l}^2)$
- $\bullet$  to complete model, let  $n_l$  obey a Gaussian distribution with mean 0 and variance  $\sigma_{n_l}^2$
- conditional mean estimator becomes  $E\{R_l|O_l = o_l\} = \frac{b_l}{1+c_l}o_l$ , where

$$c_{l} = \frac{p_{l}\sqrt{(\sigma_{G_{l}}^{2} + \sigma_{n_{l}}^{2})}}{(1 - p_{l})\sigma_{n_{l}}}e^{-o_{l}^{2}b_{l}/(2\sigma_{n_{l}}^{2})}$$

## Conditional Mean Approach: III

• let 
$$\mathcal{I}_l$$
 be an RV such that  $\mathbf{P}\left[\mathcal{I}_l=1\right]=p_l$  &  $\mathbf{P}\left[\mathcal{I}_l=0\right]=1-p_l$ 

 $\bullet$  under Gaussian mixture model,  $R_l$  has same distribution as

$$\mathcal{I}_l \mathcal{N}(0, \gamma_l^2 \sigma_{G_l}^2) + (1 - \mathcal{I}_l) \mathcal{N}(0, \sigma_{G_l}^2)$$

where  $\mathcal{N}(0, \sigma^2)$  is a Gaussian RV with mean 0 and variance  $\sigma^2$ 

- 2nd component models small # of large signal coefficients
- 1st component models large # of small coefficients  $(\gamma_l^2 \ll 1)$

 $\bullet$  example: PDFs for case  $\sigma_{G_l}^2=$  10,  $\gamma_l^2\sigma_{G_l}^2=$  1 and  $p_l=0.75$ 



### Conditional Mean Approach: VII



- conditional mean shrinkage rule for  $p_l = 0.95$  (i.e.,  $\approx 95\%$  of signal coefficients are 0);  $\sigma_{n_l}^2 = 1$ ; and  $\sigma_{G_l}^2 = 5$  (curve furthest from dotted diagonal), 10 and 25 (curve nearest to diagonal)
- as  $\sigma_{G_l}^2$  gets large (i.e., large signal coefficients increase in size), shrinkage rule starts to resemble mid thresholding rule

WMTSA: 411–412

#### Wavelet-Based Shrinkage: I



- component-wise, have  $W_{j,t} = R_{j,t} + e_{j,t}$
- form partial DWT of level  $J_0$ , shrink  $\mathbf{W}_i$ 's, but leave  $\mathbf{V}_{J_0}$  alone
- assume  $E\{R_{i,t}\} = 0$  (reasonable for  $\mathbf{W}_i$ , but not for  $\mathbf{V}_{J_0}$ )
- use a conditional mean approach with the sparse signal model
- $R_{j,t}$  has distribution dictated by  $(1 \mathcal{I}_{j,t})\mathcal{N}(0, \sigma_G^2)$ , where  $\mathbf{P}[\mathcal{T}_{i,t} - 1] = n$  and  $\mathbf{P}[\mathcal{T}_{i,t} - 0] = 1 - n$

$$\mathbf{P} \left[ \mathcal{I}_{j,t} = 1 \right] = p \text{ and } \mathbf{P} \left[ \mathcal{I}_{j,t} = 0 \right] = 1 - p$$

- $-R_{i,t}$ 's are assumed to be IID
- model for  $e_{i,t}$  is Gaussian with mean 0 and variance  $\sigma_{\epsilon}^2$
- note: parameters do not vary with j or t

WMTSA: 424

II--89

#### **Examples of Wavelet-Based Shrinkage: I**



• shrinkage signal estimates of NMR spectrum based upon level  $J_0 = 6$  partial LA(8) DWT and conditional mean with p = 0.9

II-91



Wavelet-Based Shrinkage: II



• same as before, but now with p = 0.95

**Examples of Wavelet-Based Shrinkage: III** 



• same as before, but now with p = 0.99 (as  $p \rightarrow 1$ , we declare there are proportionately fewer significant signal coefficients, implying need for heavier shrinkage)

WMTSA: 425

II–93

#### Comments on 'Next Generation' Denoising: II

- here are some 'next generation' approaches that exploit these 'real world' properties:
- Crouse *et al.* (1998) use hidden Markov models for stochastic signal DWT coefficients to handle clustering, persistence and non-Gaussianity
- Huang and Cressie (2000) consider scale-dependent multiscale graphical models to handle clustering and persistence
- Cai and Silverman (2001) consider 'block' thesholding in which coefficients are thresholded in blocks rather than individually (handles clustering)
- Dragotti and Vetterli (2003) introduce the notion of 'wavelet footprints' to track discontinuities in a signal across different scales (handles persistence)

#### Comments on 'Next Generation' Denoising: I



• 'classical' denoising looks at each  $W_{j,t}$  alone; for 'real world' signals, coefficients often cluster within a given level and persist across adjacent levels (ECG series offers an example) WMTSA: 450 II-94

#### Comments on 'Next Generation' Denoising: III

- 'classical' denoising also suffers from problem of overall significance of multiple hypothesis tests
- 'next generation' work integrates idea of 'false discovery rate' (Benjamini and Hochberg, 1995) into denoising (see Wink and Roerdink, 2004, for an applications-oriented discussion)
- for more recent developments (there are a lot!!!), see
- review article by Antoniadis (2007)
- Chapters 3 and 4 of book by Nason (2008)
- October 2009 issue of *Statistica Sinica*, which has a special section entitled 'Multiscale Methods and Statistics: A Productive Marriage'

## Wavelet-Based Decorrelation of Time Series: Overview

- DWT well-suited for decorrelating certain time series, including ones generated from a fractionally differenced (FD) process
- on synthesis side, leads to
- DWT-based simulation of FD processes
- wavelet-based bootstrapping
- on analysis side, leads to
  - wavelet-based estimators for FD parameters
  - test for homogeneity of variance
- test for trends (won't discuss see Craigmile *et al.*, 2004, for details)

II-97





• realization of an FD(0.4) time series **X** along with its sample autocorrelation sequence (ACS): for  $\tau \ge 0$ ,

$$\hat{\rho}_{X,\tau} \equiv \frac{\sum_{t=0}^{N-1-\tau} X_t X_{t+\tau}}{\sum_{t=0}^{N-1} X_t^2}$$

• note that ACS dies down slowly

WMTSA: 341-342



II-98



#### **MODWT of an FD Process**



coefficients, none of which are approximately uncorrelated

#### DWT of an FD Process: III

- $\bullet$  in contrast to  ${\bf X},$  ACSs for  ${\bf W}_i$  consistent with white noise
- variance of RVs in  $\mathbf{W}_j$  increases with j: for FD process,

$$\operatorname{var} \{ W_{j,t} \} \approx c \tau_j^{2\delta} \equiv C_j,$$

where c is a constant depending on  $\delta$  but not j, and  $\tau_j = 2^{j-1}$  is scale associated with  $\mathbf{W}_j$ 

- for white noise  $(\delta = 0)$ , var  $\{W_{j,t}\}$  is the same for all j
- $\bullet$  dependence in  ${\bf X}$  thus manifests itself in wavelet domain by different variances for wavelet coefficients at different scales





- correlations between  $W_{j,t}$  and  $W_{j,t+\tau}$  for an FD(0.4) process
- correlations within scale are slightly smaller for Haar
- $\bullet$  maximum magnitude of correlation is less than 0.2

WMTSA: 345–346

#### Correlations Within a Scale and Between Two Scales

- let  $\{s_{X,\tau}\}$  denote autocovariance sequence (ACVS) for  $\{X_t\}$ ; i.e.,  $s_{X,\tau} = \operatorname{cov} \{X_t, X_{t+\tau}\}$
- $\bullet$  let  $\{h_{j,l}\}$  denote equivalent wavelet filter for  $j{\rm th}$  level
- $\bullet$  to quantify decorrelation, can write

$$\operatorname{cov} \{W_{j,t}, W_{j',t'}\} = \sum_{l=0}^{L_j - 1} \sum_{l'=0}^{L_{j'} - 1} h_{j,l} h_{j',l'} s_{X,2^j(t+1) - l - 2^{j'}(t'+1) + l'},$$

from which we can get ACVS (and hence within-scale correlations) for  $\{W_{j,t}\}$ :

$$\operatorname{cov} \{W_{j,t}, W_{j,t+\tau}\} = \sum_{m=-(L_j-1)}^{L_j-1} s_{X,2^j\tau+m} \sum_{l=0}^{L_j-|m|-1} h_{j,l}h_{j,l+|m|}$$

WMTSA: 345

II-102





• correlation between Haar wavelet coefficients  $W_{j,t}$  and  $W_{j',t'}$ from FD(0.4) process and for levels satisfying  $1 \le j < j' \le 4$ 

WMTSA: 346-347



#### Refinements to Basic Scheme: I

- $\bullet$  covariance matrix for approximation  ${\bf Y}$  does not correspond to that of a stationary process
- $\bullet$  recall  ${\mathcal W}$  treats  ${\mathbf X}$  as if it were circular
- let  $\mathcal{T}$  be  $N \times N$  'circular shift' matrix:

$$\mathcal{T} \begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_0 \end{bmatrix}; \quad \mathcal{T}^2 \begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} Y_2 \\ Y_3 \\ Y_0 \\ Y_1 \end{bmatrix}; \quad \text{etc.}$$

• let  $\kappa$  be uniformily distributed over  $0, \ldots, N-1$ 

• define 
$$\widetilde{\mathbf{Y}} \equiv \mathcal{T}^{\kappa} \mathbf{Y}$$

•  $\widetilde{\mathbf{Y}}$  is stationary with ACVS given by, say,  $s_{\widetilde{Y},\tau}$ 

WMTSA: 356–357

II-109

#### **Refinements to Basic Scheme: III**



• plot shows true ACVS  $\{s_{X,\tau}\}$  (thick curves) for FD(0.4) process and wavelet-based approximate ACVSs  $\{s_{\widetilde{Y},\tau}\}$  (thin curves) based on an LA(8) DWT in which an N = 64 series is extracted from M = N, M = 2N and M = 4N series

II-111

#### **Refinements to Basic Scheme: II**

- Q: how well does  $\{s_{\widetilde{Y},\tau}\}$  match  $\{s_{X,\tau}\}$ ?
- due to circularity, find that  $s_{\widetilde{Y},N-\tau} = s_{\widetilde{Y},\tau}$  for  $\tau = 1,\ldots,N/2$
- implies  $s_{\widetilde{Y},\tau}$  cannot approximate  $s_{X,\tau}$  well for  $\tau$  close to N
- can patch up by simulating  $\widetilde{\mathbf{Y}}$  with M > N elements and then extracting first N deviates (M = 4N works well)

WMTSA: 356–357

II-110

# Example and Some Notes $= 5 \begin{bmatrix} 0 \\ 0 \\ -5 \\ 0 \\ 256 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 126 \end{bmatrix} = 5 \begin{bmatrix} 12 \\ 768 \end{bmatrix} = 1024$

 $\bullet$  simulated FD(0.4) series (LA(8), N=1024 and M=4N)

• notes:

- can form realizations faster than best exact method
- can efficiently simulate extremely long time series in 'real-time' (e.g,  $N = 2^{30} = 1,073,741,824$  or even longer!)
- effect of random circular shifting is to render time series slightly non-Gaussian (a Gaussian mixture model)

WMTSA: 358–361

#### Wavelet-Domain Bootstrapping

- for many (but not all!) time series, DWT acts as a decorrelating transform: to a good approximation, each  $\mathbf{W}_j$  is a sample of a white noise process, and coefficients from different sub-vectors  $\mathbf{W}_j$  and  $\mathbf{W}_{j'}$  are also pairwise uncorrelated
- variance of coefficients in  $\mathbf{W}_{j}$  depends on j
- scaling coefficients  $\mathbf{V}_{J_0}$  are still autocorrelated, but there will be just a few of them if  $J_0$  is selected to be large
- decorrelating property holds particularly well for FD and other processes with long-range dependence
- above suggests the following recipe for wavelet-domain bootstrapping of a statistic of interest, e.g., sample autocorrelation sequence  $\hat{\rho}_{X,\tau}$  at unit lag  $\tau = 1$

II-113

#### Illustration of Wavelet-Domain Bootstrapping



• Haar DWT of FD(0.45) series **X** (left-hand column) and waveletdomain bootstrap thereof (right-hand)

#### **Recipe for Wavelet-Domain Bootstrapping**

- 1. given **X** of length  $N = 2^J$ , compute level  $J_0$  DWT (the choice  $J_0 = J 3$  yields 8 coefficients in  $\mathbf{W}_{J_0}$  and  $\mathbf{V}_{J_0}$ )
- 2. randomly sample with replacement from  $\mathbf{W}_j$  to create bootstrapped vector  $\mathbf{W}_i^{(b)}, j = 1, \dots, J_0$
- 3. create  $\mathbf{V}_{J_0}^{(b)}$  using 1st-order autoregressive parametric bootstrap
- 4. apply  $\mathcal{W}^T$  to  $\mathbf{W}_1^{(b)}, \ldots, \mathbf{W}_{J_0}^{(b)}$  and  $\mathbf{V}_{J_0}^{(b)}$  to obtain bootstrapped time series  $\mathbf{X}^{(b)}$  and then form  $\hat{\rho}_{X,1}^{(b)}$
- repeat above many times to build up sample distribution of bootstrapped autocorrelations

II–114

#### Wavelet-Domain Bootstrapping of FD Series



#### **MLEs of FD Parameters: I**

- FD process depends on 2 parameters, namely,  $\delta$  and  $\sigma_{\varepsilon}^2$
- given  $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$  with  $N = 2^J$ , suppose we want to estimate  $\delta$  and  $\sigma_{\varepsilon}^2$
- if X is stationary (i.e.  $\delta < 1/2$ ) and multivariate Gaussian, can use the maximum likelihood (ML) method

WMTSA: 361

II–117

#### MLEs of FD Parameters: III

- key ideas behind first wavelet-based approximate MLEs
- have seen that we can approximate FD time series **X** by  $\mathbf{Y} = \mathcal{W}^T \Lambda^{1/2} \mathbf{Z}$ , where  $\Lambda^{1/2}$  is a diagonal matrix, all of whose diagonal elements are positive
- since covariance matrix for  $\mathbf{Z}$  is  $I_N$ , the one for  $\mathbf{Y}$  is  $\mathcal{W}^T \Lambda^{1/2} I_N (\mathcal{W}^T \Lambda^{1/2})^T = \mathcal{W}^T \Lambda^{1/2} \Lambda^{1/2} \mathcal{W} = \mathcal{W}^T \Lambda \mathcal{W} \equiv \widetilde{\Sigma}_{\mathbf{X}},$ where  $\Lambda \equiv \Lambda^{1/2} \Lambda^{1/2}$  is also diagonal - can consider  $\widetilde{\Sigma}_{\mathbf{X}}$  to be an approximation to  $\Sigma_{\mathbf{X}}$
- can consider  $\Sigma_{\mathbf{X}}$  to be an approximation to  $\Sigma_{\mathbf{X}}$
- leads to approximation of log likelihood:

$$-2\log\left(L(\delta,\sigma_{\varepsilon}^{2}\mid\mathbf{X})\right)\approx N\log\left(2\pi\right)+\log\left(|\widetilde{\Sigma}_{\mathbf{X}}|\right)+\mathbf{X}^{T}\widetilde{\Sigma}_{\mathbf{X}}^{-1}\mathbf{X}$$

#### **MLEs of FD Parameters: II**

• definition of Gaussian likelihood function:

$$L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X}) \equiv \frac{1}{(2\pi)^{N/2} |\Sigma_{\mathbf{X}}|^{1/2}} e^{-\mathbf{X}^T \Sigma_{\mathbf{X}}^{-1} \mathbf{X}/2}$$

where  $\Sigma_{\mathbf{X}}$  is covariance matrix for  $\mathbf{X}$ , with (s, t)th element given by  $s_{X,s-t}$ , and  $|\Sigma_{\mathbf{X}}| \& \Sigma_{\mathbf{X}}^{-1}$  denote determinant & inverse

• ML estimators of  $\delta$  and  $\sigma_{\varepsilon}^2$  maximize  $L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X})$  or, equivalently, minimize

 $-2\log\left(L(\delta,\sigma_{\varepsilon}^{2}\mid\mathbf{X})\right) = N\log\left(2\pi\right) + \log\left(|\Sigma_{\mathbf{X}}|\right) + \mathbf{X}^{T}\Sigma_{\mathbf{X}}^{-1}\mathbf{X}$ 

- exact MLEs computationally intensive, mainly because of the need to deal with  $|\Sigma_{\mathbf{X}}|$  and  $\Sigma_{\mathbf{X}}^{-1}$
- good approximate MLEs of considerable interest

```
WMTSA: 361–362
```

II-118

#### MLEs of FD Parameters: IV

• Q: so how does this help us? - easy to invert  $\widetilde{\Sigma}_{\mathbf{X}}$ :  $\widetilde{\Sigma}_{\mathbf{X}}^{-1} = \left(\mathcal{W}^T \Lambda \mathcal{W}\right)^{-1} = (\mathcal{W})^{-1} \Lambda^{-1} \left(\mathcal{W}^T\right)^{-1} = \mathcal{W}^T \Lambda^{-1} \mathcal{W},$ where  $\Lambda^{-1}$  is another diagonal matrix, leading to  $\mathbf{X}^T \widetilde{\Sigma}_{\mathbf{X}}^{-1} \mathbf{X} = \mathbf{X}^T \mathcal{W}^T \Lambda^{-1} \mathcal{W} \mathbf{X} = \mathbf{W}^T \Lambda^{-1} \mathbf{W}$ - easy to compute the determinant of  $\widetilde{\Sigma}_{\mathbf{X}}$ :  $|\widetilde{\Sigma}_{\mathbf{X}}| = |\mathcal{W}^T \Lambda \mathcal{W}| = |\Lambda \mathcal{W} \mathcal{W}^T| = |\Lambda I_N| = |\Lambda|,$ 

and the determinant of a diagonal matrix is just the product of its diagonal elements

WMTSA: 362–363

II-120

#### MLEs of FD Parameters: V

• define the following three functions of  $\delta$ :

$$C'_{j}(\delta) \equiv \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[4\sin^{2}(\pi f)]^{\delta}} df \approx \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[2\pi f]^{2\delta}} df$$
$$C'_{J+1}(\delta) \equiv \frac{N\Gamma(1-2\delta)}{\Gamma^{2}(1-\delta)} - \sum_{j=1}^{J} \frac{N}{2^{j}} C'_{j}(\delta)$$
$$\sigma_{\varepsilon}^{2}(\delta) \equiv \frac{1}{N} \left( \frac{V_{J,0}^{2}}{C'_{J+1}(\delta)} + \sum_{j=1}^{J} \frac{1}{C'_{j}(\delta)} \sum_{t=0}^{\frac{N}{2^{j}}-1} W_{j,t}^{2} \right)$$

WMTSA: 362–363

II-121

### **Other Wavelet-Based Estimators of FD Parameters**

- second MLE approach: formulate likelihood directly in terms of nonboundary wavelet coefficients
- handles stationary or nonstationary FD processes (i.e., need not assume  $\delta < 1/2$ )
- handles certain deterministic trends
- alternative to MLEs are least square estimators (LSEs)
- recall that, for large  $\tau$  and for  $\beta = 2\delta 1$ , have  $\log (\nu_X^2(\tau_j)) \approx \zeta + \beta \log (\tau_j)$
- suggests determining  $\delta$  by regressing  $\log(\hat{\nu}_X^2(\tau_j))$  on  $\log(\tau_j)$  over range of  $\tau_j$
- weighted LSE takes into account fact that variance of  $\log(\hat{\nu}_X^2(\tau_j))$  depends upon scale  $\tau_j$  (increases as  $\tau_j$  increases)

#### WMTSA: 368–379

#### **MLEs of FD Parameters: VI**

• wavelet-based approximate MLE  $\tilde{\delta}$  for  $\delta$  is the value that minimizes the following function of  $\delta$ :

$$\tilde{l}(\delta \mid \mathbf{X}) \equiv N \log(\sigma_{\varepsilon}^{2}(\delta)) + \log(C'_{J+1}(\delta)) + \sum_{j=1}^{J} \frac{N}{2^{j}} \log(C'_{j}(\delta))$$

• once  $\tilde{\delta}$  has been determined, MLE for  $\sigma_{\varepsilon}^2$  is given by  $\sigma_{\varepsilon}^2(\tilde{\delta})$ 

• computer experiments indicate scheme works quite well

WMTSA: 363–364

II-122

#### Homogeneity of Variance: I

• because DWT decorrelates FD and related processes, nonboundary coefficients in  $\mathbf{W}_{i}$  should resemble white noise; i.e.,

 $\operatorname{cov}\left\{W_{j,t}, W_{j,t'}\right\} \approx 0$ 

- when  $t \neq t'$ , and var  $\{W_{j,t}\}$  should not depend upon t
- $\bullet$  can test for homogeneity of variance in  ${\bf X}$  using  ${\bf W}_j$  over a range of levels j
- suppose  $U_0, \ldots, U_{N-1}$  are independent normal RVs with  $E\{U_t\} = 0$  and var  $\{U_t\} = \sigma_t^2$
- want to test null hypothesis  $H_0: \sigma_0^2 = \sigma_1^2 = \cdots = \sigma_{N-1}^2$
- can test  $H_0$  versus a variety of alternatives, e.g.,

$$H_1: \sigma_0^2 = \dots = \sigma_k^2 \neq \sigma_{k+1}^2 = \dots = \sigma_{N-1}^2$$

using normalized cumulative sum of squares

WMTSA: 379–380

#### Homogeneity of Variance: II

• to define test statistic D, start with

$$\mathcal{P}_k \equiv \frac{\sum_{j=0}^k U_j^2}{\sum_{j=0}^{N-1} U_j^2}, \quad k = 0, \dots, N-2$$

and then compute  $D \equiv \max(D^+, D^-)$ , where

$$D^{+} \equiv \max_{0 \le k \le N-2} \left( \frac{k+1}{N-1} - \mathcal{P}_{k} \right) \& D^{-} \equiv \max_{0 \le k \le N-2} \left( \mathcal{P}_{k} - \frac{k}{N-1} \right)$$

- can reject  $H_0$  if observed D is 'too large,' where 'too large' is quantified by considering distribution of D under  $H_0$
- need to find critical value  $x_{\alpha}$  such that  $\mathbf{P}[D \ge x_{\alpha}] = \alpha$  for, e.g.,  $\alpha = 0.01, 0.05$  or 0.1

WMTSA: 380–381

II-125

#### Homogeneity of Variance: IV

• idea: given time series  $\{X_t\}$ , compute D using nonboundary wavelet coefficients  $W_{j,t}$  (there are  $M'_j \equiv N_j - L'_j$  of these):

$$\mathcal{P}_k \equiv \frac{\sum_{t=L'_j}^k W_{j,t}^2}{\sum_{t=L'_j}^{N_j - 1} W_{j,t}^2}, \quad k = L'_j, \dots, N_j - 2$$

• if null hypothesis rejected at level j, can use nonboundary MODWT coefficients to locate change point based on

$$\widetilde{\mathcal{P}}_k \equiv \frac{\sum_{t=L_j-1}^k \widetilde{W}_{j,t}^2}{\sum_{t=L_j-1}^{N-1} \widetilde{W}_{j,t}^2}, \quad k = L_j - 1, \dots, N - 2$$

along with analogs  $\widetilde{D}_k^+$  and  $\widetilde{D}_k^-$  of  $D_k^+$  and  $D_k^-$ 

#### WMTSA: 380–381

#### Homogeneity of Variance: III

- once determined, can perform  $\alpha$  level test of  $H_0$ :
  - compute D statistic from data  $U_0, \ldots, U_{N-1}$
- reject  $H_0$  at level  $\alpha$  if  $D \ge x_{\alpha}$
- fail to reject  $H_0$  at level  $\alpha$  if  $D < x_{\alpha}$
- can determine critical values  $x_{\alpha}$  in two ways
  - Monte Carlo simulations
  - large sample approximation to distribution of D:

$$\mathbf{P}[(N/2)^{1/2}D \ge x] \approx 1 + 2\sum_{l=1}^{\infty} (-1)^l e^{-2l^2 x^2}$$

(reasonable approximation for  $N \ge 128$ )

WMTSA: 380–381

II-126

#### Example – Annual Minima of Nile River: I



- left-hand plot: annual minima of Nile River
- new measuring device introduced around year 715
- right: Haar  $\hat{\nu}_X^2(\tau_j)$  before (**x**'s) and after (**o**'s) year 715.5, with 95% confidence intervals based upon  $\chi^2_{\eta_3}$  approximation

WMTSA: 326-327



Example – Annual Minima of Nile River: II

- based upon last 512 values (years 773 to 1284), plot shows  $\tilde{l}(\delta \mid \mathbf{X})$  versus  $\delta$  for the first wavelet-based approximate MLE using the LA(8) wavelet (upper curve) and corresponding curve for exact MLE (lower)
  - wavelet-based approximate MLE is value minimizing upper curve:  $\tilde{\delta}\doteq 0.4532$
- exact MLE is value minimizing lower curve:  $\hat{\delta} \doteq 0.4452$

WMTSA: 386–388

II-129

### Example – Annual Minima of Nile River: IV



• Nile River minima (top plot) along with curves (constructed per Equation (382)) for scales  $\tau_1 \& \tau_2$  (middle & bottom) to identify change point via time of maximum deviation (vertical lines denote year 715)

#### Example – Annual Minima of Nile River: III

• results of testing all Nile River minima for homogeneity of variance using the Haar wavelet filter with critical values determined by computer simulations

|         |        |        |        | critical levels |        |
|---------|--------|--------|--------|-----------------|--------|
| $	au_j$ | $M'_j$ | D      | 10%    | 5%              | 1%     |
| 1 year  | 331    | 0.1559 | 0.0945 | 0.1051          | 0.1262 |
| 2 years | 165    | 0.1754 | 0.1320 | 0.1469          | 0.1765 |
| 4 years | 82     | 0.1000 | 0.1855 | 0.2068          | 0.2474 |
| 8 years | 41     | 0.2313 | 0.2572 | 0.2864          | 0.3436 |

• can reject null hypothesis of homogeneity of variance at level of significance 0.05 for scales  $\tau_1 \& \tau_2$ , but not at larger scales

#### WMTSA: 386–388

II-130

#### Summary

- DWT approximately decorrelate certain time series, including ones coming from FD and related processes
- leads to schemes for simulating time series and bootstrapping
- also leads to schemes for estimating parameters of FD process
- approximate maximum likelihood estimators (two varieties)
- weighted least squares estimator
- can also devise wavelet-based tests for
  - homogeneity of variance
  - trends (see Craigmile et al., 2004, for details)

II - 132

#### **References:** I

- fractionally differenced processes
  - C. W. J. Granger and R. Joyeux (1980), 'An Introduction to Long-Memory Time Series Models and Fractional Differencing,' *Journal of Time Series Analysis*, 1, pp. 15–29
  - J. R. M. Hosking (1981), 'Fractional Differencing,' Biometrika, 68, pp. 165–76
- wavelet cross-covariance and cross-correlation
  - B. J Whitcher, P. Guttorp and D. B. Percival (2000), 'Wavelet Analysis of Covariance with Application to Atmospheric Time Series,' *Journal of Geophysical Research*, 105, D11, pp. 14,941–62
  - A. Serroukh and A. T. Walden (2000a), 'Wavelet Scale Analysis of Bivariate Time Series I: Motivation and Estimation,' *Journal of Nonparametric Statistics*, 13, pp. 1–36
  - A. Serroukh and A. T. Walden (2000b), 'Wavelet Scale Analysis of Bivariate Time Series II: Statistical Properties for Linear Processes,' *Journal of Nonparametric Statistics*, 13, pp. 37–56
- asymptotic theory for non-Gaussian processes
  - A. Serroukh, A. T. Walden and D. B. Percival (2000), 'Statistical Properties and Uses of the Wavelet Variance Estimator for the Scale Analysis of Time Series,' *Journal of* the American Statistical Association, **95**, pp. 184–96

II-133

#### **References: III**

- A. Antoniadis (2007), 'Wavelet Methods in Statistics: Some Recent Developments and Their Applications,' Statistical Surveys, 1, pp. 16–55
- Y. Benjamini and Y. Hochberg (1995), 'Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing,' *Journal of the Royal Statistical Society, Series B*, 57, pp. 289–300
- T. Cai and B. W. Silverman (2001), 'Incorporating Information on Neighboring Coefficients into Wavelet Estimation,' Sankhya Series B, 63, pp. 127–48
- M. S. Crouse, R. D. Nowak and R. G. Baraniuk (1998), 'Wavelet-Based Statistical Signal Processing Using Hidden Markov Models,' *IEEE Transactions on Signal Processing*, 46, pp. 886–902
- P. L. Dragotti and M. Vetterli (2003), 'Wavelet Footprints: Theory, Algorithms, and Applications,' *IEEE Transactions on Signal Processing*, **51**, pp. 1306–23
- H.-C. Huang and N. Cressie (2000), 'Deterministic/Stochastic Wavelet Decomposition for Recovery of Signal from Noisy Data,' *Technometrics*, 42, pp. 262–76
- G. P. Nason (2008), Wavelet Methods in Statistics with R, Springer, Berlin

## References: II

- biased estimators of wavelet variance
- E. M. Aldrich (2005), 'Alternative Estimators of Wavelet Variance,' Masters Thesis, Department of Statistics, University of Washington
- unbiased estimator of wavelet variance for 'gappy' time series
  - D. Mondal and D. B. Percival (2010a), 'Wavelet Variance Analysis for Gappy Time Series,' to appear in Annals of the Institute of Statistical Mathematics
- robust estimation
  - D. Mondal and D. B. Percival (2010b), 'M-Estimation of Wavelet Variance,' to appear in Annals of the Institute of Statistical Mathematics
- wavelet variance for random fields
- D. Mondal and D. B. Percival (2010c), 'Wavelet Variance Analysis for Random Fields,' under review
- wavelet-based characteristic scales
  - M. J. Keim and D. B. Percival (2010), 'Assessing Characteristic Scales Using Wavelets,' under preparation

II-134

#### **References: IV**

- A. M. Wink and J. B. T. M. Roerdink (2004), 'Denoising Functional MR Images: A Comparison of Wavelet Denoising and Gaussian Smoothing,' *IEEE Transactions on Medical Imaging*, 23(3), pp. 374–87
- bootstrapping
  - A. C. Davison and D. V. Hinkley (1997), Bootstrap Methods and their Applications, Cambridge, England: Cambridge University Press
  - D. B. Percival, S. Sardy and A. C. Davison (2001), 'Wavestrapping Time Series: Adaptive Wavelet-Based Bootstrapping,' in *Nonlinear and Nonstationary Signal Processing*, edited by W. J. Fitzgerald, R. L. Smith, A. T. Walden and P. C. Young. Cambridge, England: Cambridge University Press, pp. 442–70
  - A. M. Sabatini (1999), 'Wavelet-Based Estimation of 1/f-Type Signal Parameters: Confidence Intervals Using the Bootstrap,' *IEEE Transactions on Signal Processing*, 47(12), pp. 3406–9
  - A. M. Sabatini (2006), 'A Wavelet-Based Bootstrap Method Applied to Inertial Sensor Stochastic Error Modelling Using the Allan Variance,' *Measurement Science and Technology*, **17**, pp. 2980–2988
  - B. J Whitcher (2006), 'Wavelet-Based Bootstrapping of Spatial Patterns on a Finite Lattice,' Computational Statistics & Data Analysis, 50(9), pp. 2399–421

#### **References:** V

- decorrelation property of DWTs
  - P. F. Craigmile and D. B. Percival (2005), 'Asymptotic Decorrelation of Between-Scale Wavelet Coefficients', *IEEE Transactions on Information Theory*, **51**, pp. 1039–48
- parameter estimation for FD processes
  - P. F. Craigmile, P. Guttorp and D. B. Percival (2005), 'Wavelet-Based Parameter Estimation for Polynomial Contaminated Fractionally Differenced Processes,' *IEEE Transactions on Signal Processing*, 53, pp. 3151–61
- testing for homogeneity of variance
  - B. J Whitcher, S. D. Byers, P. Guttorp and D. B. Percival (2002), 'Testing for Homogeneity of Variance in Time Series: Long Memory, Wavelets and the Nile River,' *Water Resources Research*, **38**, 10.1029/2001WR000509.
- wavelet-based trend assessment
  - P. F. Craigmile, P. Guttorp and D. B. Percival (2004), 'Trend Assessment in a Long Memory Dependence Model using the Discrete Wavelet Transform,' *Environmetrics*, 15, pp. 313–35

II-137