Wavelet Methods for Time Series Analysis

Part II: Wavelet Variance

- examples of time series to motivate discussion
- decomposition of sample variance using wavelets
- theoretical wavelet variance for stochastic processes
 - stationary processes
 - nonstationary processes with stationary differences
- sampling theory for Gaussian processes
- examples, including use on time series with time-varying statistical properties
- summary
Examples: Time Series X_t Versus Time Index t

(a) atomic clock frequency deviates (daily observations, $N = 1025$)
(b) subtidal sea level fluctuations (twice daily, $N = 8746$)
(c) Nile River minima (annual, $N = 663$)
(d) vertical shear in the ocean (0.1 meters, $N = 4096$)

- four series are visually different
- goal of time series analysis is to quantify these differences
Decomposing Sample Variance of Time Series

- one approach: quantify differences by analysis of variance
- let $X_0, X_1, \ldots, X_{N-1}$ represent time series with N values
- let \bar{X} denote sample mean of X_t’s: $\bar{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$
- let $\hat{\sigma}^2_X$ denote sample variance of X_t’s:
 \[
 \hat{\sigma}^2_X \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2
 \]
- idea is to decompose (analyze, break up) $\hat{\sigma}^2_X$ into pieces that quantify how time series are different
- wavelet variance does analysis based upon differences between (possibly weighted) adjacent averages over scales
Empirical Wavelet Variance

- define empirical wavelet variance for scale \(\tau_j \equiv 2^{j-1} \) as

\[
\tilde{\nu}_X^2(\tau_j) \equiv \frac{1}{N} \sum_{t=0}^{N-1} \tilde{W}_{j,t}^2, \quad \text{where} \quad \tilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l \mod N}
\]

- if \(N = 2^J \), obtain analysis (decomposition) of sample variance:

\[
\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \sum_{j=1}^{J} \tilde{\nu}_X^2(\tau_j)
\]

(if \(N \) not a power of 2, can analyze variance to any level \(J_0 \), but need additional component involving scaling coefficients)

- interpretation: \(\tilde{\nu}_X^2(\tau_j) \) is portion of \(\hat{\sigma}_X^2 \) due to changes in averages over scale \(\tau_j \); i.e., ‘scale by scale’ analysis of variance
Example of Empirical Wavelet Variance

- wavelet variances for time series X_t and Y_t of length $N = 16$, each with zero sample mean and same sample variance

\[\tilde{\nu}^2_X(\tau_j) \quad \tilde{\nu}^2_Y(\tau_j) \]
Second Example of Empirical Wavelet Variance

- top: part of subtidal sea level data (blue line shows scale of 16)

![Graph of part of subtidal sea level data with blue line indicating scale of 16.]

- bottom: empirical wavelet variances \(\tilde{\nu}_X^2(\tau_j) \)

- note: each \(\tilde{W}_{j,t} \) associated with a portion of \(X_t \), so \(\tilde{W}_{j,t}^2 \) versus \(t \) offers time-based decomposition of \(\tilde{\nu}_X^2(\tau_j) \)
Theoretical Wavelet Variance: I

• now assume X_t is a real-valued random variable (RV)
• let $\{X_t, t \in \mathbb{Z}\}$ denote a stochastic process, i.e., collection of RVs indexed by ‘time’ t (here \mathbb{Z} denotes the set of all integers)
• use jth level equivalent MODWT filter $\{\tilde{h}_{j,l}\}$ on $\{X_t\}$ to create a new stochastic process:

$$\bar{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l}X_{t-l}, \quad t \in \mathbb{Z},$$

which should be contrasted with

$$\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l}X_{t-l \mod N}, \quad t = 0, 1, \ldots, N - 1$$

WMTSA: 295–296
Theoretical Wavelet Variance: II

- if Y is any RV, let $E\{Y\}$ denote its expectation
- let var $\{Y\}$ denote its variance: $\text{var} \{Y\} \equiv E\{(Y - E\{Y\})^2\}$
- definition of time dependent wavelet variance:
 \[\nu^2_{X,t}(\tau_j) \equiv \text{var} \{\overline{W}_{j,t}\}, \]
 with conditions on X_t so that $\text{var} \{\overline{W}_{j,t}\}$ exists and is finite
- $\nu^2_{X,t}(\tau_j)$ depends on τ_j and t
- will focus on time independent wavelet variance
 \[\nu^2_X(\tau_j) \equiv \text{var} \{\overline{W}_{j,t}\} \]
 (can adapt theory to handle time varying situation)
- $\nu^2_X(\tau_j)$ well-defined for stationary processes and certain related processes, so let’s review concept of stationarity
Definition of a Stationary Process

- if U and V are two RVs, denote their covariance by
 \[\text{cov} \{U, V\} = E\{(U - E\{U\})(V - E\{V\})\} \]
- stochastic process X_t called stationary if
 \begin{itemize}
 \item $E\{X_t\} = \mu_X$ for all t, i.e., constant independent of t
 \item $\text{cov}\{X_t, X_{t+\tau}\} = s_{X,\tau}$, i.e., depends on lag τ, but not t
 \end{itemize}
- $s_{X,\tau}, \tau \in \mathbb{Z}$, is autocovariance sequence (ACVS)
- $s_{X,0} = \text{cov}\{X_t, X_t\} = \text{var}\{X_t\}$; i.e., variance same for all t
Spectral Density Functions: I

• spectral density function (SDF) given by

\[
S_X(f) = \sum_{\tau=-\infty}^{\infty} s_{X,\tau} e^{-i2\pi f \tau}
\]

• above requires condition on ACVS such as

\[
\sum_{\tau=-\infty}^{\infty} s_{X,\tau}^2 < \infty
\]

(sufficient, but not necessary)

• if square summability holds, SDF and ACVS equivalent since

\[
\int_{-1/2}^{1/2} S_X(f) e^{i2\pi f \tau} \, df = s_{X,\tau}, \quad \tau \in \mathbb{Z}
\]
Spectral Density Functions: II

• setting $\tau = 0$ yields fundamental result:

$$\int_{-1/2}^{1/2} S_X(f) \, df = s_{X,0} = \text{var} \{ X_t \};$$

i.e., SDF decomposes $\text{var} \{ X_t \}$ across frequencies f

• interpretation: $S_X(f) \Delta f$ is the contribution to $\text{var} \{ X_t \}$ due to frequencies in a small interval of width Δf centered at f

• note: $S_X(-f) = S_X(f)$ (can regard negative frequencies as a useful ‘fiction’ that simplifies mathematical treatment)
White Noise Process: I

• simplest example of a stationary process is ‘white noise’
• process X_t said to be white noise if
 - it has a constant mean $E\{X_t\} = \mu_X$
 - it has a constant variance $\text{var} \{X_t\} = \sigma_X^2$
 - $\text{cov} \{X_t, X_{t+\tau}\} = 0$ for all t and nonzero τ; i.e., distinct RVs in the process are uncorrelated
• ACVS and SDF for white noise take very simple forms:

$$s_{X,\tau} = \text{cov} \{X_t, X_{t+\tau}\} = \begin{cases} \sigma_X^2, & \tau = 0; \\ 0, & \text{otherwise}. \end{cases}$$

$$S_X(f) = \sum_{\tau=-\infty}^{\infty} s_{X,\tau} e^{-i2\pi f \tau} = s_{X,0}$$
White Noise Process: II

- ACVS (left-hand plot), SDF (middle) and a portion of length $N = 64$ of one realization (right) for a white noise process with $\mu_X = 0$ and $\sigma_X^2 = 1.5$

- Since $S_X(f) = 1.5$ for all f, contribution $S_X(f) \Delta f$ to σ_X^2 is the same for all frequencies
Wavelet Variance for Stationary Processes

• for stationary processes, wavelet variance decomposes \(\text{var} \{X_t\} \):
 \[
 \sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \text{var} \{X_t\}
 \]
 (above result similar to one for sample variance)
• \(\nu_X^2(\tau_j) \) is thus contribution to \(\text{var} \{X_t\} \) due to scale \(\tau_j \)
• note: \(\nu_X(\tau_j) \) has same units as \(X_t \), which is important for interpretability
Wavelet Variance for White Noise Process: I

- for a white noise process, can show that

\[\nu_X^2(\tau_j) \propto \tau_j^{-1} \]

- note that

\[\log (\nu_X^2(\tau_j)) \propto - \log (\tau_j), \]

so plot of \(\log (\nu_X^2(\tau_j)) \) vs. \(\log (\tau_j) \) is linear with a slope of \(-1\)
Wavelet Variance for White Noise Process: II

- $\nu_X^2(\tau_j)$ versus τ_j for $j = 1, \ldots, 8$ (left-hand plot), along with sample of length $N = 256$ of Gaussian white noise
- largest contribution to $\text{var}\{X_t\}$ is at smallest scale τ_1
- note: later on, we will discuss fractionally differenced (FD) processes that are characterized by a parameter δ; when $\delta = 0$, an FD process is the same as a white noise process
Generalization to Certain Nonstationary Processes

- if wavelet filter is properly chosen, $\nu_X^2(\tau_j)$ well-defined for certain processes with stationary backward differences (increments); these are also known as intrinsically stationary processes

- first order backward difference of X_t is process defined by
 \[X_t^{(1)} = X_t - X_{t-1} \]

- second order backward difference of X_t is process defined by
 \[X_t^{(2)} = X_t^{(1)} - X_{t-1}^{(1)} = X_t - 2X_{t-1} + X_{t-2} \]

- X_t said to have dth order stationary backward differences if
 \[Y_t \equiv \sum_{k=0}^{d} \binom{d}{k} (-1)^k X_{t-k} \]
 forms a stationary process (d is a nonnegative integer)
Examples of Processes with Stationary Increments

- 1st column shows, from top to bottom, realizations from

 (a) random walk: $X_t = \sum_{u=1}^{t} \epsilon_u$, & ϵ_t is zero mean white noise

 (b) like (a), but now ϵ_t has mean of -0.2

 (c) random run: $X_t = \sum_{u=1}^{t} Y_u$, where Y_t is a random walk

- 2nd & 3rd columns show 1st & 2nd differences $X_t^{(1)}$ and $X_t^{(2)}$
Wavelet Variance for Processes with Stationary Backward Differences: I

- let \(\{X_t\} \) be nonstationary with \(d \)th order stationary differences
- if we use a Daubechies wavelet filter of width \(L \) satisfying \(L \geq 2d \), then \(\nu^2_X(\tau_j) \) is well-defined and finite for all \(\tau_j \), but now
 \[
 \sum_{j=1}^{\infty} \nu^2_X(\tau_j) = \infty
 \]
- works because there is a backward difference operator of order \(d = L/2 \) embedded within \(\{\tilde{h}_{j,t}\} \), so this filter reduces \(X_t \) to
 \[
 \sum_{k=0}^{d} \binom{d}{k} (-1)^k X_{t-k} = Y_t
 \]
 and then creates localized weighted averages of \(Y_t \)'s
Wavelet Variance for Random Walk Process: I

- random walk process $X_t = \sum_{u=1}^{t} \epsilon_u$ has first order ($d = 1$) stationary differences since $X_t - X_{t-1} = \epsilon_t$ (i.e., white noise)
- $L \geq 2d$ holds for all wavelets when $d = 1$; for Haar ($L = 2$),
 $$\nu_X^2(\tau_j) = \frac{\text{var} \{\epsilon_t\}}{6} \left(\tau_j + \frac{1}{2\tau_j} \right) \approx \frac{\text{var} \{\epsilon_t\}}{6} \tau_j,$$
 with the approximation becoming better as τ_j increases
- note that $\nu_X^2(\tau_j)$ increases as τ_j increases
- $\log (\nu_X^2(\tau_j)) \propto \log (\tau_j)$ approximately, so plot of $\log (\nu_X^2(\tau_j))$ vs. $\log (\tau_j)$ is approximately linear with a slope of $+1$
- as required, also have
 $$\sum_{j=1}^{\infty} \nu_X^2(\tau_j) = \frac{\text{var} \{\epsilon_t\}}{6} \left(1 + \frac{1}{2} + 2 + \frac{1}{4} + 4 + \frac{1}{8} + \cdots \right) = \infty$$
Wavelet Variance for Random Walk Process: II

\[\delta = 1 \]
\[\text{slope} \approx 1 \]

- \(\nu^2_{\tilde{X}}(\tau_j) \) versus \(\tau_j \) for \(j = 1, \ldots, 8 \) (left-hand plot), along with sample of length \(N = 256 \) of a Gaussian random walk process

- smallest contribution to \(\text{var} \left\{ X_t \right\} \) is at smallest scale \(\tau_1 \)

- note: a fractionally differenced process with parameter \(\delta = 1 \) is the same as a random walk process
Fractionally Differenced (FD) Processes: I

- can create a continuum of processes that ‘interpolate’ between white noise and random walks using notion of ‘fractional differencing’ (Granger and Joyeux, 1980; Hosking, 1981)
- FD(δ) process is determined by 2 parameters δ and σ_ε^2, where $-\infty < \delta < \infty$ and $\sigma_\varepsilon^2 > 0$ (σ_ε^2 is less important than δ)
- if $\{X_t\}$ is an FD(δ) process, its SDF is given by
 \[S_X(f) = \frac{\sigma_\varepsilon^2}{D^\delta(f)} = \frac{\sigma_\varepsilon^2}{[4\sin^2(\pi f)]^\delta} \]
- if $\delta < 1/2$, FD process $\{X_t\}$ is stationary, and, in particular,
 - reduces to white noise if $\delta = 0$
 - has ‘long memory’ or ‘long range dependence’ if $\delta > 0$
 - is ‘antipersistent’ if $\delta < 0$ (i.e., $\text{cov} \{X_t, X_{t+1}\} < 0$)
Fractionally Differenced (FD) Processes: II

- if $\delta \geq 1/2$, FD process $\{X_t\}$ is nonstationary with dth order stationary backward differences $\{Y_t\}$

 - here $d = \lfloor \delta + 1/2 \rfloor$, where $\lfloor x \rfloor$ is integer part of x

 - $\{Y_t\}$ is stationary FD($\delta - d$) process

- if $\delta = 1$, FD process is the same as a random walk process

- using $\sin(x) \approx x$ for small x, can claim that, at low frequencies,

 $$S_X(f) = \frac{\sigma^2_\epsilon}{[4\sin^2(\pi f)]^\delta} \approx \frac{\sigma^2_\epsilon}{(2\pi f)^{2\delta}}$$

 (approximation quite good for $f \in (0, 0.1]$)

- right-hand side describes SDF for a ‘power law’ process with exponent -2δ
Fractionally Differenced (FD) Processes: III

- except possibly for two or three smallest scales, have
 \[\nu_X^2(\tau_j) \approx C \tau_j^{2\delta-1} \]

- thus \(\log(\nu_X^2(\tau_j)) \approx \log(C) + (2\delta - 1) \log(\tau_j) \), so a log/log plot of \(\nu_X^2(\tau_j) \) vs. \(\tau_j \) looks approximately linear with slope \(2\delta - 1 \) for \(\tau_j \) large enough
LA(8) Wavelet Variance for 2 FD Processes

\[
\delta = \frac{1}{4}
\]

\[
\delta = \frac{1}{2}
\]

- left-hand column: \(\nu^2_X(\tau_j) \) versus \(\tau_j \) based upon LA(8) wavelet
- right-hand: realization of length \(N = 256 \) from each FD process
- see overhead 16 for \(\delta = 0 \) (white noise), which has slope \(= -1 \)
LA(8) Wavelet Variance for 2 More FD Processes

\[\delta = \frac{5}{6} \]

\[\delta = 1 \]

- \(\delta = \frac{5}{6} \) is Kolmogorov turbulence; \(\delta = 1 \) is random walk
- note: positive slope indicates nonstationarity, while negative slope indicates stationarity
Expected Value of Wavelet Coefficients

• in preparation for considering problem of estimating $\nu^2_X(\tau_j)$ given an observed time series, let us consider $E\{W_{j,t}\}$

• if $\{X_t\}$ is nonstationary but has dth order stationary increments, let $\{Y_t\}$ be the stationary process obtained by differencing $\{X_t\}$ a total of d times; if $\{X_t\}$ is stationary, let $Y_t = X_t$

• with $\mu_Y \equiv E\{Y_t\}$, have

 $E\{W_{j,t}\} = 0$ if either (i) $L > 2d$ or (ii) $L = 2d$ and $\mu_Y = 0$

 $E\{W_{j,t}\} \neq 0$ if $\mu_Y \neq 0$ and $L = 2d$

• thus have $E\{W_{j,t}\} = 0$ if L is picked large enough ($L > 2d$ is sufficient, but might not be necessary)

• as the argument that follows shows, highly desirable to have $E\{W_{j,t}\} = 0$ in order to ease the job of estimating $\nu^2_X(\tau_j)$
Estimation of a Process Variance: I

• suppose \(\{U_t\} \) is a stationary process with mean \(\mu_U = E\{U_t\} \) and unknown variance \(\sigma_U^2 = E\{(U_t - \mu_U)^2\} \)

• can be difficult to estimate \(\sigma_U^2 \) for a stationary process

• to understand why, assume first that \(\mu_U \) is known

• when this is the case, can estimate \(\sigma_U^2 \) using

\[
\tilde{\sigma}_U^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (U_t - \mu_U)^2
\]

• estimator above is unbiased: \(E\{\tilde{\sigma}_U^2\} = \sigma_U^2 \)
Estimation of a Process Variance: II

• if μ_U is unknown (more common case), can estimate σ_U^2 using

$$\hat{\sigma}_U^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (U_t - \overline{U})^2,$$

where $\overline{U} \equiv \frac{1}{N} \sum_{t=0}^{N-1} U_t$

• can argue that $E\{\hat{\sigma}_U^2\} = \sigma_U^2 - \text{var}\{\overline{U}\}$

• implies $0 \leq E\{\hat{\sigma}_U^2\} \leq \sigma_U^2$ because $\text{var}\{\overline{U}\} \geq 0$

• $E\{\hat{\sigma}_U^2\} \to \sigma_U^2$ as $N \to \infty$ if SDF exists ... but, for any

$\epsilon > 0$ (say, 0.00 · · · 01) and sample size N (say, $N = 10^{10^{10}}$),

there is some FD(δ) process $\{U_t\}$ with δ close to $1/2$ such that

$$E\{\hat{\sigma}_U^2\} < \epsilon \cdot \sigma_U^2;$$

i.e., in general, $\hat{\sigma}_U^2$ can be badly biased even for very large N
Estimation of a Process Variance: III

- example: realization of FD(0.4) process ($\sigma_U^2 = 1 & N = 1000$)

![Graph showing realization of FD(0.4) process]

- using $\mu_U = 0$ (lower horizontal line), obtain $\tilde{\sigma}_U^2 \doteq 0.99$
- using $\bar{U} \doteq 0.53$ (upper line), obtain $\hat{\sigma}_U^2 \doteq 0.71$
- note that this is comparable to $E\{\hat{\sigma}_U^2\} \doteq 0.75$
- for this particular example, we would need $N \geq 10^{10}$ to get $\sigma_U^2 - E\{\hat{\sigma}_U^2\} \leq 0.01$, i.e., to reduce the bias so that it is no more than 1% of true variance $\sigma_U^2 = 1$
Estimation of a Process Variance: IV

- conclusion: \(\hat{\sigma}_U^2 \) can have substantial bias if \(\mu_U \) is unknown (can patch up by estimating \(\delta \), but must make use of model)

- if \(\{X_t\} \) stationary with mean \(\mu_X \), then, because \(\sum_l \tilde{h}_{j,l} = 0 \),

\[
E\{\overline{W}_{j,t}\} = \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} E\{X_{t-l}\} = \mu_X \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} = 0
\]

- because \(E\{\overline{W}_{j,t}\} \) is known, we can form an unbiased estimator of \(\text{var} \{\overline{W}_{j,t}\} = \nu_X^2(\tau_j) \)

- more generally, if \(\{X_t\} \) is nonstationary with stationary increments of order \(d \), we can ensure \(E\{\overline{W}_{j,t}\} = 0 \) if we pick the filter width \(L \) such that \(L > 2d \) (in some cases, we might be able to get away with just \(L = 2d \))
Wavelet Variance for Processes with Stationary Backward Differences: II

• conclusions: \(\nu^2_X(\tau_j) \) well-defined for \(\{X_t\} \) that is
 - stationary: any \(L \) will do and \(E\{\overline{W}_{j,t}\} = 0 \)
 - nonstationary with \(d \)th order stationary increments: need at least \(L \geq 2d \), but might need \(L > 2d \) to get \(E\{\overline{W}_{j,t}\} = 0 \)

• if \(\{X_t\} \) is stationary, then

\[
\sum_{j=1}^{\infty} \nu^2_X(\tau_j) = \text{var} \{X_t\} < \infty
\]

(recall that each RV in a stationary process must have the same finite variance)
Wavelet Variance for Processes with Stationary Backward Differences: III

- if \(\{X_t\} \) is nonstationary, then
 \[
 \sum_{j=1}^{\infty} \nu^2_X(\tau_j) = \infty
 \]

- with a suitable construction, we can take variance of nonstationary process with \(d \)th order stationary increments to be \(\infty \)

- using this construction, we have
 \[
 \sum_{j=1}^{\infty} \nu^2_X(\tau_j) = \text{var} \{X_t\}
 \]

 for both the stationary and nonstationary cases
Background on Gaussian Random Variables

• $\mathcal{N}(\mu, \sigma^2)$ denotes a Gaussian (normal) RV with mean μ and variance σ^2

• will write

\[X \overset{d}{=} \mathcal{N}(\mu, \sigma^2) \]

...to mean ‘RV X has same distribution as Gaussian RV’

• RV $\mathcal{N}(0, 1)$ often written as Z (called standard Gaussian or standard normal)

• let $\Phi(\cdot)$ be Gaussian cumulative distribution function

\[\Phi(z) \equiv P[Z \leq z] = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx \]

• inverse $\Phi^{-1}(\cdot)$ of $\Phi(\cdot)$ is such that $P[Z \leq \Phi^{-1}(p)] = p$

• $\Phi^{-1}(p)$ called $p \times 100\%$ percentage point
Background on Chi-Square Random Variables

• X said to be a chi-square RV with η degrees of freedom if its probability density function (PDF) is given by

$$f_X(x; \eta) = \frac{1}{2^{\eta/2}\Gamma(\eta/2)} x^{(\eta/2)-1}e^{-x/2}, \quad x \geq 0, \ \eta > 0$$

• χ_η^2 denotes RV with above PDF

• 3 important facts: $E\{\chi_\eta^2\} = \eta$; var $\{\chi_\eta^2\} = 2\eta$; and, if η is a positive integer and if Z_1, \ldots, Z_η are independent $\mathcal{N}(0, 1)$ RVs, then

$$Z_1^2 + \cdots + Z_\eta^2 \overset{d}{=} \chi_\eta^2$$

• let $Q_\eta(p)$ denote the pth percentage point for the RV χ_η^2:

$$\mathbb{P}[\chi_\eta^2 \leq Q_\eta(p)] = p$$
Unbiased Estimator of Wavelet Variance: I

• given a realization of $X_0, X_1, \ldots, X_{N-1}$ from a process with dth order stationary differences, want to estimate $\nu_X^2(\tau_j)$

• for wavelet filter such that $L \geq 2d$ and $E\{\bar{W}_{j,t}\} = 0$, have

$$\nu_X^2(\tau_j) = \text{var}\{\bar{W}_{j,t}\} = E\{\bar{W}_{j,t}^2\}$$

• can base estimator on squares of

$$\tilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \ldots, N - 1$$

• recall that

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l}, \quad t \in \mathbb{Z}$$
Unbiased Estimator of Wavelet Variance: II

- comparing

\[\tilde{W}_{j,t} = \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l \mod N} \] with \[\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l} \]

says that \(\tilde{W}_{j,t} = \overline{W}_{j,t} \) if ‘mod \(N \)’ not needed; this happens when \(L_j - 1 \leq t < N \) (recall that \(L_j = (2^j - 1)(L - 1) + 1 \))

- if \(N - L_j \geq 0 \), unbiased estimator of \(\nu_X^2(\tau_j) \) is

\[\hat{\nu}_X^2(\tau_j) \equiv \frac{1}{N - L_j + 1} \sum_{t=L_j-1}^{N-1} \tilde{W}_{j,t}^2 = \frac{1}{M_j} \sum_{t=L_j-1}^{N-1} \overline{W}_{j,t}^2, \]

where \(M_j \equiv N - L_j + 1 \)
Statistical Properties of $\hat{\nu}_X^2(\tau_j)$

• assume that $\{W_{j,t}\}$ is Gaussian stationary process with mean zero and ACVS $\{s_{j,\tau}\}$
• suppose $\{s_{j,\tau}\}$ is such that

$$A_j \equiv \sum_{\tau=-\infty}^{\infty} s_{j,\tau}^2 < \infty$$

(if $A_j = \infty$, can make it finite usually by just increasing L)
• can show that $\hat{\nu}_X^2(\tau_j)$ is asymptotically Gaussian with mean $\nu_X^2(\tau_j)$ and large sample variance $2A_j/M_j$; i.e.,

$$\frac{\hat{\nu}_X^2(\tau_j) - \nu_X^2(\tau_j)}{(2A_j/M_j)^{1/2}} = \frac{M_j^{1/2}(\hat{\nu}_X^2(\tau_j) - \nu_X^2(\tau_j))}{(2A_j)^{1/2}} \overset{d}{=} \mathcal{N}(0, 1)$$

approximately for large $M_j \equiv N - L_j + 1$
Estimation of A_j

- in practical applications, need to estimate $A_j = \sum_\tau s_{j,\tau}^2$
- can argue that, for large M_j, the estimator
 \[
 \hat{A}_j \equiv \frac{\left(\hat{s}_{j,0}^{(p)} \right)^2}{2} + \sum_{\tau=1}^{M_j-1} \left(\hat{s}_{j,\tau}^{(p)} \right)^2,
 \]
 is approximately unbiased, where
 \[
 \hat{s}_{j,\tau}^{(p)} \equiv \frac{1}{M_j} \sum_{t=L_j-1}^{N-1-|\tau|} \tilde{W}_{j,t} \tilde{W}_{j,t+|\tau|}, \quad 0 \leq |\tau| \leq M_j - 1
 \]
- Monte Carlo results: \hat{A}_j reasonably good for $M_j \geq 128$
Confidence Intervals for $\nu_X^2(\tau_j)$: I

- based upon large sample theory, can form a $100(1 - 2p)$% confidence interval (CI) for $\nu_X^2(\tau_j)$:

$$
\left[\nu_X^2(\tau_j) - \Phi^{-1}(1 - p) \frac{\sqrt{2A_j}}{\sqrt{M_j}}, \nu_X^2(\tau_j) + \Phi^{-1}(1 - p) \frac{\sqrt{2A_j}}{\sqrt{M_j}} \right];
$$

i.e., random interval traps unknown $\nu_X^2(\tau_j)$ with probability $1 - 2p$

- if A_j replaced by \hat{A}_j, approximate $100(1 - 2p)$% CI

- critique: lower limit of CI can very well be negative even though $\nu_X^2(\tau_j) \geq 0$ always

- can avoid this problem by using a χ^2 approximation
Confidence Intervals for $\nu^2_X(\tau_j)$: II

- χ^2_{η} useful for approximating distribution of linear combinations of squared Gaussians
- let U_1, U_2, \ldots, U_K be K independent Gaussian RVs with mean 0 & variance σ^2; then, since $\text{var} \{ U^2_k \} = 2\sigma^4$,
 \[
 Q \equiv \sum_{k=1}^{K} \lambda_k U^2_k \text{ has } E\{Q\} = \sigma^2 \sum_{k=1}^{K} \lambda_k \text{ & } \text{var} \{Q\} = 2\sigma^4 \sum_{k=1}^{K} \lambda^2_k
 \]
- take distribution of Q to be that of the RV $a\chi^2_{\eta}$, where a and equivalent degrees of freedom (EDOF) η are to be determined
- because $E\{\chi^2_{\eta}\} = \eta$ and $\text{var} \{\chi^2_{\eta}\} = 2\eta$, we have $E\{a\chi^2_{\eta}\} = a\eta$ and $\text{var} \{a\chi^2_{\eta}\} = 2a^2\eta$
- can equate $E\{Q\} \& \text{var} \{Q\}$ to $a\eta \& 2a^2\eta$ to determine $a \& \eta$
Confidence Intervals for $\nu^2_X(\tau_j)$: III

• obtain

$$E\{Q\} = a \eta = \sigma^2 \sum_{k=1}^{K} \lambda_k \quad \text{and} \quad \text{var}\{Q\} = 2a^2 \eta = 2\sigma^4 \sum_{k=1}^{K} \lambda_k^2,$$

which, when combined, yield

$$\eta = \frac{2(E\{Q\})^2}{\text{var}\{Q\}} = \frac{(\sum_{k=1}^{K} \lambda_k)^2}{\sum_{k=1}^{K} \lambda_k^2} \quad \text{and} \quad a = \sigma^2 \frac{\sum_{k=1}^{K} \lambda_k^2}{\sum_{k=1}^{K} \lambda_k}$$

• can also use to approximate sums of correlated squared Gaussians with zero means, e.g., $\hat{\nu}^2_X(\tau_j) = \frac{1}{M_j} \sum_{t=L_{j-1}}^{N-1} \overline{W}_{j,t}^2$

• can determine η based upon $E\{\hat{\nu}^2_X(\tau_j)\} = \nu^2_X(\tau_j)$ and an approximation for $\text{var}\{\hat{\nu}^2_X(\tau_j)\}$
Three Ways to Set η: I

1. use large sample theory with appropriate estimates:

$$
\eta = \frac{2(E\{\hat{\nu}_X^2(\tau_j)\})^2}{\text{var}\{\hat{\nu}_X^2(\tau_j)\}} \approx \frac{2\nu_X^4(\tau_j)}{2A_j/M_j}
$$
suggests $\hat{\eta}_1 = \frac{M_j\hat{\nu}_X^4(\tau_j)}{\hat{A}_j}$

2. assume nominal shape for SDF of $\{X_t\}$: $S_X(f) = hC(f)$, where $C(\cdot)$ is known (?!), but h is not; get acceptable CIs using

$$
\eta_2 = \frac{2 \left(\sum_{k=1}^{[(M_j-1)/2]} C_j(f_k) \right)^2}{\sum_{k=1}^{[(M_j-1)/2]} C_j^2(f_k)} \quad \& \quad C_j(f) \equiv \int_{-1/2}^{1/2} \tilde{H}_j(f)C(f) \, df
$$

where $\tilde{H}_j(\cdot)$ is squared gain function for $\{\tilde{h}_{j,l}\}$
Three Ways to Set η: II

3. make an assumption about the effect of wavelet filter on $\{X_t\}$ to obtain simple (but effective!) approximation

$$\eta_3 = \max\{M_j/2^j, 1\}$$

- comments on three approaches

1. $\hat{\eta}_1$ requires estimation of A_j
 - works well for $M_j \geq 128$ (5% to 10% errors on average)
 - can yield optimistic CIs for smaller M_j

2. η_2 requires specification of shape of $S_X(\cdot)$
 - common practice in, e.g., atomic clock literature

3. η_3 assumes band-pass approximation
 - default method if M_j small and there is no reasonable guess at shape of $S_X(\cdot)$
Confidence Intervals for $\nu_X^2(\tau_j)$: IV

- after η has been determined, can obtain a CI for $\nu_X^2(\tau_j)$: with probability $1 - 2p$, the random interval
 \[
 \left[\frac{\eta \hat{\nu}_X^2(\tau_j)}{Q \eta(1 - p)} , \frac{\eta \hat{\nu}_X^2(\tau_j)}{Q \eta(p)} \right]
 \]
 traps the true unknown $\nu_X^2(\tau_j)$
- lower limit is now nonnegative
- get approximate $100(1 - 2p)\%$ CI for $\nu_X^2(\tau_j)$, with approximation improving as $N \to \infty$, if we use $\hat{\eta}_1$ to estimate η
- as $N \to \infty$, above CI and Gaussian-based CI converge
Atomic Clock Deviates: I

X_t

$X_t^{(1)}$

$X_t^{(2)}$

$t \Delta t$ (days)
Atomic Clock Deviates: II

• top plot: errors \(\{X_t\} \) in time kept by atomic clock 571 (measured in microseconds: 1,000,000 microseconds = 1 second)

• middle: 1st backward differences \(\{X_t^{(1)}\} \) in nanoseconds (1000 nanoseconds = 1 microsecond)

• bottom: 2nd backward differences \(\{X_t^{(2)}\} \), also in nanoseconds

• if \(\{X_t\} \) nonstationary with \(d \)th order stationary increments, need \(L \geq 2d \), but might need \(L > 2d \) to get \(E\{W_{j,t}\} = 0 \)

• might regard \(\{X_t^{(1)}\} \) as realization of stationary process, but, if so, with a mean value far from 0; \(\{X_t^{(2)}\} \) resembles realization of stationary process, but mean value still might not be 0 if we believe there is a linear trend in \(\{X_t^{(1)}\} \); thus might need \(L \geq 6 \), but could get away with \(L \geq 4 \)
Atomic Clock Deviates: III
Atomic Clock Deviates: IV

• square roots of wavelet variance estimates for atomic clock time errors $\{X_t\}$ based upon unbiased MODWT estimator with
 – Haar wavelet (x’s in left-hand plot, with linear fit)
 – D(4) wavelet (circles in left- and right-hand plots)
 – D(6) wavelet (pluses in left-hand plot).
• Haar wavelet inappropriate
 – need $\{X_t^{(1)}\}$ to be a realization of a stationary process with mean 0 (stationarity might be OK, but mean 0 is way off)
 – linear appearance can be explained in terms of nonzero mean
• 95% confidence intervals in the right-hand plot are the square roots of intervals computed using the chi-square approximation with η given by $\hat{\eta}_1$ for $j = 1, \ldots, 6$ and by η_3 for $j = 7 \& 8$
Wavelet Variance Analysis of Time Series with Time-Varying Statistical Properties

- each wavelet coefficient \(\tilde{W}_{j,t} \) formed using portion of \(X_t \)
- suppose \(X_t \) associated with actual time \(t_0 + t \Delta t \)
 * \(t_0 \) is actual time of first observation \(X_0 \)
 * \(\Delta t \) is spacing between adjacent observations
- suppose \(\tilde{h}_{j,l} \) is least asymmetric Daubechies wavelet
- can associate \(\tilde{W}_{j,t} \) with an interval of width \(2\tau_j \Delta t \) centered at
 \[
 t_0 + (2^j(t + 1) - 1 - |\nu_j^{(H)}| \mod N) \Delta t,
 \]
 where, e.g., \(|\nu_j^{(H)}| = [7(2^j - 1) + 1]/2 \) for LA(8) wavelet
- can thus form ‘localized’ wavelet variance analysis (implicitly assumes stationarity or stationary increments locally)
Subtidal Sea Level Fluctuations: I

- subtidal sea level fluctuations \mathbf{X} for Crescent City, CA, collected by National Ocean Service with permanent tidal gauge
- $N = 8746$ values from Jan 1980 to Dec 1991 (almost 12 years)
- one value every 12 hours, so $\Delta t = 1/2$ day
- ‘subtidal’ is what remains after diurnal & semidiurnal tides are removed by low-pass filter (filter seriously distorts frequency band corresponding to first physical scale $\tau_1 \Delta t = 1/2$ day)
Subtidal Sea Level Fluctuations: II

- Level $J_0 = 7$ LA(8) MODWT multiresolution analysis
Subtidal Sea Level Fluctuations: III

- LA(8) picked in part to help with time alignment of wavelet coefficients, but MRAs for D(4) and C(6) are OK (Haar MRA problematic – evidence it suffers from ‘leakage’)
- with $J_0 = 7$, \tilde{S}_7 represents averages over scale $\lambda_7 \Delta t = 64$ days
- this choice of J_0 captures intra-annual variations in \tilde{S}_7 (not of interest to decompose these variations further)
- MRA suggests seasonally dependent variability at some scales
- because MODWT-based MRA does not preserve energy, preferable to study variability via MODWT wavelet coefficients
Subtidal Sea Level Fluctuations: IV

- estimated time-dependent LA(8) wavelet variances for physical scale $\tau_2 \Delta t = 1$ day based upon averages over monthly blocks (30.5 days, i.e., 61 data points)

- plot also shows a representative 95% confidence interval based upon a hypothetical wavelet variance estimate of $1/2$ and a chi-square distribution with $\nu = 15.25$
Subtidal Sea Level Fluctuations: V

- estimated LA(8) wavelet variances for physical scales $\tau_j \Delta t = 2^{j-2}$ days, $j = 2, \ldots, 7$, grouped by calendar month
Annual Minima of Nile River

- left-hand plot: annual minima of Nile River
- right: Haar $\hat{\nu}^2_X(\tau_j)$ before (\bullet’s) and after (\circ’s) year 715.5, with 95% confidence intervals based upon $\chi^2_{\eta_3}$ approximation
Vertical Shear in the Ocean: I

- selected ‘stationary’ portion of vertical shear measurements \(\{ X_t \} \) (top plot) and their first backward differences \(\{ X_t^{(1)} \} \)

WMTSA: 327–328
Vertical Shear in the Ocean: II

- unbiased MODWT wavelet variance estimates using the following wavelet filters: Haar (x’s in left-hand plot, through which two regression lines have been fit); D(4) (small circles, right-hand plot); D(6) (pluses, both plots); and LA(8) (big circles, right-hand plot).
Vertical Shear in the Ocean: III

- D(6) wavelet variance estimates, along with 95% confidence intervals for true wavelet variance with EDOFs determined by, from left to right within each group of 3, $\hat{\eta}_1$ (estimated from data), η_2 (using a nominal model for $S_X(\cdot)$) and $\eta_3 = \max\{M_j/2^j, 1\}$.
Some Extensions

- wavelet cross-covariance and cross-correlation (Whitcher, Guttorm and Percival, 2000; Serroukh and Walden, 2000a, 2000b)
- asymptotic theory for non-Gaussian processes satisfying a certain ‘mixing’ condition (Serroukh, Walden and Percival, 2000)
- biased estimators of wavelet variance (Aldrich, 2005)
- unbiased estimator of wavelet variance for ‘gappy’ time series (Mandal and Percival, 2010a)
- robust estimation (Mandal and Percival, 2010b)
- wavelet variance for random fields (Mandal and Percival, 2010c)
- wavelet-based characteristic scales (Keim and Percival, 2010)
Summary

• wavelet variance gives scale-based analysis of variance

• presented statistical theory for Gaussian processes with stationary increments

• in addition to the applications we have considered, the wavelet variance has been used to analyze
 — genome sequences
 — changes in variance of soil properties
 — canopy gaps in forests
 — accumulation of snow fields in polar regions
 — boundary layer atmospheric turbulence
 — regular and semiregular variable stars
References: I

- fractionally differenced processes

- wavelet cross-covariance and cross-correlation

- asymptotic theory for non-Gaussian processes
References: II

- biased estimators of wavelet variance
- unbiased estimator of wavelet variance for ‘gappy’ time series
- robust estimation
- wavelet variance for random fields
- wavelet-based characteristic scales