Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images (mostly)
- following work on continuous wavelet transform by Morlet and co-workers in 1983, Daubechies, Mallat and others introduced discrete wavelet transform (DWT) in 1988
- begin with qualitative description of the DWT
- discuss two key descriptive capabilities of the DWT:
- multiresolution analysis (an additive decomposition)
- wavelet variance or spectrum (decomposition of sum of squares)
- look at how DWT is formed based on a wavelet filter
- discuss maximal overlap DWT (MODWT)

Qualitative Description of DWT: I

- let $\mathbf{X}=\left[X_{0}, X_{1}, \ldots, X_{N-1}\right]^{T}$ be a vector of N time series values (note: ' T ' denotes transpose; i.e., \mathbf{X} is a column vector)
- assume initially $N=2^{J}$ for some positive integer J (will relax this restriction later on)
- example of time series with $N=16=2^{4}$:

$$
\begin{aligned}
\mathbf{X}= & {\left[\begin{array}{rrrrr}
0.2, & -0.4, & -0.6,-0.5, & -0.8,-0.4, & -0.9, \\
& 0.0 \\
& -0.2, & 0.1, & -0.1, & 0.1, \\
0.7, & 0.9, & 0.0, & 0.3
\end{array}\right]^{T} }
\end{aligned}
$$

$$
X_{t} \quad \text { "nn:" }
$$

Qualitative Description of DWT: II

- DWT is a linear transform of \mathbf{X} yielding N DWT coefficients
- notation: $\mathbf{W}=\mathcal{W} \mathbf{X}$
$-\mathbf{W}$ is vector of DWT coefficients (j th component is W_{j})
$-\mathcal{W}$ is $N \times N$ orthonormal transform matrix
- orthonormality says $\mathcal{W}^{T} \mathcal{W}=I_{N}(N \times N$ identity matrix $)$
- inverse of \mathcal{W} is just its transpose, so $\mathcal{W} \mathcal{W}^{T}=I_{N}$ also

Implications of Orthonormality

- let $\mathcal{W}_{j \bullet}^{T}$ denote the j th row of \mathcal{W}, where $j=0,1, \ldots, N-1$
- let $\mathcal{W}_{j, l}$ denote l th element of $\mathcal{W}_{j \bullet}$
- consider two rows, say, $\mathcal{W}_{j \bullet}^{T}$ and $\mathcal{W}_{k \bullet}^{T}$
- orthonormality says

$$
\left\langle\mathcal{W}_{j \bullet}, \mathcal{W}_{k \bullet}\right\rangle \equiv \sum_{l=0}^{N-1} \mathcal{W}_{j, l} \mathcal{W}_{k, l}= \begin{cases}1, & \text { when } j=k \\ 0, & \text { when } j \neq k\end{cases}
$$

$-\left\langle\mathcal{W}_{j \bullet}, \mathcal{W}_{k \bullet}\right\rangle$ is inner product of j th $\& k$ th rows
$-\left\langle\mathcal{W}_{j \bullet}, \mathcal{W}_{j \bullet}\right\rangle=\left\|\mathcal{W}_{j \bullet}\right\|^{2}$ is squared norm (energy) for $\mathcal{W}_{j \bullet}$

Example: the Haar DWT

- $N=16$ example of Haar DWT matrix \mathcal{W}

- note that rows are orthogonal to each other (i.e., inner products are zero)

Haar DWT Coefficients: I

- obtain Haar DWT coefficients \mathbf{W} by premultiplying \mathbf{X} by \mathcal{W} :

$$
\mathbf{W}=\mathcal{W} \mathbf{X}
$$

- j th coefficient W_{j} is inner product of j th row $\mathcal{W}_{j \bullet}^{T}$ and \mathbf{X} :

$$
W_{j}=\left\langle\mathcal{W}_{j \bullet}, \mathbf{X}\right\rangle
$$

- can interpret coefficients as difference of averages
- to see this, let

$$
\bar{X}_{t}(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l}=\text { 'scale } \lambda \text { ' average }
$$

- note: $\bar{X}_{t}(1)=X_{t}=$ scale 1 'average'
- note: $\bar{X}_{N-1}(N)=\bar{X}=$ sample average

Haar DWT Coefficients: II

- consider form $W_{0}=\left\langle\mathcal{W}_{0}, \mathbf{X}\right\rangle$ takes in $N=16$ example:

$$
\mathcal{W}_{0, t} X_{t} \quad . \cdots \ldots \ldots \ldots . \quad \text { sum } \propto \bar{X}_{1}(1)-\bar{X}_{0}(1)
$$

- similar interpretation for $W_{1}, \ldots, W_{\frac{N}{2}-1}=W_{7}=\left\langle\mathcal{W}_{7 \bullet}, \mathbf{X}\right\rangle$:

Haar DWT Coefficients: III

- now consider form of $W_{\frac{N}{2}}=W_{8}=\left\langle\mathcal{W}_{8}, \mathbf{X}\right\rangle$:

- similar interpretation for $W_{\frac{N}{2}+1}, \ldots, W_{\frac{3 N}{4}-1}$

Haar DWT Coefficients: IV

- $W_{\frac{3 N}{4}}=W_{12}=\left\langle\mathcal{W}_{12 \bullet}, \mathbf{X}\right\rangle$ takes the following form:

- continuing in this manner, come to $W_{N-2}=\left\langle\mathcal{W}_{14 \bullet}, \mathbf{X}\right\rangle$:

```
\(\mathcal{W}_{14, t}\)
                                \(\mathcal{W}_{14, t} X_{t} \quad\) sum \(\propto \bar{X}_{15}(8)-\bar{X}_{7}(8)\)
```


Haar DWT Coefficients: V

- final coefficient $W_{N-1}=W_{15}$ has a different interpretation:

- structure of rows in \mathcal{W}
- first $\frac{N}{2}$ rows yield W_{j} 's \propto changes on scale 1
- next $\frac{N}{4}$ rows yield W_{j} 's \propto changes on scale 2
- next $\frac{N}{8}$ rows yield W_{j} 's \propto changes on scale 4
- next to last row yields $W_{j} \propto$ change on scale $\frac{N}{2}$
- last row yields $W_{j} \propto$ average on scale N

Structure of DWT Matrices

- $\frac{N}{2 \tau_{j}}$ wavelet coefficients for scale $\tau_{j} \equiv 2^{j-1}, j=1, \ldots, J$
$-\tau_{j} \equiv 2^{j-1}$ is standardized scale
$-\tau_{j} \Delta$ is physical scale, where Δ is sampling interval
- each W_{j} localized in time: as scale \uparrow, localization \downarrow
- rows of \mathcal{W} for given scale τ_{j} :
- circularly shifted with respect to each other
- shift between adjacent rows is $2 \tau_{j}=2^{j}$
- similar structure for DWTs other than the Haar
- differences of averages common theme for DWTs
- simple differencing replaced by higher order differences
- simple averages replaced by weighted averages

Two Basic Decompositions Derivable from DWT

- additive decomposition
- reexpresses \mathbf{X} as the sum of $J+1$ new time series, each of which is associated with a particular scale τ_{j}
- called multiresolution analysis (MRA)
- energy decomposition
- yields analysis of variance across J scales
- called wavelet spectrum or wavelet variance

Partitioning of DWT Coefficient Vector W

- decompositions are based on partitioning of \mathbf{W} and \mathcal{W}
- partition \mathbf{W} into subvectors associated with scale:

$$
\mathbf{W}=\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{j} \\
\vdots \\
\mathbf{W}_{J} \\
\mathbf{V}_{J}
\end{array}\right]
$$

- \mathbf{W}_{j} has $N / 2^{j}$ elements (scale $\tau_{j}=2^{j-1}$ changes)
note: $\sum_{j=1}^{J} \frac{N}{2^{j}}=\frac{N}{2}+\frac{N}{4}+\cdots+2+1=2^{J}-1=N-1$
- V_{J} has 1 element, which is equal to $\sqrt{N} \cdot \bar{X}$ (scale N average)

Example of Partitioning of W

- consider time series \mathbf{X} of length $N=16 \&$ its Haar DWT W

Partitioning of DWT Matrix \mathcal{W}

- partition \mathcal{W} commensurate with partitioning of \mathbf{W} :

$$
\mathcal{W}=\left[\begin{array}{c}
\mathcal{W}_{1} \\
\mathcal{W}_{2} \\
\vdots \\
\mathcal{W}_{j} \\
\vdots \\
\mathcal{W}_{J} \\
\mathcal{V}_{J}
\end{array}\right]
$$

- \mathcal{W}_{j} is $\frac{N}{2^{j}} \times N$ matrix (related to scale $\tau_{j}=2^{j-1}$ changes)
- \mathcal{V}_{J} is $1 \times N$ row vector (each element is $\frac{1}{\sqrt{N}}$)

Example of Partitioning of \mathcal{W}

- $N=16$ example of Haar DWT matrix \mathcal{W}

- two properties: (a) $\mathbf{W}_{j}=\mathcal{W}_{j} \mathbf{X}$ and (b) $\mathcal{W}_{j} \mathcal{W}_{j}^{T}=I_{\frac{N}{2 j}}$

DWT Analysis and Synthesis Equations

- recall the DWT analysis equation $\mathbf{W}=\mathcal{W} \mathbf{X}$
- $\mathcal{W}^{T} \mathcal{W}=I_{N}$ because \mathcal{W} is an orthonormal transform
- implies that $\mathcal{W}^{T} \mathbf{W}=\mathcal{W}^{T} \mathcal{W} \mathbf{X}=\mathbf{X}$
- yields DWT synthesis equation:

$$
\begin{aligned}
\mathbf{X}=\mathcal{W}^{T} \mathbf{W} & =\left[\mathcal{W}_{1}^{T}, \mathcal{W}_{2}^{T}, \ldots, \mathcal{W}_{J}^{T}, \mathcal{V}_{J}^{T}\right]\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{J} \\
\mathbf{V}_{J}
\end{array}\right] \\
& =\sum_{j=1}^{J} \mathcal{W}_{j}^{T} \mathbf{W}_{j}+\mathcal{V}_{J}^{T} \mathbf{V}_{J}
\end{aligned}
$$

Multiresolution Analysis: I

- synthesis equation leads to additive decomposition:

$$
\mathbf{X}=\sum_{j=1}^{J} \mathcal{W}_{j}^{T} \mathbf{W}_{j}+\mathcal{V}_{J}^{T} \mathbf{V}_{J} \equiv \sum_{j=1}^{J} \mathcal{D}_{j}+\mathcal{S}_{J}
$$

- $\mathcal{D}_{j} \equiv \mathcal{W}_{j}^{T} \mathbf{W}_{j}$ is portion of synthesis due to scale τ_{j}
- \mathcal{D}_{j} is vector of length N and is called j th 'detail'
- $\mathcal{S}_{J} \equiv \mathcal{V}_{J}^{T} \mathbf{V}_{J}=\bar{X} \mathbf{1}$, where $\mathbf{1}$ is a vector containing N ones (later on we will call this the 'smooth' of J th order)
- additive decomposition called multiresolution analysis (MRA)

Multiresolution Analysis: II

- example of MRA for time series of length $N=16$

- adding values for, e.g., $t=14$ in $\mathcal{D}_{1}, \ldots, \mathcal{D}_{4} \& \mathcal{S}_{4}$ yields X_{14}

Energy Preservation Property of DWT Coefficients

- define 'energy' in \mathbf{X} as its squared norm:

$$
\|\mathbf{X}\|^{2}=\langle\mathbf{X}, \mathbf{X}\rangle=\mathbf{X}^{T} \mathbf{X}=\sum_{t=0}^{N-1} X_{t}^{2}
$$

- energy of \mathbf{X} is preserved in its DWT coefficients \mathbf{W} because

$$
\begin{aligned}
\|\mathbf{W}\|^{2}=\mathbf{W}^{T} \mathbf{W} & =(\mathcal{W} \mathbf{X})^{T} \mathcal{W} \mathbf{X} \\
& =\mathbf{X}^{T} \mathcal{W}^{T} \mathcal{W} \mathbf{X} \\
& =\mathbf{X}^{T} I_{N} \mathbf{X}=\mathbf{X}^{T} \mathbf{X}=\|\mathbf{X}\|^{2}
\end{aligned}
$$

- note: same argument holds for any orthonormal transform

Wavelet Spectrum (Variance Decomposition): I

- let \bar{X} denote sample mean of X_{t} 's: $\bar{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_{t}$
- let $\hat{\sigma}_{X}^{2}$ denote sample variance of X_{t} 's:

$$
\begin{aligned}
\hat{\sigma}_{X}^{2} \equiv \frac{1}{N} \sum_{t=0}^{N-1}\left(X_{t}-\bar{X}\right)^{2} & =\frac{1}{N} \sum_{t=0}^{N-1} X_{t}^{2}-\bar{X}^{2} \\
& =\frac{1}{N}\|\mathbf{X}\|^{2}-\bar{X}^{2} \\
& =\frac{1}{N}\|\mathbf{W}\|^{2}-\bar{X}^{2}
\end{aligned}
$$

- since $\|\mathbf{W}\|^{2}=\sum_{j=1}^{J}\left\|\mathbf{W}_{j}\right\|^{2}+\left\|\mathbf{V}_{J}\right\|^{2}$ and $\frac{1}{N}\left\|\mathbf{V}_{J}\right\|^{2}=\bar{X}^{2}$,

$$
\hat{\sigma}_{X}^{2}=\frac{1}{N} \sum_{j=1}^{J}\left\|\mathbf{W}_{j}\right\|^{2}
$$

Wavelet Spectrum (Variance Decomposition): II

- define discrete wavelet power spectrum:

$$
P_{X}\left(\tau_{j}\right) \equiv \frac{1}{N}\left\|\mathbf{W}_{j}\right\|^{2}, \text { where } \tau_{j}=2^{j-1}
$$

- gives us a scale-based decomposition of the sample variance:

$$
\hat{\sigma}_{X}^{2}=\sum_{j=1}^{J} P_{X}\left(\tau_{j}\right)
$$

- in addition, each $W_{j, t}$ in \mathbf{W}_{j} associated with a portion of \mathbf{X}; i.e., $W_{j, t}^{2}$ offers scale- \& time-based decomposition of $\hat{\sigma}_{X}^{2}$

Wavelet Spectrum (Variance Decomposition): III

- wavelet spectra for time series \mathbf{X} and \mathbf{Y} of length $N=16$, each with zero sample mean and same sample variance

Defining the Discrete Wavelet Transform (DWT)

- can formulate DWT via elegant 'pyramid' algorithm
- defines \mathcal{W} for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W}=\mathcal{W} \mathbf{X}$ using $O(N)$ multiplications
- 'brute force' method uses $O\left(N^{2}\right)$ multiplications
- faster than celebrated algorithm for fast Fourier transform! (this uses $O\left(N \cdot \log _{2}(N)\right)$ multiplications)
- can formulate algorithm using linear filters or matrices (two approaches are complementary)
- need to review ideas from theory of linear (time-invariant) filters, which requires some Fourier theory

Fourier Theory for Sequences: I

- let $\left\{a_{t}\right\}$ denote a real-valued sequence such that $\sum_{t} a_{t}^{2}<\infty$
- discrete Fourier transform (DFT) of $\left\{a_{t}\right\}$:

$$
A(f) \equiv \sum_{t} a_{t} e^{-i 2 \pi f t}
$$

- f called frequency: $e^{-i 2 \pi f t}=\cos (2 \pi f t)-i \sin (2 \pi f t)$
- $A(f)$ defined for all f, but $0 \leq f \leq 1 / 2$ is of main interest:
$-A(\cdot)$ periodic with unit period, i.e., $A(f+1)=A(f)$, all f
$-A(-f)=A^{*}(f)$, complex conjugate of $A(f)$
- need only know $A(f)$ for $0 \leq f \leq 1 / 2$ to know it for all f
- 'low frequencies' are those in lower range of $[0,1 / 2]$
- 'high frequencies' are those in upper range of $[0,1 / 2]$

Fourier Theory for Sequences: II

- can recover (synthesize) $\left\{a_{t}\right\}$ from its DFT:

$$
\int_{-1 / 2}^{1 / 2} A(f) e^{i 2 \pi f t} d f=a_{t}
$$

left-hand side called inverse DFT of $A(\cdot)$

- $\left\{a_{t}\right\}$ and $A(\cdot)$ are two representations for one 'thingy'
- large $|A(f)|$ says $e^{i 2 \pi f t}$ important in synthesizing $\left\{a_{t}\right\}$; i.e., $\left\{a_{t}\right\}$ resembles some combination of $\cos (2 \pi f t)$ and $\sin (2 \pi f t)$

Convolution of Sequences

- given two sequences $\left\{a_{t}\right\}$ and $\left\{b_{t}\right\}$, define their convolution by

$$
c_{t} \equiv \sum_{u=-\infty}^{\infty} a_{u} b_{t-u}
$$

- DFT of $\left\{c_{t}\right\}$ has a simple form, namely,

$$
\sum_{t=-\infty}^{\infty} c_{t} e^{-i 2 \pi f t}=A(f) B(f)
$$

where $A(\cdot)$ is the DFT of $\left\{a_{t}\right\}$, and $B(\cdot)$ is the DFT of $\left\{b_{t}\right\}$; i.e., just multiply two DFTs together!!!

Basic Concepts of Filtering

- convolution \& linear time-invariant filtering are same concepts:
$-\left\{b_{t}\right\}$ is input to filter
$-\left\{a_{t}\right\}$ represents the filter
- $\left\{c_{t}\right\}$ is filter output
- flow diagram for filtering: $\left\{b_{t}\right\} \longrightarrow\left\{a_{t}\right\} \longrightarrow\left\{c_{t}\right\}$
- $\left\{a_{t}\right\}$ is called impulse response sequence for filter
- its DFT $A(\cdot)$ is called transfer function
- in general $A(\cdot)$ is complex-valued, so write $A(f)=|A(f)| e^{i \theta(f)}$
- $|A(f)|$ defines gain function
$-\mathcal{A}(f) \equiv|A(f)|^{2}$ defines squared gain function
$-\theta(\cdot)$ called phase function (well-defined at f if $|A(f)|>0$)

Example of a Low-Pass Filter

- consider $b_{t}=\frac{3}{16}\left(\frac{4}{5}\right)^{|t|}+\frac{1}{20}\left(-\frac{4}{5}\right)^{|t|} \& a_{t}= \begin{cases}\frac{1}{2}, & t=0 \\ \frac{1}{4}, & t=-1 \text { or } 1 \\ 0, & \text { otherwise }\end{cases}$

- note: $A(\cdot) \& B(\cdot)$ both real-valued $(A(\cdot)=$ its gain function)

Example of a High-Pass Filter

- consider same $\left\{b_{t}\right\}$, but now let $a_{t}= \begin{cases}\frac{1}{2}, & t=0 \\ -\frac{1}{4}, & t=-1 \text { or } 1 \\ 0, & \text { otherwise }\end{cases}$

- note: $\left\{a_{t}\right\}$ resembles some wavelet filters we'll see later

The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let $\left\{h_{l}: l=0, \ldots, L-1\right\}$ be a real-valued filter of width L
- both h_{0} and h_{L-1} must be nonzero
- for convenience, will define $h_{l}=0$ for $l<0$ and $l \geq L$
- L must be even $(2,4,6,8, \ldots)$ for technical reasons (hence ruling out $\left\{a_{t}\right\}$ on the previous overhead)

The Wavelet Filter: II

- $\left\{h_{l}\right\}$ called a wavelet filter if it has these 3 properties

1. summation to zero:

$$
\sum_{l=0}^{L-1} h_{l}=0
$$

2. unit energy:

$$
\sum_{l=0}^{L-1} h_{l}^{2}=1
$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$
\sum_{l=0}^{L-1} h_{l} h_{l+2 n}=0
$$

- 2 and 3 together are called the orthonormality property

The Wavelet Filter: III

- summation to zero and unit energy relatively easy to achieve
- orthogonality to even shifts is key property \& hardest to satisfy
- define transfer and squared gain functions for wavelet filter:

$$
H(f) \equiv \sum_{l=0}^{L-1} h_{l} e^{-i 2 \pi f l} \text { and } \mathcal{H}(f) \equiv|H(f)|^{2}
$$

- orthonormality property is equivalent to

$$
\mathcal{H}(f)+\mathcal{H}\left(f+\frac{1}{2}\right)=2 \quad \text { for all } f
$$

(an elegant - but not obvious! - result)

Haar Wavelet Filter

- simplest wavelet filter is Haar $(L=2): h_{0}=\frac{1}{\sqrt{ } 2} \& h_{1}=-\frac{1}{\sqrt{ } 2}$
- note that $h_{0}+h_{1}=0$ and $h_{0}^{2}+h_{1}^{2}=1$, as required
- orthogonality to even shifts also readily apparent

D(4) Wavelet Filter: I

- next simplest wavelet filter is $\mathrm{D}(4)$, for which $L=4$:

$$
h_{0}=\frac{1-\sqrt{ } 3}{4 \sqrt{ } 2}, \quad h_{1}=\frac{-3+\sqrt{ } 3}{4 \sqrt{ } 2}, \quad h_{2}=\frac{3+\sqrt{ } 3}{4 \sqrt{ } 2}, \quad h_{3}=\frac{-1-\sqrt{ } 3}{4 \sqrt{ } 2}
$$

- 'D' stands for Daubechies
- $L=4$ width member of her 'extremal phase' wavelets
- computations show $\sum_{l} h_{l}=0 \& \sum_{l} h_{l}^{2}=1$, as required
- orthogonality to even shifts apparent except for ± 2 case:

D(4) Wavelet Filter: II

- Q: what is rationale for $\mathrm{D}(4)$ filter?
- consider $X_{t}^{(1)} \equiv X_{t}-X_{t-1}=a_{0} X_{t}+a_{1} X_{t-1}$, where $\left\{a_{0}=1, a_{1}=-1\right\}$ defines 1st difference filter:

$$
\left\{X_{t}\right\} \longrightarrow\{1,-1\} \longrightarrow\left\{X_{t}^{(1)}\right\}
$$

- Haar wavelet filter is normalized 1st difference filter
$-X_{t}^{(1)}$ is difference between two ' 1 point averages'
- consider filter 'cascade' with two 1st difference filters:

$$
\left\{X_{t}\right\} \longrightarrow\{1,-1\} \longrightarrow\{1,-1\} \longrightarrow\left\{X_{t}^{(2)}\right\}
$$

- by considering convolution of $\{1,-1\}$ with itself, can reexpress the above using a single 'equivalent' (2nd difference) filter:

$$
\left\{X_{t}\right\} \longrightarrow\{1,-2,1\} \longrightarrow\left\{X_{t}^{(2)}\right\}
$$

D(4) Wavelet Filter: III

- renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

$$
a_{t}= \begin{cases}\frac{1}{2}, & t=0 \\ -\frac{1}{4}, & t=-1 \text { or } 1 \\ 0, & \text { otherwise }\end{cases}
$$

- consider '2 point weighted average' followed by 2 nd difference:

$$
\left\{X_{t}\right\} \longrightarrow\{a, b\} \longrightarrow\{1,-2,1\} \longrightarrow\left\{Y_{t}\right\}
$$

- convolution of $\{a, b\}$ and $\{1,-2,1\}$ yields an equivalent filter, which is how the $\mathrm{D}(4)$ wavelet filter arises:

$$
\left\{X_{t}\right\} \longrightarrow\left\{h_{0}, h_{1}, h_{2}, h_{3}\right\} \longrightarrow\left\{Y_{t}\right\}
$$

D(4) Wavelet Filter: IV

- using conditions

1. summation to zero: $h_{0}+h_{1}+h_{2}+h_{3}=0$
2. unit energy: $h_{0}^{2}+h_{1}^{2}+h_{2}^{2}+h_{3}^{2}=1$
3. orthogonality to even shifts: $h_{0} h_{2}+h_{1} h_{3}=0$
can solve for feasible values of a and b

- one solution is $a=\frac{1+\sqrt{ } 3}{4 \sqrt{ } 2} \doteq 0.48$ and $b=\frac{-1+\sqrt{ } 3}{4 \sqrt{ } 2} \doteq 0.13$ (other solutions yield essentially the same filter)
- interpret $\mathrm{D}(4)$ filtered output as changes in weighted averages
- 'change' now measured by 2 nd difference (1st for Haar)
- average is now 2 point weighted average (1 point for Haar)
- can argue that effective scale of weighted average is one

Another Popular Daubechies Wavelet Filter

- LA(8) wavelet filter ('LA' stands for 'least asymmetric')

- resembles three-point high-pass filter $\left\{-\frac{1}{4}, \frac{1}{2},-\frac{1}{4}\right\}$ (somewhat)
- can interpret this filter as cascade consisting of
- 4th difference filter
- weighted average filter of width 4 , but effective width 1
- filter output can be interpreted as changes in weighted averages

First Level Wavelet Coefficients: I

- given wavelet filter $\left\{h_{l}\right\}$ of width $L \&$ time series of length $N=2^{J}$, obtain first level wavelet coefficients as follows
- circularly filter \mathbf{X} with wavelet filter to yield output

$$
\sum_{l=0}^{L-1} h_{l} X_{t-l}=\sum_{l=0}^{L-1} h_{l} X_{t-l \bmod N}, \quad t=0, \ldots, N-1
$$

i.e., if $t-l$ does not satisfy $0 \leq t-l \leq N-1$, interpret X_{t-l} as $X_{t-l \bmod N}$; e.g., $X_{-1}=X_{N-1}$ and $X_{-2}=X_{N-2}$

- take every other value of filter output to define

$$
W_{1, t} \equiv \sum_{l=0}^{L-1} h_{l} X_{2 t+1-l \bmod N}, \quad t=0, \ldots, \frac{N}{2}-1
$$

$\left\{W_{1, t}\right\}$ formed by downsampling filter output by a factor of 2

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$
$\begin{aligned} & h_{l} \ldots \\ & X_{-l \bmod 16} 16\end{aligned}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

$$
\begin{aligned}
& h_{l}^{\circ} \text {."............. }
\end{aligned}
$$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

First Level Wavelet Coefficients: II

- example of formation of $\left\{W_{1, t}\right\}$

$$
\begin{aligned}
& W_{1, t} * * *
\end{aligned}
$$

- $\left\{W_{1, t}\right\}$ are unit scale wavelet coefficients - these are the elements of \mathbf{W}_{1} and first $N / 2$ elements of $\mathbf{W}=\mathcal{W} \mathbf{X}$
- also have $\mathbf{W}_{1}=\mathcal{W}_{1} \mathbf{X}$, with \mathcal{W}_{1} being first $N / 2$ rows of \mathcal{W}
- hence elements of \mathcal{W}_{1} dictated by wavelet filter

Upper Half \mathcal{W}_{1} of Haar DWT Matrix \mathcal{W}

- consider Haar wavelet filter $(L=2): h_{0}=\frac{1}{\sqrt{ } 2} \& h_{1}=-\frac{1}{\sqrt{ } 2}$
- when $N=16, \mathcal{W}_{1}$ looks like

$$
\left[\begin{array}{cccccccccccccccc}
h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0}
\end{array}\right]
$$

- rows obviously orthogonal to each other

Upper Half \mathcal{W}_{1} of $\mathbf{D}(4)$ DWT Matrix \mathcal{W}

- when $L=4 \& N=16, \mathcal{W}_{1}$ looks like

$$
\left[\begin{array}{cccccccccccccccc}
h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} \\
h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0}
\end{array}\right]
$$

- rows orthogonal because $h_{0} h_{2}+h_{1} h_{3}=0$
- note: $\left\langle\mathcal{W}_{0}, \mathbf{X}\right\rangle$ yields $W_{0}=h_{1} X_{0}+h_{0} X_{1}+h_{3} X_{14}+h_{2} X_{15}$
- unlike other coefficients from above, this 'boundary' coefficient depends on circular treatment of \mathbf{X} (a curse, not a feature!)

Orthonormality of Upper Half of DWT Matrix: I

- can show that, for all L and even N,

$$
W_{1, t}=\sum_{l=0}^{L-1} h_{l} X_{2 t+1-l \bmod N}, \text { or, equivalently, } \mathbf{W}_{1}=\mathcal{W}_{1} \mathbf{X}
$$

forms half an orthonormal transform; i.e.,

$$
\mathcal{W}_{1} \mathcal{W}_{1}^{T}=I_{\frac{N}{2}}
$$

- Q: how can we construct the other half of \mathcal{W} ?

The Scaling Filter: I

- create scaling (or 'father wavelet') filter $\left\{g_{l}\right\}$ by reversing $\left\{h_{l}\right\}$ and then changing sign of coefficients with even indices

- 2 filters related by $g_{l} \equiv(-1)^{l+1} h_{L-1-l} \& h_{l}=(-1)^{l} g_{L-1-l}$

The Scaling Filter: II

- $\left\{g_{l}\right\}$ is 'quadrature mirror' filter corresponding to $\left\{h_{l}\right\}$
- properties 2 and 3 of $\left\{h_{l}\right\}$ are shared by $\left\{g_{l}\right\}$:

2. unit energy:

$$
\sum_{l=0}^{L-1} g_{l}^{2}=1
$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$
\sum_{l=0}^{L-1} g_{l} g_{l+2 n}=0
$$

- scaling \& wavelet filters both satisfy orthonormality property

First Level Scaling Coefficients: I

- orthonormality property of $\left\{h_{l}\right\}$ is all that is needed to prove \mathcal{W}_{1} is half of an orthonormal transform (never used $\sum_{l} h_{l}=0$)
- going back and replacing h_{l} with g_{l} everywhere yields another half of an orthonormal transform
- circularly filter \mathbf{X} using $\left\{g_{l}\right\}$ and downsample to define

$$
V_{1, t} \equiv \sum_{l=0}^{L-1} g_{l} X_{2 t+1-l \bmod N}, \quad t=0, \ldots, \frac{N}{2}-1
$$

- $\left\{V_{1, t}\right\}$ called scaling coefficients for level $j=1$
- place these $N / 2$ coefficients in vector called \mathbf{V}_{1}

First Level Scaling Coefficients: III

- define \mathcal{V}_{1} in a manner analogous to \mathcal{W}_{1} so that $\mathbf{V}_{1}=\mathcal{V}_{1} \mathbf{X}$
- when $L=4$ and $N=16, \mathcal{V}_{1}$ looks like

$$
\left[\begin{array}{cccccccccccccccc}
g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} \\
g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0}
\end{array}\right]
$$

- \mathcal{V}_{1} obeys same orthonormality property as \mathcal{W}_{1} :

$$
\text { similar to } \mathcal{W}_{1} \mathcal{W}_{1}^{T}=I_{\frac{N}{2}}, \text { have } \mathcal{V}_{1} \mathcal{V}_{1}^{T}=I_{\frac{N}{2}}
$$

Orthonormality of \mathcal{V}_{1} and \mathcal{W}_{1} : I

- Q: how does \mathcal{V}_{1} help us?
- A: rows of \mathcal{V}_{1} and \mathcal{W}_{1} are pairwise orthogonal!
- readily apparent in Haar case:

Orthonormality of \mathcal{V}_{1} and \mathcal{W}_{1} : II

- let's check that orthogonality holds for $\mathrm{D}(4)$ case also:

Orthonormality of \mathcal{V}_{1} and \mathcal{W}_{1} : III

- implies that

$$
\mathcal{P}_{1} \equiv\left[\begin{array}{l}
\mathcal{W}_{1} \\
\mathcal{V}_{1}
\end{array}\right]
$$

is an $N \times N$ orthonormal matrix since

$$
\begin{aligned}
\mathcal{P}_{1} \mathcal{P}_{1}^{T} & =\left[\begin{array}{l}
\mathcal{W}_{1} \\
\mathcal{V}_{1}
\end{array}\right]\left[\mathcal{W}_{1}^{T}, \mathcal{V}_{1}^{T}\right] \\
& =\left[\begin{array}{ll}
\mathcal{W}_{1} \mathcal{W}_{1}^{T} & \mathcal{W}_{1} \mathcal{V}_{1}^{T} \\
\mathcal{V}_{1} \mathcal{W}_{1}^{T} & \mathcal{V}_{1} \mathcal{V}_{1}^{T}
\end{array}\right]=\left[\begin{array}{cc}
I_{\frac{N}{2}} & 0_{\frac{N}{2}}^{2} \\
0_{\frac{N}{2}} & I_{\frac{N}{2}}
\end{array}\right]=I_{N}
\end{aligned}
$$

- if $N=2$ (not of too much interest!), in fact $\mathcal{P}_{1}=\mathcal{W}$
- if $N>2, \mathcal{P}_{1}$ is an intermediate step: \mathcal{V}_{1} spans same subspace as lower half of \mathcal{W} and will be further manipulated

Interpretation of Scaling Coefficients: I

- consider Haar scaling filter $(L=2): g_{0}=g_{1}=\frac{1}{\sqrt{ } 2}$
- when $N=16$, matrix \mathcal{V}_{1} looks like

$$
\left[\begin{array}{cccccccccccccccc}
g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0}
\end{array}\right]
$$

- since $\mathbf{V}_{1}=\mathcal{V}_{1} \mathbf{X}$, each $V_{1, t}$ is proportional to a 2 point average:

$$
V_{1,0}=g_{1} X_{0}+g_{0} X_{1}=\frac{1}{\sqrt{ } 2} X_{0}+\frac{1}{\sqrt{ } 2} X_{1} \propto \bar{X}_{1}(2) \text { and so forth }
$$

Interpretation of Scaling Coefficients: II

- reconsider shapes of $\left\{g_{l}\right\}$ seen so far:

- for $L>2$, can regard $V_{1, t}$ as proportional to weighted average
- can argue that effective width of $\left\{g_{l}\right\}$ is 2 in each case; thus scale associated with $V_{1, t}$ is 2 , whereas scale is 1 for $W_{1, t}$

Frequency Domain Properties of Scaling Filter

- define transfer and squared gain functions for $\left\{g_{l}\right\}$

$$
G(f) \equiv \sum_{l=0}^{L-1} g_{l} e^{-i 2 \pi f l} \& \mathcal{G}(f) \equiv|G(f)|^{2}
$$

- can argue that $\mathcal{G}(f)=\mathcal{H}\left(f+\frac{1}{2}\right)$, which, combined with

$$
\mathcal{H}(f)+\mathcal{H}\left(f+\frac{1}{2}\right)=2
$$

yields

$$
\mathcal{H}(f)+\mathcal{G}(f)=2
$$

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$

- since $\mathbf{W}_{1} \& \mathbf{V}_{1}$ contain output from filters, consider their squared gain functions, recalling that $\mathcal{H}(f)+\mathcal{G}(f)=2$
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar \& $\mathrm{D}(4)$ filters

- $\left\{h_{l}\right\}$ is high-pass filter with nominal pass-band [1/4, $\left.1 / 2\right]$
- $\left\{g_{l}\right\}$ is low-pass filter with nominal pass-band $[0,1 / 4]$

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$

- since $\mathbf{W}_{1} \& \mathbf{V}_{1}$ contain output from filters, consider their squared gain functions, recalling that $\mathcal{H}(f)+\mathcal{G}(f)=2$
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar \& LA(8) filters

- $\left\{h_{l}\right\}$ is high-pass filter with nominal pass-band [1/4, $1 / 2$]
- $\left\{g_{l}\right\}$ is low-pass filter with nominal pass-band $[0,1 / 4]$

Example of Decomposing \mathbf{X} into \mathbf{W}_{1} and V_{1} : I

- oxygen isotope records \mathbf{X} from Antarctic ice core

Example of Decomposing \mathbf{X} into W_{1} and V_{1} : II

- oxygen isotope record series \mathbf{X} has $N=352$ observations
- spacing between observations is $\Delta \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients \mathbf{V}_{1} related to averages on scale of 2Δ
- wavelet coefficients \mathbf{W}_{1} related to changes on scale of Δ
- coefficients $V_{1, t}$ and $W_{1, t}$ plotted against mid-point of years associated with $X_{2 t}$ and $X_{2 t+1}$
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway

Reconstructing \mathbf{X} from \mathbf{W}_{1} and \mathbf{V}_{1}

- in matrix notation, form wavelet \& scaling coefficients via

$$
\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{W}_{1} \mathbf{X} \\
\mathcal{V}_{1} \mathbf{X}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{W}_{1} \\
\mathcal{V}_{1}
\end{array}\right] \mathbf{X}=\mathcal{P}_{1} \mathbf{X}
$$

- recall that $\mathcal{P}_{1}^{T} \mathcal{P}_{1}=I_{N}$ because \mathcal{P}_{1} is orthonormal
- since $\mathcal{P}_{1}^{T} \mathcal{P}_{1} \mathbf{X}=\mathbf{X}$, premultiplying both sides by \mathcal{P}_{1}^{T} yields

$$
\mathcal{P}_{1}^{T}\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right]=\left[\begin{array}{ll}
\mathcal{W}_{1}^{T} & \mathcal{V}_{1}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right]=\mathcal{W}_{1}^{T} \mathbf{W}_{1}+\mathcal{V}_{1}^{T} \mathbf{V}_{1}=\mathbf{X}
$$

- $\mathcal{D}_{1} \equiv \mathcal{W}_{1}^{T} \mathbf{W}_{1}$ is the first level detail
- $\mathcal{S}_{1} \equiv \mathcal{V}_{1}^{T} \mathbf{V}_{1}$ is the first level 'smooth'
- $\mathbf{X}=\mathcal{D}_{1}+\mathcal{S}_{1}$ in this notation

Example of Synthesizing \mathbf{X} from \mathcal{D}_{1} and \mathcal{S}_{1}

- Haar-based decomposition for oxygen isotope records \mathbf{X}

First Level Variance Decomposition: I

- recall that 'energy' in \mathbf{X} is its squared norm $\|\mathbf{X}\|^{2}$
- because \mathcal{P}_{1} is orthonormal, have $\mathcal{P}_{1}^{T} \mathcal{P}_{1}=I_{N}$ and hence

$$
\left\|\mathcal{P}_{1} \mathbf{X}\right\|^{2}=\left(\mathcal{P}_{1} \mathbf{X}\right)^{T} \mathcal{P}_{1} \mathbf{X}=\mathbf{X}^{T} \mathcal{P}_{1}^{T} \mathcal{P}_{1} \mathbf{X}=\mathbf{X}^{T} \mathbf{X}=\|\mathbf{X}\|^{2}
$$

- can conclude that $\|\mathbf{X}\|^{2}=\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{V}_{1}\right\|^{2}$ because

$$
\mathcal{P}_{1} \mathbf{X}=\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right] \text { and hence }\left\|\mathcal{P}_{1} \mathbf{X}\right\|^{2}=\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{V}_{1}\right\|^{2}
$$

- leads to a decomposition of the sample variance for \mathbf{X} :

$$
\begin{aligned}
\hat{\sigma}_{X}^{2} \equiv \frac{1}{N} \sum_{t=0}^{N-1}\left(X_{t}-\bar{X}\right)^{2} & =\frac{1}{N}\|\mathbf{X}\|^{2}-\bar{X}^{2} \\
& =\frac{1}{N}\left\|\mathbf{W}_{1}\right\|^{2}+\frac{1}{N}\left\|\mathbf{V}_{1}\right\|^{2}-\bar{X}^{2}
\end{aligned}
$$

First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_{X}^{2}$ into two pieces:

1. $\frac{1}{N}\left\|\mathbf{W}_{1}\right\|^{2}$, attributable to changes in averages over scale 1
2. $\frac{1}{N}\left\|\mathbf{V}_{1}\right\|^{2}-\bar{X}^{2}$, attributable to averages over scale 2

- Haar-based example for oxygen isotope records
- first piece: $\quad \frac{1}{N}\left\|\mathbf{W}_{1}\right\|^{2} \doteq 0.295$
- second piece: $\frac{1}{N}\left\|\mathbf{V}_{1}\right\|^{2}-\bar{X}^{2} \doteq 2.909$
- sample variance: $\quad \hat{\sigma}_{X}^{2} \doteq 3.204$
- changes on scale of $\Delta \doteq 0.5$ years account for 9% of $\hat{\sigma}_{X}^{2}$ (standardized scale 1 corresponds to physical scale Δ)

Summary of First Level of Basic Algorithm

- transforms $\left\{X_{t}: t=0, \ldots, N-1\right\}$ into 2 types of coefficients
- $N / 2$ wavelet coefficients $\left\{W_{1, t}\right\}$ associated with:
- \mathbf{W}_{1}, a vector consisting of first $N / 2$ elements of \mathbf{W}
- changes on scale 1 and nominal frequencies $\frac{1}{4} \leq|f| \leq \frac{1}{2}$
- first level detail \mathcal{D}_{1}
$-\mathcal{W}_{1}$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- $N / 2$ scaling coefficients $\left\{V_{1, t}\right\}$ associated with:
$-\mathbf{V}_{1}$, a vector of length $N / 2$
- averages on scale 2 and nominal frequencies $0 \leq|f| \leq \frac{1}{4}$
- first level smooth \mathcal{S}_{1}
$-\mathcal{V}_{1}$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last $N / 2$ rows of \mathcal{W}

Constructing Remaining DWT Coefficients: I

- have regarded time series X_{t} as 'one point' averages $\bar{X}_{t}(1)$ over scale of 1
- first level of basic algorithm transforms \mathbf{X} of length N into
$-N / 2$ wavelet coefficients $\mathbf{W}_{1} \propto$ changes on a scale of 1
$-N / 2$ scaling coefficients $\mathbf{V}_{1} \propto$ averages of X_{t} on a scale of 2
- in essence basic algorithm takes length N series \mathbf{X} related to scale 1 averages and produces
- length $N / 2$ series \mathbf{W}_{1} associated with the same scale
- length $N / 2$ series \mathbf{V}_{1} related to averages on double the scale

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat \mathbf{V}_{1} in the same manner as \mathbf{X} ?
- basic algorithm will transform length $N / 2$ series \mathbf{V}_{1} into - length $N / 4$ series \mathbf{W}_{2} associated with the same scale (2) - length $N / 4$ series \mathbf{V}_{2} related to averages on twice the scale
- by definition, \mathbf{W}_{2} contains the level 2 wavelet coefficients
- \mathbf{Q} : what if we treat \mathbf{V}_{2} in the same way?
- basic algorithm will transform length $N / 4$ series \mathbf{V}_{2} into - length $N / 8$ series \mathbf{W}_{3} associated with the same scale (4) - length $N / 8$ series \mathbf{V}_{3} related to averages on twice the scale
- by definition, \mathbf{W}_{3} contains the level 3 wavelet coefficients

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W}=\mathcal{W} \mathbf{X}$ is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_{j} and \mathbf{V}_{j} from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of \mathbf{V}_{j} given by $N / 2^{j}$
- since $N=2^{J}$, length of \mathbf{V}_{J} is 1 , at which point we must stop
- J applications of the basic algorithm defines the remaining subvectors $\mathbf{W}_{2}, \ldots, \mathbf{W}_{J}, \mathbf{V}_{J}$ of DWT coefficient vector \mathbf{W}
- overall scheme is known as the 'pyramid' algorithm

Scales Associated with DWT Coefficients

- j th level of algorithm transforms scale 2^{j-1} averages into
- differences of averages on scale 2^{j-1}, i.e., wavelet coefficients \mathbf{W}_{j}
- averages on scale $2 \times 2^{j-1}=2^{j}$, i.e., scaling coefficients \mathbf{V}_{j}
- $\tau_{j} \equiv 2^{j-1}$ denotes scale associated with \mathbf{W}_{j}
- for $j=1, \ldots, J$, takes on values $1,2,4, \ldots, N / 4, N / 2$
- $\lambda_{j} \equiv 2^{j}=2 \tau_{j}$ denotes scale associated with \mathbf{V}_{j}
- takes on values $2,4,8, \ldots, N / 2, N$

Matrix Description of Pyramid Algorithm: I

- form $\frac{N}{2^{j}} \times \frac{N}{2^{j-1}}$ matrix \mathcal{B}_{j} in same way as $\frac{N}{2} \times N$ matrix \mathcal{W}_{1}
- when $L=4$ and $N / 2^{j-1}=16$, have

$$
\mathcal{B}_{j}=\left[\begin{array}{cccccccccccccccc}
h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} \\
h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0}
\end{array}\right]
$$

- matrix gets us j th level wavelet coefficients via $\mathbf{W}_{j}=\mathcal{B}_{j} \mathbf{V}_{j-1}$

Matrix Description of Pyramid Algorithm: II

- form $\frac{N}{2^{j}} \times \frac{N}{2^{j-1}}$ matrix \mathcal{A}_{j} in same way as $\frac{N}{2} \times N$ matrix \mathcal{V}_{1}
- when $L=4$ and $N / 2^{j-1}=16$, have

$$
\mathcal{A}_{j}=\left[\begin{array}{cccccccccccccccc}
g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} \\
g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0}
\end{array}\right]
$$

- matrix gets us j th level scaling coefficients via $\mathbf{V}_{j}=\mathcal{A}_{j} \mathbf{V}_{j-1}$

Matrix Description of Pyramid Algorithm: III

- if we define $\mathbf{V}_{0}=\mathbf{X}$ and let $j=1$, then

$$
\mathbf{W}_{j}=\mathcal{B}_{j} \mathbf{V}_{j-1} \text { reduces to } \mathbf{W}_{1}=\mathcal{B}_{1} \mathbf{V}_{0}=\mathcal{B}_{1} \mathbf{X}=\mathcal{W}_{1} \mathbf{X}
$$

because \mathcal{B}_{1} has the same definition as \mathcal{W}_{1}

- likewise, when $j=1$,

$$
\mathbf{V}_{j}=\mathcal{A}_{j} \mathbf{V}_{j-1} \text { reduces to } \mathbf{V}_{1}=\mathcal{A}_{1} \mathbf{V}_{0}=\mathcal{A}_{1} \mathbf{X}=\mathcal{V}_{1} \mathbf{X}
$$

because \mathcal{A}_{1} has the same definition as \mathcal{V}_{1}

Formation of Submatrices of \mathcal{W} : I

- using $\mathbf{V}_{j}=\mathcal{A}_{j} \mathbf{V}_{j-1}$ repeatedly and $\mathbf{V}_{1}=\mathcal{A}_{1} \mathbf{X}$, can write

$$
\begin{aligned}
\mathbf{W}_{j} & =\mathcal{B}_{j} \mathbf{V}_{j-1} \\
& =\mathcal{B}_{j} \mathcal{A}_{j-1} \mathbf{V}_{j-2} \\
& =\mathcal{B}_{j} \mathcal{A}_{j-1} \mathcal{A}_{j-2} \mathbf{V}_{j-3} \\
& =\mathcal{B}_{j} \mathcal{A}_{j-1} \mathcal{A}_{j-2} \cdots \mathcal{A}_{1} \mathbf{X} \equiv \mathcal{W}_{j} \mathbf{X}
\end{aligned}
$$

where \mathcal{W}_{j} is $\frac{N}{2^{j}} \times N$ submatrix of \mathcal{W} responsible for \mathbf{W}_{j}

- likewise, can get $1 \times N$ submatrix \mathcal{V}_{J} responsible for \mathbf{V}_{J}

$$
\begin{aligned}
\mathbf{V}_{J} & =\mathcal{A}_{J} \mathbf{V}_{J-1} \\
& =\mathcal{A}_{J} \mathcal{A}_{J-1} \mathbf{V}_{J-2} \\
& =\mathcal{A}_{J} \mathcal{A}_{J-1} \mathcal{A}_{J-2} \mathbf{V}_{J-3} \\
& =\mathcal{A}_{J} \mathcal{A}_{J-1} \mathcal{A}_{J-2} \cdots \mathcal{A}_{1} \mathbf{X} \equiv \mathcal{V}_{J} \mathbf{X}
\end{aligned}
$$

- \mathcal{V}_{J} is the last row of $\mathcal{W}, \&$ all its elements are equal to $1 / \sqrt{ } N$

Formation of Submatrices of \mathcal{W} : II

- have now constructed all of DWT matrix:

$$
\mathcal{W}=\left[\begin{array}{c}
\mathcal{W}_{1} \\
\mathcal{W}_{2} \\
\mathcal{W}_{3} \\
\mathcal{W}_{4} \\
\vdots \\
\mathcal{W}_{j} \\
\vdots \\
\mathcal{W}_{J} \\
\mathcal{V}_{J}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{A}_{1} \\
\mathcal{B}_{3} \mathcal{A}_{2} \mathcal{A}_{1} \\
\mathcal{B}_{4} \mathcal{A}_{3} \mathcal{A}_{2} \mathcal{A}_{1} \\
\vdots \\
\mathcal{B}_{j} \mathcal{A}_{j-1} \cdots \mathcal{A}_{1} \\
\vdots \\
\mathcal{B}_{J} \mathcal{A}_{J-1} \cdots \mathcal{A}_{1} \\
\mathcal{A}_{J} \mathcal{A}_{J-1} \cdots \mathcal{A}_{1}
\end{array}\right]
$$

Examples of \mathcal{W} and its Partitioning: I

- $N=16$ case for Haar DWT matrix \mathcal{W}

- above agrees with qualitative description given previously

Examples of \mathcal{W} and its Partitioning: II

- $N=16$ case for $\mathrm{D}(4)$ DWT matrix \mathcal{W}

- note: elements of last row equal to $1 / \sqrt{ } N=1 / 4$, as claimed

Partial DWT: I

- J repetitions of pyramid algorithm for \mathbf{X} of length $N=2^{J}$ yields 'complete' DWT , i.e., $\mathbf{W}=\mathcal{W} \mathbf{X}$
- can choose to stop at $J_{0}<J$ repetitions, yielding a 'partial' DWT of level J_{0} :

$$
\left[\begin{array}{c}
\mathcal{W}_{1} \\
\mathcal{W}_{2} \\
\vdots \\
\mathcal{W}_{j} \\
\vdots \\
\mathcal{W}_{J_{0}} \\
\mathcal{V}_{J_{0}}
\end{array}\right] \mathbf{X}=\left[\begin{array}{c}
\mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{A}_{1} \\
\vdots \\
\mathcal{B}_{j} \mathcal{A}_{j-1} \cdots \mathcal{A}_{1} \\
\vdots \\
\mathcal{B}_{J_{0}} \mathcal{A}_{J_{0}-1} \cdots \mathcal{A}_{1} \\
\mathcal{A}_{J_{0}} \mathcal{A}_{J_{0}-1} \cdots \mathcal{A}_{1}
\end{array}\right] \mathbf{X}=\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{j} \\
\vdots \\
\mathbf{W}_{J_{0}} \\
\mathbf{V}_{J_{0}}
\end{array}\right]
$$

- $\mathcal{V}_{J_{0}}$ is $\frac{N}{2^{J_{0}}} \times N$, yielding $\frac{N}{2^{J_{0}}}$ coefficients for scale $\lambda_{J_{0}}=2^{J_{0}}$

Partial DWT: II

- only requires N to be integer multiple of $2^{J_{0}}$
- partial DWT more common than complete DWT
- choice of J_{0} is application dependent
- multiresolution analysis for partial DWT:

$$
\mathbf{X}=\sum_{j=1}^{J_{0}} \mathcal{D}_{j}+\mathcal{S}_{J_{0}}
$$

$\mathcal{S}_{J_{0}}$ represents averages on scale $\lambda_{J_{0}}=2^{J_{0}}$ (includes \bar{X})

- analysis of variance for partial DWT:

$$
\hat{\sigma}_{X}^{2}=\frac{1}{N} \sum_{j=1}^{J_{0}}\left\|\mathbf{W}_{j}\right\|^{2}+\frac{1}{N}\left\|\mathbf{V}_{J_{0}}\right\|^{2}-\bar{X}^{2}
$$

Example of $J_{0}=4$ Partial Haar DWT

- oxygen isotope records \mathbf{X} from Antarctic ice core

Example of $J_{0}=4$ Partial Haar DWT

- oxygen isotope records \mathbf{X} from Antarctic ice core

Example of MRA from $J_{0}=4$ Partial Haar DWT

- oxygen isotope records \mathbf{X} from Antarctic ice core

Example of Variance Decomposition

- decomposition of sample variance from $J_{0}=4$ partial DWT

$$
\hat{\sigma}_{X}^{2} \equiv \frac{1}{N} \sum_{t=0}^{N-1}\left(X_{t}-\bar{X}\right)^{2}=\sum_{j=1}^{4} \frac{1}{N}\left\|\mathbf{W}_{j}\right\|^{2}+\frac{1}{N}\left\|\mathbf{V}_{4}\right\|^{2}-\bar{X}^{2}
$$

- Haar-based example for oxygen isotope records
- 0.5 year changes:
$\frac{1}{N}\left\|\mathbf{W}_{1}\right\|^{2} \doteq 0.295\left(\doteq 9.2 \%\right.$ of $\left.\hat{\sigma}_{X}^{2}\right)$
- 1.0 years changes:
$\frac{1}{N}\left\|\mathbf{W}_{2}\right\|^{2} \doteq 0.464(\doteq 14.5 \%)$
- 2.0 years changes:
$\frac{1}{N}\left\|\mathbf{W}_{3}\right\|^{2} \doteq 0.652(\doteq 20.4 \%)$
- 4.0 years changes:
$\frac{1}{N}\left\|\mathbf{W}_{4}\right\|^{2} \doteq 0.846(\doteq 26.4 \%)$
- 8.0 years averages: $\frac{1}{N}\left\|\mathbf{V}_{4}\right\|^{2}-\bar{X}^{2} \doteq 0.947(\doteq 29.5 \%)$
- sample variance:

$$
\hat{\sigma}_{X}^{2} \doteq 3.204
$$

Haar Equivalent Wavelet \& Scaling Filters

- $L_{j}=2^{j}$ is width of $\left\{h_{j, l}\right\}$ and $\left\{g_{j, l}\right\}$
- note: convenient to define $\left\{h_{1, l}\right\}$ to be same as $\left\{h_{l}\right\}$

D(4) Equivalent Wavelet \& Scaling Filters

$\left\{h_{l}\right\}$	$L=4$
$\left\{h_{2, l}\right\}$	$L_{2}=10$
$\left\{h_{3, l}\right\}$	$L_{3}=22$
$\left\{h_{4, l}\right\}$	$L_{4}=46$
$\left\{g_{l}\right\}$	$L=4$
$\left\{g_{2, l}\right\}$	$L_{2}=10$
$\left\{g_{3, l}\right\}$	$L_{3}=22$
$\left\{g_{4, l}\right\}$	
	$L_{4}=46$

- L_{j} dictated by general formula $L_{j}=\left(2^{j}-1\right)(L-1)+1$, but can argue that effective width is 2^{j} (same as Haar L_{j})

LA(8) Equivalent Wavelet \& Scaling Filters

Maximal Overlap Discrete Wavelet Transform

- abbreviation is MODWT (pronounced 'mod WT')
- transforms very similar to the MODWT have been studied in the literature under the following names:
- undecimated DWT (or nondecimated DWT)
- stationary DWT
- translation invariant DWT
- time invariant DWT
- redundant DWT
- also related to notions of 'wavelet frames' and 'cycle spinning'
- basic idea: use values removed from DWT by downsampling

Quick Comparison of the MODWT to the DWT

- unlike the DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- unlike the DWT, MODWT is defined naturally for all samples sizes (i.e., N need not be a multiple of a power of two)
- similar to the DWT, can form multiresolution analyses (MRAs) using MODWT with certain additional desirable features; e.g., unlike the DWT, MODWT-based MRA has details and smooths that shift along with \mathbf{X} (if \mathbf{X} has detail $\widetilde{\mathcal{D}}_{j}$, then $\mathcal{T}^{m} \mathbf{X}$ has detail $\mathcal{T}^{m} \widetilde{\mathcal{D}}_{j}$, where \mathcal{T}^{m} circularly shifts \mathbf{X} by m units)
- similar to the DWT, an analysis of variance (ANOVA) can be based on MODWT wavelet coefficients
- unlike the DWT, MODWT discrete wavelet power spectrum same for \mathbf{X} and its circular shifts $\mathcal{T}^{m} \mathbf{X}$

Definition of MODWT Coefficients: I

- define MODWT filters $\left\{\tilde{h}_{j, l}\right\}$ and $\left\{\tilde{g}_{j, l}\right\}$ by renormalizing the DWT filters:

$$
\tilde{h}_{j, l}=h_{j, l} / 2^{j / 2} \text { and } \tilde{g}_{j, l}=g_{j, l} / 2^{j / 2}
$$

- level j MODWT wavelet and scaling coefficients are defined to be output obtaining by filtering \mathbf{X} with $\left\{\tilde{h}_{j, l}\right\}$ and $\left\{\tilde{g}_{j, l}\right\}$:

$$
\mathbf{X} \longrightarrow\left\{\tilde{h}_{j, l}\right\} \longrightarrow \widetilde{\mathbf{W}}_{j} \text { and } \mathbf{X} \longrightarrow\left\{\tilde{g}_{j, l}\right\} \longrightarrow \widetilde{\mathbf{V}}_{j}
$$

- compare the above to its DWT equivalent:

$$
\mathbf{X} \longrightarrow\left\{h_{j, l}\right\} \underset{\downarrow 2^{j}}{\longrightarrow} \mathbf{W}_{j} \text { and } \mathbf{X} \longrightarrow\left\{g_{j, l}\right\} \underset{\downarrow 2^{j}}{\longrightarrow} \mathbf{V}_{j}
$$

- level J_{0} MODWT consists of $J_{0}+1$ vectors, namely,

$$
\widetilde{\mathbf{W}}_{1}, \widetilde{\mathbf{W}}_{2}, \ldots, \widetilde{\mathbf{W}}_{J_{0}} \text { and } \widetilde{\mathbf{V}}_{J_{0}}
$$

each of which has length N

Definition of MODWT Coefficients: II

- MODWT of level J_{0} has $\left(J_{0}+1\right) N$ coefficients, whereas DWT has N coefficients for any given J_{0}
- whereas DWT of level J_{0} requires N to be integer multiple of $2^{J_{0}}$, MODWT of level J_{0} is well-defined for any sample size N
- when N is divisible by $2^{J_{0}}$, we can write

$$
W_{j, t}=\sum_{l=0}^{L_{j}-1} h_{j, l} X_{2^{j}(t+1)-1-l \bmod N} \& \widetilde{W}_{j, t}=\sum_{l=0}^{L_{j}-1} \tilde{h}_{j, l} X_{t-l \bmod N}
$$

and we have the relationship

$$
\begin{gathered}
W_{j, t}=2^{j / 2} \widetilde{W}_{j, 2^{j}(t+1)-1} \& \text {, likewise, } V_{J_{0}, t}=2^{J_{0} / 2} \widetilde{V}_{J_{0}, 2^{J_{0}}(t+1)-1} \\
\text { (here } \left.\widetilde{W}_{j, t} \& \widetilde{V}_{J_{0}, t} \text { denote the } t \text { th elements of } \widetilde{\mathbf{W}}_{j} \& \widetilde{\mathbf{V}}_{J_{0}}\right)
\end{gathered}
$$

Properties of the MODWT

- as was true with the DWT, we can use the MODWT to obtain - a scale-based additive decomposition (MRA):

$$
\mathbf{X}=\sum_{j=1}^{J_{0}} \widetilde{\mathcal{D}}_{j}+\widetilde{\mathcal{S}}_{J_{0}}
$$

- a scale-based energy decomposition (basis for ANOVA):

$$
\|\mathbf{X}\|^{2}=\sum_{j=1}^{J_{0}}\left\|\widetilde{\mathbf{W}}_{j}\right\|^{2}+\left\|\widetilde{\mathbf{V}}_{J_{0}}\right\|^{2}
$$

- in addition, the MODWT can be computed efficiently via a pyramid algorithm

Example of $J_{0}=4 \mathbf{L A}(8)$ MODWT

- oxygen isotope records \mathbf{X} from Antarctic ice core

Relationship Between MODWT and DWT

- bottom plot shows \mathbf{W}_{4} from DWT after circular shift \mathcal{T}^{-3} to align coefficients properly in time
- top plot shows $\widetilde{\mathbf{W}}_{4}$ from MODWT and subsamples that, upon rescaling, yield \mathbf{W}_{4} via $W_{4, t}=4 \widetilde{W}_{4,16(t+1)-1}$

Example of $J_{0}=4$ LA(8) MODWT MRA

- oxygen isotope records \mathbf{X} from Antarctic ice core

Example of Variance Decomposition

- decomposition of sample variance from MODWT

$$
\hat{\sigma}_{X}^{2} \equiv \frac{1}{N} \sum_{t=0}^{N-1}\left(X_{t}-\bar{X}\right)^{2}=\sum_{j=1}^{4} \frac{1}{N}\left\|\widetilde{\mathbf{W}}_{j}\right\|^{2}+\frac{1}{N}\left\|\widetilde{\mathbf{V}}_{4}\right\|^{2}-\bar{X}^{2}
$$

- LA(8)-based example for oxygen isotope records
- 0.5 year changes:

$$
\frac{1}{N}\left\|\widetilde{\mathbf{W}}_{1}\right\|^{2} \doteq 0.145\left(\doteq 4.5 \% \text { of } \hat{\sigma}_{X}^{2}\right)
$$

- 1.0 years changes:

$$
\frac{1}{N}\left\|\widetilde{\mathbf{W}}_{2}\right\|^{2} \doteq 0.500(\doteq 15.6 \%)
$$

-2.0 years changes:
$\frac{1}{N}\left\|\widetilde{\mathbf{W}}_{3}\right\|^{2} \doteq 0.751(\doteq 23.4 \%)$

- 4.0 years changes:
$\frac{1}{N}\left\|\widetilde{\mathbf{W}}_{4}\right\|^{2} \doteq 0.839(\doteq 26.2 \%)$
- 8.0 years averages: $\frac{1}{N}\left\|\widetilde{\mathbf{V}}_{4}\right\|^{2}-\bar{X}^{2} \doteq 0.969(\doteq 30.2 \%)$
- sample variance: $\hat{\sigma}_{X}^{2} \doteq 3.204$

Summary of Key Points about the DWT: I

- the DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^{T} \mathcal{W}=I_{N}$
- construction of \mathcal{W} starts with a wavelet filter $\left\{h_{l}\right\}$ of even length L that by definition

1. sums to zero; i.e., $\sum_{l} h_{l}=0$;
2. has unit energy; i.e., $\sum_{l} h_{l}^{2}=1$; and
3. is orthogonal to its even shifts; i.e., $\sum_{l} h_{l} h_{l+2 n}=0$

- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_{l}=(-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{ } 2$ and is also orthogonal to $\left\{h_{l}\right\}$; i.e., $\sum_{l} g_{l} h_{l+2 n}=0$
- while $\left\{h_{l}\right\}$ is a high-pass filter, $\left\{g_{l}\right\}$ is a low-pass filter

Summary of Key Points about the DWT: II

- $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$ work in tandem to split time series \mathbf{X} into
- wavelet coefficients \mathbf{W}_{1} (related to changes in averages on a unit scale) and
- scaling coefficients \mathbf{V}_{1} (related to averages on a scale of 2)
- $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$ are then applied to \mathbf{V}_{1}, yielding
- wavelet coefficients \mathbf{W}_{2} (related to changes in averages on a scale of 2) and
- scaling coefficients \mathbf{V}_{2} (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients \mathbf{V}_{j-1} at level $j-1$ are transformed into wavelet and scaling coefficients \mathbf{W}_{j} and \mathbf{V}_{j} of scales $\tau_{j}=2^{j-1}$ and $\lambda_{j}=2^{j}$

Summary of Key Points about the DWT: III

- after J_{0} repetitions, this 'pyramid' algorithm transforms time series \mathbf{X} whose length N is an integer multiple of $2{ }^{J_{0}}$ into DWT coefficients $\mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{J_{0}}$ and $\mathbf{V}_{J_{0}}$ (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J} 0}$ and $\frac{N}{2^{J} J_{0}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- first decomposition is additive and is known as a multiresolution analysis (MRA), in which \mathbf{X} is reexpressed as

$$
\mathbf{X}=\sum_{j=1}^{J_{0}} \mathcal{D}_{j}+\mathcal{S}_{J_{0}}
$$

where \mathcal{D}_{j} is a time series reflecting variations in \mathbf{X} on scale τ_{j}, while $\mathcal{S}_{J_{0}}$ is a series reflecting its $\lambda_{J_{0}}$ averages

Summary of Key Points about the DWT: IV

- second decomposition reexpresses the energy (squared norm) of \mathbf{X} on a scale by scale basis, i.e.,

$$
\|\mathbf{X}\|^{2}=\sum_{j=1}^{J_{0}}\left\|\mathbf{W}_{j}\right\|^{2}+\left\|\mathbf{V}_{J_{0}}\right\|^{2}
$$

leading to an analysis of the sample variance of \mathbf{X} :

$$
\begin{aligned}
\hat{\sigma}_{X}^{2} & =\frac{1}{N} \sum_{t=0}^{N-1}\left(X_{t}-\bar{X}\right)^{2} \\
& =\frac{1}{N} \sum_{j=1}^{J_{0}}\left\|\mathbf{W}_{j}\right\|^{2}+\frac{1}{N}\left\|\mathbf{V}_{J_{0}}\right\|^{2}-\bar{X}^{2}
\end{aligned}
$$

Summary of Key Points about the MODWT

- similar to the DWT, the MODWT offers
- a scale-based multiresolution analysis
- a scale-based analysis of the sample variance
- a pyramid algorithm for computing the transform efficiently
- unlike the DWT, the MODWT is
- defined for all sample sizes (no 'power of 2' restrictions)
- unaffected by circular shifts to \mathbf{X} in that coefficients, details and smooths shift along with \mathbf{X}
- highly redundant in that a level J_{0} transform consists of $\left(J_{0}+1\right) N$ values rather than just N
- MODWT can eliminate 'alignment' artifacts, but its redundancies are problematic for some uses

