Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images (mostly)
- following work on continuous wavelet transform by Morlet and co-workers in 1983, Daubechies, Mallat and others introduced discrete wavelet transform (DWT) in 1988
- begin with qualitative description of the DWT
- discuss two key descriptive capabilities of the DWT:
 - multiresolution analysis (an additive decomposition)
 - wavelet variance or spectrum (decomposition of sum of squares)
- look at how DWT is formed based on a wavelet filter
- discuss maximal overlap DWT (MODWT)
Qualitative Description of DWT: I

- let \(\mathbf{X} = [X_0, X_1, \ldots, X_{N-1}]^T \) be a vector of \(N \) time series values (note: ‘\(T \)’ denotes transpose; i.e., \(\mathbf{X} \) is a column vector)
- assume initially \(N = 2^J \) for some positive integer \(J \) (will relax this restriction later on)
- example of time series with \(N = 16 = 2^4 \):

\[
\mathbf{X} = \begin{bmatrix}
0.2, -0.4, -0.6, -0.5, -0.8, -0.4, -0.9, 0.0, \\
-0.2, 0.1, -0.1, 0.1, 0.7, 0.9, 0.0, 0.3
\end{bmatrix}^T
\]

\[X_t\]
Qualitative Description of DWT: II

• DWT is a linear transform of \(\mathbf{X} \) yielding \(N \) DWT coefficients

• notation: \(\mathbf{W} = \mathcal{W} \mathbf{X} \)

 – \(\mathbf{W} \) is vector of DWT coefficients (\(j \)th component is \(W_j \))

 – \(\mathcal{W} \) is \(N \times N \) orthonormal transform matrix

• orthonormality says \(\mathcal{W}^T \mathcal{W} = I_N \) (\(N \times N \) identity matrix)

• inverse of \(\mathcal{W} \) is just its transpose, so \(\mathcal{W} \mathcal{W}^T = I_N \) also
Implications of Orthonormality

• let \mathbf{W}_j^T denote the jth row of \mathbf{W}, where $j = 0, 1, \ldots, N - 1$
• let $\mathbf{W}_{j,l}$ denote lth element of \mathbf{W}_j
• consider two rows, say, \mathbf{W}_j^T and \mathbf{W}_k^T
• orthonormality says

$$\langle \mathbf{W}_j, \mathbf{W}_k \rangle = \sum_{l=0}^{N-1} \mathbf{W}_{j,l} \mathbf{W}_{k,l} = \begin{cases} 1, & \text{when } j = k, \\ 0, & \text{when } j \neq k \end{cases}$$

- $\langle \mathbf{W}_j, \mathbf{W}_k \rangle$ is inner product of jth & kth rows
- $\langle \mathbf{W}_j, \mathbf{W}_j \rangle = \| \mathbf{W}_j \|^2$ is squared norm (energy) for \mathbf{W}_j
Example: the Haar DWT

• $N = 16$ example of Haar DWT matrix \mathcal{W}

• note that rows are orthogonal to each other (i.e., inner products are zero)
Haar DWT Coefficients: I

• obtain Haar DWT coefficients \mathbf{W} by premultiplying \mathbf{X} by \mathbf{W}:
 \[\mathbf{W} = \mathcal{W} \mathbf{X} \]

• jth coefficient W_j is inner product of jth row \mathcal{W}_j^T and \mathbf{X}:
 \[W_j = \langle \mathcal{W}_j \cdot, \mathbf{X} \rangle \]

• can interpret coefficients as difference of averages

• to see this, let
 \[\bar{X}_t(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l} = \text{‘scale } \lambda \text{’ average} \]

 – note: \(\bar{X}_t(1) = X_t = \text{scale 1 ‘average’} \)

 – note: \(\bar{X}_{N-1}(N) = \bar{X} = \text{sample average} \)
Haar DWT Coefficients: II

• consider form $W_0 = \langle \mathcal{W}_0, X \rangle$ takes in $N = 16$ example:

\[
\mathcal{W}_{0,t} X_t \quad \text{sum } \propto \overline{X}_{1}(1) - \overline{X}_{0}(1)
\]

• similar interpretation for $W_1, \ldots, W_{N/2} - 1 = W_7 = \langle \mathcal{W}_7, X \rangle$:

\[
\mathcal{W}_{7,t} X_t \quad \text{sum } \propto \overline{X}_{15}(1) - \overline{X}_{14}(1)
\]
Haar DWT Coefficients: III

• now consider form of $W_{N/2} = W_8 = \langle \mathcal{W}_{8\bullet}, X \rangle$:

\[\mathcal{W}_{8,t} X_t \quad \text{sum} \propto \bar{X}_3(2) - \bar{X}_1(2) \]

• similar interpretation for $W_{N/2+1}, \ldots, W_{3N/4-1}$
Haar DWT Coefficients: IV

\[W_{3N/4} = W_{12} = \langle \mathcal{W}_{12}, X \rangle \] takes the following form:

\[\mathcal{W}_{8,t} X_t \quad \text{sum } \propto X_7(4) - X_3(4) \]

continuing in this manner, come to \(W_{N-2} = \langle \mathcal{W}_{14}, X \rangle \):

\[\mathcal{W}_{14,t} X_t \quad \text{sum } \propto X_{15}(8) - X_7(8) \]
Haar DWT Coefficients: V

- final coefficient $W_{N-1} = W_{15}$ has a different interpretation:

$$W_{15,t}$$

$W_{15,t}X_t$

sum $\propto X_{15}(16)$

- structure of rows in \mathcal{W}
 - first $\frac{N}{2}$ rows yield W_j’s \propto changes on scale 1
 - next $\frac{N}{4}$ rows yield W_j’s \propto changes on scale 2
 - next $\frac{N}{8}$ rows yield W_j’s \propto changes on scale 4
 - next to last row yields $W_j \propto$ change on scale $\frac{N}{2}$
 - last row yields $W_j \propto$ average on scale N
Structure of DWT Matrices

- \(\frac{N}{2\tau_j} \) wavelet coefficients for scale \(\tau_j \equiv 2^{j-1}, j = 1, \ldots, J \)
 - \(\tau_j \equiv 2^{j-1} \) is standardized scale
 - \(\tau_j \Delta \) is physical scale, where \(\Delta \) is sampling interval
- each \(W_j \) localized in time: as scale ↑, localization ↓
- rows of \(\mathcal{W} \) for given scale \(\tau_j \):
 - circularly shifted with respect to each other
 - shift between adjacent rows is \(2\tau_j = 2^j \)
- similar structure for DWTs other than the Haar
- differences of averages common theme for DWTs
 - simple differencing replaced by higher order differences
 - simple averages replaced by weighted averages
Two Basic Decompositions Derivable from DWT

• additive decomposition
 – reexpresses X as the sum of $J + 1$ new time series, each of which is associated with a particular scale τ_j
 – called multiresolution analysis (MRA)

• energy decomposition
 – yields analysis of variance across J scales
 – called wavelet spectrum or wavelet variance
Partitioning of DWT Coefficient Vector W

- decompositions are based on partitioning of W and \mathcal{W}
- partition W into subvectors associated with scale:

$$
W = \begin{bmatrix}
W_1 \\
W_2 \\
\vdots \\
W_j \\
\vdots \\
W_J \\
V_J
\end{bmatrix}
$$

- W_j has $N/2^j$ elements (scale $\tau_j = 2^{j-1}$ changes)
 note: $\sum_{j=1}^{J} \frac{N}{2^j} = \frac{N}{2} + \frac{N}{4} + \cdots + 2 + 1 = 2^J - 1 = N - 1$
- V_J has 1 element, which is equal to $\sqrt{N \cdot X}$ (scale N average)
Example of Partitioning of W

- consider time series X of length $N = 16$ & its Haar DWT W
Partitioning of DWT Matrix \mathcal{W}

- partition \mathcal{W} commensurate with partitioning of \mathbf{W}:

$$
\mathcal{W} = \begin{bmatrix}
\mathcal{W}_1 \\
\mathcal{W}_2 \\
\vdots \\
\mathcal{W}_j \\
\vdots \\
\mathcal{W}_J \\
\mathcal{V}_J
\end{bmatrix}
$$

- \mathcal{W}_j is $\frac{N}{2^j} \times N$ matrix (related to scale $\tau_j = 2^{j-1}$ changes)

- \mathcal{V}_J is $1 \times N$ row vector (each element is $\frac{1}{\sqrt{N}}$)
Example of Partitioning of \mathcal{W}

- $N = 16$ example of Haar DWT matrix \mathcal{W}

- two properties: (a) $\mathbf{W}_j = \mathcal{W}_j \mathbf{X}$ and (b) $\mathcal{W}_j \mathcal{W}_j^T = I_{N/2^j}$

\mathcal{W}_1

\mathcal{W}_2

\mathcal{W}_3

\mathcal{W}_4

\mathcal{V}_4
DWT Analysis and Synthesis Equations

- recall the DWT analysis equation $\mathbf{W} = \mathbf{W} \mathbf{X}$
- $\mathbf{W}^T \mathbf{W} = \mathbf{I}_N$ because \mathbf{W} is an orthonormal transform
- implies that $\mathbf{W}^T \mathbf{W} = \mathbf{W}^T \mathbf{W} \mathbf{X} = \mathbf{X}$
- yields DWT synthesis equation:

\[
\mathbf{X} = \mathbf{W}^T \mathbf{W} = \begin{bmatrix}
\mathbf{W}_1^T, \mathbf{W}_2^T, \ldots, \mathbf{W}_J^T, \mathbf{V}_J^T
\end{bmatrix}
\begin{bmatrix}
\mathbf{W}_1 \\
\mathbf{W}_2 \\
\vdots \\
\mathbf{W}_J \\
\mathbf{V}_J
\end{bmatrix}
= \sum_{j=1}^{J} \mathbf{W}_j^T \mathbf{W}_j + \mathbf{V}_j^T \mathbf{V}_J
\]
Multiresolution Analysis: I

- synthesis equation leads to additive decomposition:

\[
X = \sum_{j=1}^{J} W_j^T W_j + \nu_j^T \nu_j \equiv \sum_{j=1}^{J} D_j + S_J
\]

- \(D_j \equiv W_j^T W_j \) is portion of synthesis due to scale \(\tau_j \)
- \(D_j \) is vector of length \(N \) and is called \(j \)th ‘detail’
- \(S_J \equiv \nu_j^T \nu_j = X \mathbf{1} \), where \(\mathbf{1} \) is a vector containing \(N \) ones
 (later on we will call this the ‘smooth’ of \(J \)th order)
- additive decomposition called multiresolution analysis (MRA)
Multiresolution Analysis: II

- example of MRA for time series of length $N = 16$

![Graph showing multiresolution analysis]

- adding values for, e.g., $t = 14$ in $\mathcal{D}_1, \ldots, \mathcal{D}_4$ & \mathcal{S}_4 yields X_{14}
Energy Preservation Property of DWT Coefficients

- define ‘energy’ in X as its squared norm:

$$\|X\|^2 = \langle X, X \rangle = X^TX = \sum_{t=0}^{N-1} X_t^2$$

- energy of X is preserved in its DWT coefficients W because

$$\|W\|^2 = W^TW = (WX)^TWX = X^TWTWX = X^TINX = X^TX = \|X\|^2$$

- note: same argument holds for any orthonormal transform
Wavelet Spectrum (Variance Decomposition): I

- let \bar{X} denote sample mean of X_t’s: $\bar{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$
- let $\hat{\sigma}_X^2$ denote sample variance of X_t’s:
 \[
 \hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 - \bar{X}^2
 \]
 \[
 = \frac{1}{N} \|X\|^2 - \bar{X}^2
 \]
 \[
 = \frac{1}{N} \|W\|^2 - \bar{X}^2
 \]
- since $\|W\|^2 = \sum_{j=1}^{J} \|W_j\|^2 + \|V_J\|^2$ and $\frac{1}{N} \|V_J\|^2 = \bar{X}^2$,
 \[
 \hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J} \|W_j\|^2
 \]
Wavelet Spectrum (Variance Decomposition): II

- define discrete wavelet power spectrum:
 \[P_X(\tau_j) \equiv \frac{1}{N}\|W_j\|^2, \text{ where } \tau_j = 2^{j-1} \]
- gives us a scale-based decomposition of the sample variance:
 \[\hat{\sigma}_X^2 = \sum_{j=1}^{J} P_X(\tau_j) \]
- in addition, each \(W_{j,t} \) in \(W_j \) associated with a portion of \(X \); i.e., \(W_{j,t}^2 \) offers scale- \& time-based decomposition of \(\hat{\sigma}_X^2 \)
Wavelet Spectrum (Variance Decomposition): III

- wavelet spectra for time series X and Y of length $N = 16$, each with zero sample mean and same sample variance.
Defining the Discrete Wavelet Transform (DWT)

• can formulate DWT via elegant ‘pyramid’ algorithm
• *defines* \(\mathcal{W} \) for non-Haar wavelets (consistent with Haar)
• computes \(\mathbf{W} = \mathcal{W} \mathbf{X} \) using \(O(N) \) multiplications
 – ‘brute force’ method uses \(O(N^2) \) multiplications
 – faster than celebrated algorithm for fast Fourier transform!
 (this uses \(O(N \cdot \log_2(N)) \) multiplications)
• can formulate algorithm using linear filters or matrices
 (two approaches are complementary)
• need to review ideas from theory of linear (time-invariant) filters, which requires some Fourier theory
Fourier Theory for Sequences: I

- let \(\{a_t\} \) denote a real-valued sequence such that \(\sum_t a_t^2 < \infty \)
- discrete Fourier transform (DFT) of \(\{a_t\} \):
 \[
 A(f) \equiv \sum_t a_t e^{-i2\pi ft}
 \]
- \(f \) called frequency: \(e^{-i2\pi ft} = \cos(2\pi ft) - i \sin(2\pi ft) \)
- \(A(f) \) defined for all \(f \), but \(0 \leq f \leq 1/2 \) is of main interest:
 - \(A(\cdot) \) periodic with unit period, i.e., \(A(f + 1) = A(f) \), all \(f \)
 - \(A(-f) = A^*(f) \), complex conjugate of \(A(f) \)
 - need only know \(A(f) \) for \(0 \leq f \leq 1/2 \) to know it for all \(f \)
- ‘low frequencies’ are those in lower range of \([0, 1/2] \)
- ‘high frequencies’ are those in upper range of \([0, 1/2] \)
Fourier Theory for Sequences: II

- can recover (synthesize) \(\{a_t\} \) from its DFT:

\[
\int_{-1/2}^{1/2} A(f)e^{i2\pi ft} df = a_t;
\]

left-hand side called inverse DFT of \(A(\cdot) \)

- \(\{a_t\} \) and \(A(\cdot) \) are two representations for one ‘thingy’

- large \(|A(f)| \) says \(e^{i2\pi ft} \) important in synthesizing \(\{a_t\} \); i.e.,

\(\{a_t\} \) resembles some combination of \(\cos(2\pi ft) \) and \(\sin(2\pi ft) \)
Convolution of Sequences

• given two sequences \(\{a_t\} \) and \(\{b_t\} \), define their convolution by

\[
c_t \equiv \sum_{u=-\infty}^{\infty} a_u b_{t-u}
\]

• DFT of \(\{c_t\} \) has a simple form, namely,

\[
\sum_{t=-\infty}^{\infty} c_t e^{-i2\pi ft} = A(f)B(f),
\]

where \(A(\cdot) \) is the DFT of \(\{a_t\} \), and \(B(\cdot) \) is the DFT of \(\{b_t\} \); i.e., just multiply two DFTs together!!!
Basic Concepts of Filtering

• convolution & linear time-invariant filtering are same concepts:
 – \{b_t\} is input to filter
 – \{a_t\} represents the filter
 – \{c_t\} is filter output

• flow diagram for filtering: \{b_t\} \rightarrow \boxed{\{a_t\}} \rightarrow \{c_t\}

• \{a_t\} is called impulse response sequence for filter

• its DFT \(A(\cdot)\) is called transfer function

• in general \(A(\cdot)\) is complex-valued, so write \(A(f) = |A(f)|e^{i\theta(f)}\)
 – \(|A(f)|\) defines gain function
 – \(A(f) \equiv |A(f)|^2\) defines squared gain function
 – \(\theta(\cdot)\) called phase function (well-defined at \(f\) if \(|A(f)| > 0\))
Example of a Low-Pass Filter

- consider $b_t = \frac{3}{16} \left(\frac{4}{5} \right) |t| + \frac{1}{20} \left(-\frac{4}{5} \right) |t|$ & $a_t = \begin{cases} \frac{1}{2}, & t = 0 \\ \frac{1}{4}, & t = -1 \text{ or } 1 \\ 0, & \text{otherwise} \end{cases}$

- note: $A(\cdot)$ & $B(\cdot)$ both real-valued ($A(\cdot) =$ its gain function)
Example of a High-Pass Filter

- consider same \(\{b_t\} \), but now let \(a_t = \begin{cases} \frac{1}{2}, & t = 0 \\ -\frac{1}{4}, & t = -1 \text{ or } 1 \\ 0, & \text{otherwise} \end{cases} \)

- note: \(\{a_t\} \) resembles some wavelet filters we’ll see later
The Wavelet Filter: I

• precise definition of DWT begins with notion of wavelet filter
 • let \(\{h_l : l = 0, \ldots, L - 1\} \) be a real-valued filter of width \(L \)
 – both \(h_0 \) and \(h_{L-1} \) must be nonzero
 – for convenience, will define \(h_l = 0 \) for \(l < 0 \) and \(l \geq L \)
 – \(L \) must be even \((2, 4, 6, 8, \ldots)\) for technical reasons (hence ruling out \(\{a_t\} \) on the previous overhead)
The Wavelet Filter: II

\[\{h_l\} \text{ called a wavelet filter if it has these 3 properties} \]

1. summation to zero:
\[\sum_{l=0}^{L-1} h_l = 0 \]

2. unit energy:
\[\sum_{l=0}^{L-1} h_l^2 = 1 \]

3. orthogonality to even shifts: for all nonzero integers \(n \), have
\[\sum_{l=0}^{L-1} h_l h_{l+2n} = 0 \]

\[\text{\bullet 2 and 3 together are called the orthonormality property} \]
The Wavelet Filter: III

• summation to zero and unit energy relatively easy to achieve
• orthogonality to even shifts is key property & hardest to satisfy
• define transfer and squared gain functions for wavelet filter:

\[H(f) \equiv \sum_{l=0}^{L-1} h_l e^{-i2\pi fl} \quad \text{and} \quad \mathcal{H}(f) \equiv |H(f)|^2 \]

• orthonormality property is equivalent to

\[\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2 \quad \text{for all } f \]

(an elegant – but not obvious! – result)
Haar Wavelet Filter

• simplest wavelet filter is Haar ($L = 2$): $h_0 = \frac{1}{\sqrt{2}}$ & $h_1 = -\frac{1}{\sqrt{2}}$

• note that $h_0 + h_1 = 0$ and $h_0^2 + h_1^2 = 1$, as required

• orthogonality to even shifts also readily apparent

\[h_l h_{l-2} \quad \text{sum} = 0 \]
D(4) Wavelet Filter: I

- next simplest wavelet filter is D(4), for which $L = 4$:

 \[
 h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}} , \quad h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}} , \quad h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}} , \quad h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}}
 \]

- ‘D’ stands for Daubechies
- $L = 4$ width member of her ‘extremal phase’ wavelets
- computations show $\sum_l h_l = 0$ & $\sum_l h_l^2 = 1$, as required
- orthogonality to even shifts apparent except for ± 2 case:
D(4) Wavelet Filter: II

- Q: what is rationale for D(4) filter?
- consider $X_t^{(1)} \equiv X_t - X_{t-1} = a_0X_t + a_1X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter:
 \[
 \{X_t\} \longrightarrow \{1, -1\} \longrightarrow \{X_t^{(1)}\}
 \]
 - Haar wavelet filter is normalized 1st difference filter
 - $X_t^{(1)}$ is difference between two ‘1 point averages’
- consider filter ‘cascade’ with two 1st difference filters:
 \[
 \{X_t\} \longrightarrow \{1, -1\} \longrightarrow \{1, -1\} \longrightarrow \{X_t^{(2)}\}
 \]
- by considering convolution of $\{1, -1\}$ with itself, can reexpress the above using a single ‘equivalent’ (2nd difference) filter:
 \[
 \{X_t\} \longrightarrow \{1, -2, 1\} \longrightarrow \{X_t^{(2)}\}
 \]

WMTSA: 60–61
D(4) Wavelet Filter: III

- renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

\[a_t = \begin{cases}
\frac{1}{2}, & t = 0 \\
-\frac{1}{4}, & t = -1 \text{ or } 1 \\
0, & \text{otherwise}
\end{cases} \]

- consider ‘2 point weighted average’ followed by 2nd difference:

\[
\{X_t\} \rightarrow \begin{bmatrix} a, b \end{bmatrix} \rightarrow \begin{bmatrix} 1, -2, 1 \end{bmatrix} \rightarrow \{Y_t\}
\]

- convolution of \{a, b\} and \{1, -2, 1\} yields an equivalent filter, which is how the D(4) wavelet filter arises:

\[
\{X_t\} \rightarrow \begin{bmatrix} h_0, h_1, h_2, h_3 \end{bmatrix} \rightarrow \{Y_t\}
\]
D(4) Wavelet Filter: IV

- using conditions
 1. summation to zero: \(h_0 + h_1 + h_2 + h_3 = 0 \)
 2. unit energy: \(h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1 \)
 3. orthogonality to even shifts: \(h_0 h_2 + h_1 h_3 = 0 \)

 can solve for feasible values of \(a \) and \(b \)

- one solution is \(a = \frac{1+\sqrt{3}}{4\sqrt{2}} \approx 0.48 \) and \(b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \approx 0.13 \)

 (other solutions yield essentially the same filter)

- interpret D(4) filtered output as changes in weighted averages
 - ‘change’ now measured by 2nd difference (1st for Haar)
 - average is now 2 point weighted average (1 point for Haar)
 - can argue that effective scale of weighted average is one
Another Popular Daubechies Wavelet Filter

- LA(8) wavelet filter (‘LA’ stands for ‘least asymmetric’)

 - resembles three-point high-pass filter \([-\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}]\) (somewhat)
 - can interpret this filter as cascade consisting of
 - 4th difference filter
 - weighted average filter of width 4, but effective width 1
 - filter output can be interpreted as changes in weighted averages
First Level Wavelet Coefficients: I

- given wavelet filter \(\{h_l\} \) of width \(L \) & time series of length \(N = 2^J \), obtain first level wavelet coefficients as follows

- *circularly* filter \(X \) with wavelet filter to yield output
 \[
 \sum_{l=0}^{L-1} h_l X_{t-l} = \sum_{l=0}^{L-1} h_l X_{t-l \mod N}, \quad t = 0, \ldots, N - 1;
 \]
 i.e., if \(t - l \) does not satisfy \(0 \leq t - l \leq N - 1 \), interpret \(X_{t-l} \) as \(X_{t-l \mod N} \); e.g., \(X_{-1} = X_{N-1} \) and \(X_{-2} = X_{N-2} \)

- take every other value of filter output to define
 \[
 W_{1,t} \equiv \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}, \quad t = 0, \ldots, \frac{N}{2} - 1;
 \]
 \(\{W_{1,t}\} \) formed by *downsampling* filter output by a factor of 2
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_i^\circ X_{-l \mod 16} \sum = \]

\[
h_i^\circ \]

\[
X_{-l \mod 16} \]
First Level Wavelet Coefficients: II

• example of formation of \(\{W_{1,t}\} \)
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_l \quad \sum =
\]

\[
h_l X_{2-l \mod 16}
\]
First Level Wavelet Coefficients: II

- example of formation of \{W_{1,t}\}

\[h_{l}^{\circ} X_{3-l \mod 16} \]

\[\sum = \]
First Level Wavelet Coefficients: II

- example of formation of \(\{ W_{1,t} \} \)

\[
h_l \circ X_{4-l \mod 16} \quad \sum = \]

WMTSA: 70
I-41
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[h_l^o X_{5-l \mod 16} \]

\[\sum = \]
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)
First Level Wavelet Coefficients: II

- example of formation of \(\{ W_{1,t} \} \)

\[
h_l \odot X_{7-l \mod 16} = \sum \]

WMTSA: 70 I–41
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_l^\circ \quad h_l^\circ X_{8-l \mod 16} \quad \sum =
\]

\[X_{8-l \mod 16}\]
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_l \circ X_{9-l \mod 16} \quad \sum = \quad \text{graph}
\]
First Level Wavelet Coefficients: II

- example of formation of \{W_{1,t}\}
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_l^\circ \quad h_l^\circ X_{11-l \mod 16} \quad \sum = \]

WMTSA: 70

I–41
First Level Wavelet Coefficients: II

• example of formation of \{W_{1,t}\}

\[h_l \odot X_{12 - l \mod 16} \]
First Level Wavelet Coefficients: II

- example of formation of \{W_{1,t}\}
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

![Diagram showing wavelet coefficients](image-url)
First Level Wavelet Coefficients: II

- Example of formation of \(\{W_{1,t}\} \)

\[
\begin{align*}
&h_l^\circ \\
&X_{15-l \mod 16} \\
&h_l^\circ X_{15-l \mod 16} \\
&\sum =
\end{align*}
\]
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
\begin{align*}
 h_l & \quad h_l X_{15-l \mod 16} \\
 X_{15-l \mod 16} & \quad \sum = \downarrow 2 \\
 W_{1,t} &
\end{align*}
\]

- \(\{W_{1,t}\} \) are unit scale wavelet coefficients – these are the elements of \(\mathbf{W}_1 \) and first \(N/2 \) elements of \(\mathbf{W} = \mathbf{W_1X} \)

- also have \(\mathbf{W}_1 = \mathbf{W}_1 \mathbf{X} \), with \(\mathbf{W}_1 \) being first \(N/2 \) rows of \(\mathbf{W} \)

- hence elements of \(\mathbf{W}_1 \) dictated by wavelet filter
Upper Half \mathcal{W}_1 of Haar DWT Matrix \mathcal{W}

- consider Haar wavelet filter ($L = 2$): $h_0 = \frac{1}{\sqrt{2}}$ & $h_1 = -\frac{1}{\sqrt{2}}$
- when $N = 16$, \mathcal{W}_1 looks like

$$
\begin{bmatrix}
h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 \\
\end{bmatrix}
$$

- rows obviously orthogonal to each other
Upper Half \mathcal{W}_1 of D(4) DWT Matrix \mathcal{W}

- when $L = 4 \& N = 16$, \mathcal{W}_1 looks like

$$
\begin{bmatrix}
 h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 \\
 h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

- rows orthogonal because $h_0h_2 + h_1h_3 = 0$

- note: $\langle \mathcal{W}_0\bullet, X \rangle$ yields $W_0 = h_1X_0 + h_0X_1 + h_3X_{14} + h_2X_{15}$

- unlike other coefficients from above, this ‘boundary’ coefficient depends on circular treatment of X (a curse, not a feature!)
Orthonormality of Upper Half of DWT Matrix: I

• can show that, for all L and even N,

$$W_{1,t} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N},$$

or, equivalently, $W_1 = W_1 X$

forms half an orthonormal transform; i.e.,

$$W_1 W_1^T = I_{N/2}$$

• Q: how can we construct the other half of W?
The Scaling Filter: I

- create scaling (or ‘father wavelet’) filter \(\{g_l\} \) by reversing \(\{h_l\} \) and then changing sign of coefficients with even indices

\[
\{h_l\} \quad \{h_l\} \text{ reversed} \quad \{g_l\}
\]

- 2 filters related by \(g_l \equiv (-1)^{l+1} h_{L-1-l} \) & \(h_l = (-1)^l g_{L-1-l} \)
The Scaling Filter: II

- \(\{g_l\} \) is ‘quadrature mirror’ filter corresponding to \(\{h_l\} \)

- properties 2 and 3 of \(\{h_l\} \) are shared by \(\{g_l\} \):
 2. unit energy:
 \[
 \sum_{l=0}^{L-1} g_l^2 = 1
 \]

 3. orthogonality to even shifts: for all nonzero integers \(n \), have
 \[
 \sum_{l=0}^{L-1} g_l g_{l+2n} = 0
 \]

- scaling & wavelet filters both satisfy orthonormality property
First Level Scaling Coefficients: I

- orthonormality property of \(\{h_l\} \) is all that is needed to prove \(\mathcal{W}_1 \) is half of an orthonormal transform (never used \(\sum_l h_l = 0 \))
- going back and replacing \(h_l \) with \(g_l \) everywhere yields another half of an orthonormal transform
- circularly filter \(\mathbf{X} \) using \(\{g_l\} \) and downsample to define

\[
V_{1,t} \equiv \sum_{l=0}^{L-1} g_l X_{2t+1-l \text{ mod } N}, \quad t = 0, \ldots, \frac{N}{2} - 1
\]

- \(\{V_{1,t}\} \) called scaling coefficients for level \(j = 1 \)
- place these \(N/2 \) coefficients in vector called \(\mathbf{V}_1 \)
First Level Scaling Coefficients: III

- define \mathbf{v}_1 in a manner analogous to \mathbf{w}_1 so that $\mathbf{v}_1 = \mathbf{v}_1 \mathbf{x}$
- when $L = 4$ and $N = 16$, \mathbf{v}_1 looks like

$$
\begin{bmatrix}
g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

- \mathbf{v}_1 obeys same orthonormality property as \mathbf{w}_1:

$$
\text{similar to } \mathbf{w}_1 \mathbf{w}_1^T = \mathbf{I}_{\frac{N}{2}}, \text{ have } \mathbf{v}_1 \mathbf{v}_1^T = \mathbf{I}_{\frac{N}{2}}
$$
Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: I

- **Q:** how does \mathcal{V}_1 help us?
- **A:** rows of \mathcal{V}_1 and \mathcal{W}_1 are pairwise orthogonal!
- readily apparent in Haar case:

$$
\begin{align*}
 g_l & \quad g_l h_l \quad \text{sum } = 0 \\
 h_l & \quad
\end{align*}
$$
Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: II

- let’s check that orthogonality holds for $D(4)$ case also:

\[
\begin{align*}
 g_l & \quad \text{sum} = 0 \\
 h_l & \quad \text{sum} = 0 \\
 h_{l-2} & \quad \text{sum} = 0
\end{align*}
\]
Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: III

- implies that

$$\mathcal{P}_1 \equiv \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix}$$

is an $N \times N$ orthonormal matrix since

$$\mathcal{P}_1 \mathcal{P}_1^T = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \begin{bmatrix} \mathcal{W}_1^T, \mathcal{V}_1^T \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \mathcal{W}_1^T & \mathcal{W}_1 \mathcal{V}_1^T \\ \mathcal{V}_1 \mathcal{W}_1^T & \mathcal{V}_1 \mathcal{V}_1^T \end{bmatrix} = \begin{bmatrix} I_N & 0_N \\ 0_N & I_N \end{bmatrix} = I_N$$

- if $N = 2$ (not of too much interest!), in fact $\mathcal{P}_1 = \mathcal{W}$

- if $N > 2$, \mathcal{P}_1 is an intermediate step: \mathcal{V}_1 spans same subspace as lower half of \mathcal{W} and will be further manipulated
Interpretation of Scaling Coefficients: I

- consider Haar scaling filter \((L = 2)\): \(g_0 = g_1 = \frac{1}{\sqrt{2}}\)

- when \(N = 16\), matrix \(\mathcal{V}_1\) looks like

\[
\begin{bmatrix}
g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

- since \(V_1 = \mathcal{V}_1X\), each \(V_{1,t}\) is proportional to a 2 point average:

\[
V_{1,0} = g_1X_0 + g_0X_1 = \frac{1}{\sqrt{2}}X_0 + \frac{1}{\sqrt{2}}X_1 \propto X_1(2) \text{ and so forth}
\]
Interpretation of Scaling Coefficients: II

- reconsider shapes of \(\{g_l\} \) seen so far:

 \begin{align*}
 \text{Haar} & \quad \begin{array}{c}
 \text{Haar Shape}
 \end{array} \\
 \text{D(4)} & \quad \begin{array}{c}
 \text{D(4) Shape}
 \end{array} \\
 \text{LA(8)} & \quad \begin{array}{c}
 \text{LA(8) Shape}
 \end{array}
 \end{align*}

- for \(L > 2 \), can regard \(V_{1,t} \) as proportional to weighted average

- can argue that effective width of \(\{g_l\} \) is 2 in each case; thus scale associated with \(V_{1,t} \) is 2, whereas scale is 1 for \(W_{1,t} \)
Frequency Domain Properties of Scaling Filter

• define transfer and squared gain functions for \(\{g_l\} \)

\[
G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi fl} \quad \& \quad G(f) \equiv |G(f)|^2
\]

• can argue that \(G(f) = \mathcal{H}(f + \frac{1}{2}) \), which, combined with

\[
\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2,
\]

yields

\[
\mathcal{H}(f) + G(f) = 2
\]
Frequency Domain Properties of \(\{h_l\} \) and \(\{g_l\} \)

- since \(W_1 \) & \(V_1 \) contain output from filters, consider their squared gain functions, recalling that \(H(f) + G(f) = 2 \)

- example: \(H(\cdot) \) and \(G(\cdot) \) for Haar & D(4) filters

- \(\{h_l\} \) is high-pass filter with nominal pass-band \([1/4, 1/2] \)
- \(\{g_l\} \) is low-pass filter with nominal pass-band \([0, 1/4] \)
Frequency Domain Properties of \(\{ h_l \} \) and \(\{ g_l \} \)

- since \(W_1 \) & \(V_1 \) contain output from filters, consider their squared gain functions, recalling that \(\mathcal{H}(f) + \mathcal{G}(f) = 2 \)
- example: \(\mathcal{H}(\cdot) \) and \(\mathcal{G}(\cdot) \) for Haar & LA(8) filters

\(\{ h_l \} \) is high-pass filter with nominal pass-band \([1/4, 1/2]\)

\(\{ g_l \} \) is low-pass filter with nominal pass-band \([0, 1/4]\)
Example of Decomposing X into W_1 and V_1: I

- oxygen isotope records X from Antarctic ice core
Example of Decomposing X into W_1 and V_1: II

- oxygen isotope record series X has $N = 352$ observations
- spacing between observations is $\Delta \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients V_1 related to averages on scale of 2Δ
- wavelet coefficients W_1 related to changes on scale of Δ
- coefficients $V_{1,t}$ and $W_{1,t}$ plotted against mid-point of years associated with X_{2t} and X_{2t+1}
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway
Reconstructing X from W_1 and V_1

- in matrix notation, form wavelet & scaling coefficients via

$$\begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 X \\ \mathcal{V}_1 X \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \mathbf{X} = \mathcal{P}_1 \mathbf{X}$$

- recall that $\mathcal{P}^T_1 \mathcal{P}_1 = I_N$ because \mathcal{P}_1 is orthonormal

- since $\mathcal{P}^T_1 \mathcal{P}_1 \mathbf{X} = \mathbf{X}$, premultiplying both sides by \mathcal{P}^T_1 yields

$$\mathcal{P}^T_1 \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1^T & \mathcal{V}_1^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1 = \mathbf{X}$$

- $\mathcal{D}_1 \equiv \mathcal{W}_1^T \mathbf{W}_1$ is the first level detail

- $\mathcal{S}_1 \equiv \mathcal{V}_1^T \mathbf{V}_1$ is the first level ‘smooth’

- $\mathbf{X} = \mathcal{D}_1 + \mathcal{S}_1$ in this notation
Example of Synthesizing X from D_1 and S_1

- Haar-based decomposition for oxygen isotope records X
First Level Variance Decomposition: I

- recall that ‘energy’ in \mathbf{X} is its squared norm $\|\mathbf{X}\|^2$
- because \mathcal{P}_1 is orthonormal, have $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ and hence
 \[\|\mathcal{P}_1 \mathbf{X}\|^2 = (\mathcal{P}_1 \mathbf{X})^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2 \]
- can conclude that $\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$ because
 \[\mathcal{P}_1 \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} \] and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$
- leads to a decomposition of the sample variance for \mathbf{X}:
 \[\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} \|\mathbf{X}\|^2 - \overline{X}^2 = \frac{1}{N} \|\mathbf{W}_1\|^2 + \frac{1}{N} \|\mathbf{V}_1\|^2 - \overline{X}^2 \]
First Level Variance Decomposition: II

• breaks up $\hat{\sigma}_X^2$ into two pieces:
 1. $\frac{1}{N}||W_1||^2$, attributable to changes in averages over scale 1
 2. $\frac{1}{N}||V_1||^2 - \overline{X}^2$, attributable to averages over scale 2
• Haar-based example for oxygen isotope records
 – first piece: $\frac{1}{N}||W_1||^2 \approx 0.295$
 – second piece: $\frac{1}{N}||V_1||^2 - \overline{X}^2 \approx 2.909$
 – sample variance: $\hat{\sigma}_X^2 \approx 3.204$
 – changes on scale of $\Delta \approx 0.5$ years account for 9% of $\hat{\sigma}_X^2$
 (standardized scale 1 corresponds to physical scale Δ)
Summary of First Level of Basic Algorithm

- transforms \(\{ X_t : t = 0, \ldots, N - 1 \} \) into 2 types of coefficients
- \(N/2 \) wavelet coefficients \(\{ W_{1,t} \} \) associated with:
 - \(W_1 \), a vector consisting of first \(N/2 \) elements of \(\mathbf{W} \)
 - changes on scale 1 and nominal frequencies \(\frac{1}{4} \leq |f| \leq \frac{1}{2} \)
 - first level detail \(D_1 \)
 - \(\mathbf{W}_1 \), an \(\frac{N}{2} \times N \) matrix consisting of first \(\frac{N}{2} \) rows of \(\mathbf{W} \)
- \(N/2 \) scaling coefficients \(\{ V_{1,t} \} \) associated with:
 - \(V_1 \), a vector of length \(N/2 \)
 - averages on scale 2 and nominal frequencies \(0 \leq |f| \leq \frac{1}{4} \)
 - first level smooth \(S_1 \)
 - \(\mathbf{V}_1 \), an \(\frac{N}{2} \times N \) matrix spanning same subspace as last \(N/2 \) rows of \(\mathbf{W} \)
Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as ‘one point’ averages $\overline{X}_t(1)$ over scale of 1
- first level of basic algorithm transforms X of length N into
 - $N/2$ wavelet coefficients $W_1 \propto$ changes on a scale of 1
 - $N/2$ scaling coefficients $V_1 \propto$ averages of X_t on a scale of 2
- in essence basic algorithm takes length N series X related to scale 1 averages and produces
 - length $N/2$ series W_1 associated with the same scale
 - length $N/2$ series V_1 related to averages on double the scale
Constructing Remaining DWT Coefficients: II

- Q: what if we now treat V_1 in the same manner as X?
- basic algorithm will transform length $N/2$ series V_1 into
 - length $N/4$ series W_2 associated with the same scale (2)
 - length $N/4$ series V_2 related to averages on twice the scale
- by definition, W_2 contains the level 2 wavelet coefficients
- Q: what if we treat V_2 in the same way?
- basic algorithm will transform length $N/4$ series V_2 into
 - length $N/8$ series W_3 associated with the same scale (4)
 - length $N/8$ series V_3 related to averages on twice the scale
- by definition, W_3 contains the level 3 wavelet coefficients
Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W} = \mathbf{W} \mathbf{X}$ is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_j and \mathbf{V}_j from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of \mathbf{V}_j given by $N/2^j$
- since $N = 2^J$, length of \mathbf{V}_J is 1, at which point we must stop
- J applications of the basic algorithm defines the remaining subvectors $\mathbf{W}_2, \ldots, \mathbf{W}_J, \mathbf{V}_J$ of DWT coefficient vector \mathbf{W}
- overall scheme is known as the ‘pyramid’ algorithm
Scales Associated with DWT Coefficients

• jth level of algorithm transforms scale 2^{j-1} averages into
 – differences of averages on scale 2^{j-1}, i.e., wavelet coefficients W_j
 – averages on scale $2 \times 2^{j-1} = 2^j$, i.e., scaling coefficients V_j
• $\tau_j \equiv 2^{j-1}$ denotes scale associated with W_j
 – for $j = 1, \ldots, J$, takes on values $1, 2, 4, \ldots, N/4, N/2$
• $\lambda_j \equiv 2^j = 2^{\tau_j}$ denotes scale associated with V_j
 – takes on values $2, 4, 8, \ldots, N/2, N$
Matrix Description of Pyramid Algorithm: I

• form $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$ matrix \mathcal{B}_j in same way as $\frac{N}{2} \times N$ matrix \mathcal{W}_1

• when $L = 4$ and $N/2^{j-1} = 16$, have

$$
\mathcal{B}_j = \begin{bmatrix}
 h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 \\
 h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

• matrix gets us jth level wavelet coefficients via $\mathcal{W}_j = \mathcal{B}_j \mathcal{V}_{j-1}$
Matrix Description of Pyramid Algorithm: II

- form $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$ matrix A_j in same way as $\frac{N}{2} \times N$ matrix V_1
- when $L = 4$ and $N/2^{j-1} = 16$, have

$$A_j = \begin{bmatrix}
g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0
\end{bmatrix}$$

- matrix gets us jth level scaling coefficients via $V_j = A_j V_{j-1}$
Matrix Description of Pyramid Algorithm: III

• if we define $V_0 = X$ and let $j = 1$, then

$$W_j = B_j V_{j-1}$$

reduces to

$$W_1 = B_1 V_0 = B_1 X = \mathcal{W}_1 X$$

because B_1 has the same definition as \mathcal{W}_1

• likewise, when $j = 1$,

$$V_j = A_j V_{j-1}$$

reduces to

$$V_1 = A_1 V_0 = A_1 X = \mathcal{V}_1 X$$

because A_1 has the same definition as \mathcal{V}_1
Formation of Submatrices of \mathcal{W}: I

- using $V_j = A_j V_{j-1}$ repeatedly and $V_1 = A_1 X$, can write
 \[W_j = B_j V_{j-1} \]
 \[= B_j A_{j-1} V_{j-2} \]
 \[= B_j A_{j-1} A_{j-2} V_{j-3} \]
 \[= B_j A_{j-1} A_{j-2} \cdots A_1 X \equiv W_j X, \]
 where W_j is $\frac{N}{2^j} \times N$ submatrix of \mathcal{W} responsible for W_j

- likewise, can get $1 \times N$ submatrix V_J responsible for V_J
 \[V_J = A_J V_{J-1} \]
 \[= A_J A_{J-1} V_{J-2} \]
 \[= A_J A_{J-1} A_{J-2} V_{J-3} \]
 \[= A_J A_{J-1} A_{J-2} \cdots A_1 X \equiv V_J X \]

- V_J is the last row of \mathcal{W}, & all its elements are equal to $1/\sqrt{N}$
Formation of Submatrices of \mathcal{W}: II

- have now constructed all of DWT matrix:

\[
\mathcal{W} = \begin{bmatrix}
\mathcal{W}_1 \\
\mathcal{W}_2 \\
\mathcal{W}_3 \\
\mathcal{W}_4 \\
\vdots \\
\mathcal{W}_j \\
\vdots \\
\mathcal{W}_J \\
\mathcal{V}_J
\end{bmatrix} = \begin{bmatrix}
\mathcal{B}_1 \\
\mathcal{B}_2 \mathcal{A}_1 \\
\mathcal{B}_3 \mathcal{A}_2 \mathcal{A}_1 \\
\mathcal{B}_4 \mathcal{A}_3 \mathcal{A}_2 \mathcal{A}_1 \\
\vdots \\
\mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1 \\
\vdots \\
\mathcal{B}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \\
\mathcal{A}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1
\end{bmatrix}
\]
Examples of \mathcal{W} and its Partitioning: I

- $N = 16$ case for Haar DWT matrix \mathcal{W}

- above agrees with qualitative description given previously
Examples of \mathcal{W} and its Partitioning: II

- $N = 16$ case for D(4) DWT matrix \mathcal{W}

- note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed
Partial DWT: I

- J repetitions of pyramid algorithm for X of length $N = 2^J$ yields ‘complete’ DWT, i.e., $W = \mathcal{W}X$
- can choose to stop at $J_0 < J$ repetitions, yielding a ‘partial’ DWT of level J_0:

$$
\begin{bmatrix}
\mathcal{W}_1 \\
\mathcal{W}_2 \\
\vdots \\
\mathcal{W}_j \\
\vdots \\
\mathcal{W}_{J_0} \\
\mathcal{V}_{J_0}
\end{bmatrix}
\begin{bmatrix}
B_1 \\
B_2A_1 \\
\vdots \\
B_jA_{j-1} \cdots A_1 \\
\vdots \\
B_{J_0}A_{J_0-1} \cdots A_1 \\
A_{J_0}A_{J_0-1} \cdots A_1
\end{bmatrix}
\begin{bmatrix}
W_1 \\
W_2 \\
\vdots \\
W_j \\
\vdots \\
W_{J_0} \\
V_{J_0}
\end{bmatrix}
$$

- \mathcal{V}_{J_0} is $\frac{N}{2^{J_0}} \times N$, yielding $\frac{N}{2^{J_0}}$ coefficients for scale $\lambda_{J_0} = 2^{J_0}$
Partial DWT: II

- only requires N to be integer multiple of 2^J_0
- partial DWT more common than complete DWT
- choice of J_0 is application dependent
- multiresolution analysis for partial DWT:
 \[X = \sum_{j=1}^{J_0} D_j + S_{J_0}\]

 S_{J_0} represents averages on scale $\lambda J_0 = 2^J_0$ (includes \overline{X})
- analysis of variance for partial DWT:
 \[\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J_0} \|W_j\|^2 + \frac{1}{N} \|V_{J_0}\|^2 - \overline{X}^2\]
Example of $J_0 = 4$ Partial Haar DWT

- oxygen isotope records X from Antarctic ice core
Example of $J_0 = 4$ Partial Haar DWT

- oxygen isotope records \mathbf{X} from Antarctic ice core
Example of MRA from $J_0 = 4$ Partial Haar DWT

- oxygen isotope records X from Antarctic ice core
Example of Variance Decomposition

- decomposition of sample variance from \(J_0 = 4 \) partial DWT

\[
\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \sum_{j=1}^{4} \frac{1}{N} \| W_j \|^2 + \frac{1}{N} \| V_4 \|^2 - \bar{X}^2
\]

- Haar-based example for oxygen isotope records
 - 0.5 year changes: \(\frac{1}{N} \| W_1 \|^2 \doteq 0.295 (\doteq 9.2\% \text{ of } \hat{\sigma}_X^2) \)
 - 1.0 years changes: \(\frac{1}{N} \| W_2 \|^2 \doteq 0.464 (\doteq 14.5\%) \)
 - 2.0 years changes: \(\frac{1}{N} \| W_3 \|^2 \doteq 0.652 (\doteq 20.4\%) \)
 - 4.0 years changes: \(\frac{1}{N} \| W_4 \|^2 \doteq 0.846 (\doteq 26.4\%) \)
 - 8.0 years averages: \(\frac{1}{N} \| V_4 \|^2 - \bar{X}^2 \doteq 0.947 (\doteq 29.5\%) \)
 - sample variance: \(\hat{\sigma}_X^2 \doteq 3.204 \)
Haar Equivalent Wavelet & Scaling Filters

\[
\{h_1\}, \quad L = 2 \\
\{h_{2,1}\}, \quad L_2 = 4 \\
\{h_{3,1}\}, \quad L_3 = 8 \\
\{h_{4,1}\}, \quad L_4 = 16 \\
\{g_1\}, \quad L = 2 \\
\{g_{2,1}\}, \quad L_2 = 4 \\
\{g_{3,1}\}, \quad L_3 = 8 \\
\{g_{4,1}\}, \quad L_4 = 16
\]

- \(L_j = 2^j\) is width of \(\{h_{j,1}\}\) and \(\{g_{j,1}\}\)
- note: convenient to define \(\{h_{1,1}\}\) to be same as \(\{h_1\}\)
D(4) Equivalent Wavelet & Scaling Filters

- L_j dictated by general formula $L_j = (2^j - 1)(L - 1) + 1$,
 but can argue that effective width is 2^j (same as Haar L_j)
LA(8) Equivalent Wavelet & Scaling Filters

\{h_1\} \quad L = 8
\{h_{2,1}\} \quad L_2 = 22
\{h_{3,1}\} \quad L_3 = 50
\{h_{4,1}\} \quad L_4 = 106
\{g_1\} \quad L = 8
\{g_{2,1}\} \quad L_2 = 22
\{g_{3,1}\} \quad L_3 = 50
\{g_{4,1}\} \quad L_4 = 106
Maximal Overlap Discrete Wavelet Transform

• abbreviation is MODWT (pronounced ‘mod WT’)
• transforms very similar to the MODWT have been studied in the literature under the following names:
 – undecimated DWT (or nondecimated DWT)
 – stationary DWT
 – translation invariant DWT
 – time invariant DWT
 – redundant DWT
• also related to notions of ‘wavelet frames’ and ‘cycle spinning’
• basic idea: use values removed from DWT by downsampling
Quick Comparison of the MODWT to the DWT

- unlike the DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- unlike the DWT, MODWT is defined naturally for all samples sizes (i.e., N need not be a multiple of a power of two)
- similar to the DWT, can form multiresolution analyses (MRAs) using MODWT with certain additional desirable features; e.g., unlike the DWT, MODWT-based MRA has details and smooths that shift along with X (if X has detail \mathcal{D}_j, then \mathcal{T}^mX has detail $\mathcal{T}^m\mathcal{D}_j$, where \mathcal{T}^m circularly shifts X by m units)
- similar to the DWT, an analysis of variance (ANOVA) can be based on MODWT wavelet coefficients
- unlike the DWT, MODWT discrete wavelet power spectrum same for X and its circular shifts \mathcal{T}^mX
Definition of MODWT Coefficients: I

- define MODWT filters \(\{ \tilde{h}_{j,l} \} \) and \(\{ \tilde{g}_{j,l} \} \) by renormalizing the DWT filters:
 \[
 \tilde{h}_{j,l} = h_{j,l}/2^j/2 \quad \text{and} \quad \tilde{g}_{j,l} = g_{j,l}/2^j/2
 \]

- level \(j \) MODWT wavelet and scaling coefficients are defined to be output obtaining by filtering \(X \) with \(\{ \tilde{h}_{j,l} \} \) and \(\{ \tilde{g}_{j,l} \} \):
 \[
 X \rightarrow \{ \tilde{h}_{j,l} \} \rightarrow \tilde{W}_j \quad \text{and} \quad X \rightarrow \{ \tilde{g}_{j,l} \} \rightarrow \tilde{V}_j
 \]

- compare the above to its DWT equivalent:
 \[
 X \rightarrow \{ h_{j,l} \} \downarrow 2^j \rightarrow W_j \quad \text{and} \quad X \rightarrow \{ g_{j,l} \} \downarrow 2^j \rightarrow V_j
 \]

- level \(J_0 \) MODWT consists of \(J_0 + 1 \) vectors, namely,
 \[
 \tilde{W}_1, \tilde{W}_2, \ldots, \tilde{W}_{J_0} \quad \text{and} \quad \tilde{V}_{J_0},
 \]
each of which has length \(N \)
Definition of MODWT Coefficients: II

- MODWT of level J_0 has $(J_0 + 1)N$ coefficients, whereas DWT has N coefficients for any given J_0
- whereas DWT of level J_0 requires N to be integer multiple of 2^{J_0}, MODWT of level J_0 is well-defined for any sample size N
- when N is divisible by 2^{J_0}, we can write

$$W_{j,t} = \sum_{l=0}^{L_j-1} h_{j,l} X_{2^j(t+1)-1-l \mod N} \quad \text{and} \quad \tilde{W}_{j,t} = \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l \mod N},$$

and we have the relationship

$$W_{j,t} = 2^{j/2} \tilde{W}_{j,2^j(t+1)-1} \quad \text{and, likewise,} \quad V_{J_0,t} = 2^{J_0/2} \tilde{V}_{J_0,2^{J_0}(t+1)-1}$$

(here $\tilde{W}_{j,t}$ & $\tilde{V}_{J_0,t}$ denote the tth elements of \tilde{W}_j & \tilde{V}_{J_0})
Properties of the MODWT

• as was true with the DWT, we can use the MODWT to obtain
 – a scale-based additive decomposition (MRA):
 \[X = \sum_{j=1}^{J_0} \tilde{D}_j + \tilde{S}_{J_0} \]
 – a scale-based energy decomposition (basis for ANOVA):
 \[\|X\|^2 = \sum_{j=1}^{J_0} \|\tilde{W}_j\|^2 + \|\tilde{V}_{J_0}\|^2 \]
• in addition, the MODWT can be computed efficiently via a pyramid algorithm
Example of $J_0 = 4$ LA(8) MODWT

- oxygen isotope records X from Antarctic ice core

\[T^{-45} \tilde{V}_4 \]
\[T^{-53} \tilde{W}_4 \]
\[T^{-25} \tilde{W}_3 \]
\[T^{-11} \tilde{W}_2 \]
\[T^{-4} \tilde{W}_1 \]

X
Relationship Between MODWT and DWT

- bottom plot shows W_4 from DWT after circular shift \mathcal{T}^{-3} to align coefficients properly in time
- top plot shows \tilde{W}_4 from MODWT and subsamples that, upon rescaling, yield W_4 via $W_4,t = 4\tilde{W}_{4,16(t+1)} - 1$
Example of $J_0 = 4$ LA(8) MODWT MRA

- oxygen isotope records X from Antarctic ice core
Example of Variance Decomposition

- decomposition of sample variance from MODWT

\[
\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \sum_{j=1}^{4} \frac{1}{N} \|\tilde{W}_j\|^2 + \frac{1}{N} \|\tilde{V}_4\|^2 - \bar{X}^2
\]

- LA(8)-based example for oxygen isotope records
 - 0.5 year changes: \(\frac{1}{N} \|\tilde{W}_1\|^2 \doteq 0.145 \ (\doteq 4.5\% \text{ of } \hat{\sigma}_X^2) \)
 - 1.0 years changes: \(\frac{1}{N} \|\tilde{W}_2\|^2 \doteq 0.500 \ (\doteq 15.6\%) \)
 - 2.0 years changes: \(\frac{1}{N} \|\tilde{W}_3\|^2 \doteq 0.751 \ (\doteq 23.4\%) \)
 - 4.0 years changes: \(\frac{1}{N} \|\tilde{W}_4\|^2 \doteq 0.839 \ (\doteq 26.2\%) \)
 - 8.0 years averages: \(\frac{1}{N} \|\tilde{V}_4\|^2 - \bar{X}^2 \doteq 0.969 \ (\doteq 30.2\%) \)
 - sample variance: \(\hat{\sigma}_X^2 \doteq 3.204 \)
Summary of Key Points about the DWT: I

- The DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^T \mathcal{W} = I_N$

- Construction of \mathcal{W} starts with a wavelet filter $\{h_l\}$ of even length L that by definition
 1. Sums to zero; i.e., $\sum_l h_l = 0$;
 2. Has unit energy; i.e., $\sum_l h_l^2 = 1$; and
 3. Is orthogonal to its even shifts; i.e., $\sum_l h_l h_{l+2n} = 0$

- 2 and 3 together called orthonormality property

- Wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$

- Scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$

- While $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter
Summary of Key Points about the DWT: II

• \{h_l\} and \{g_l\} work in tandem to split time series \(\mathbf{X} \) into
 – wavelet coefficients \(\mathbf{W}_1 \) (related to changes in averages on a unit scale) and
 – scaling coefficients \(\mathbf{V}_1 \) (related to averages on a scale of 2)
• \{h_l\} and \{g_l\} are then applied to \(\mathbf{V}_1 \), yielding
 – wavelet coefficients \(\mathbf{W}_2 \) (related to changes in averages on a scale of 2) and
 – scaling coefficients \(\mathbf{V}_2 \) (related to averages on a scale of 4)
• continuing beyond these first 2 levels, scaling coefficients \(\mathbf{V}_{j-1} \) at level \(j - 1 \) are transformed into wavelet and scaling coefficients \(\mathbf{W}_j \) and \(\mathbf{V}_j \) of scales \(\tau_j = 2^{j-1} \) and \(\lambda_j = 2^j \)
Summary of Key Points about the DWT: III

- after J_0 repetitions, this ‘pyramid’ algorithm transforms time series X whose length N is an integer multiple of 2^{J_0} into DWT coefficients $W_1, W_2, \ldots, W_{J_0}$ and V_{J_0} (sizes of vectors are $N/2$, $N/4$, \ldots, $N/2^{J_0}$ and $N/2^{J_0}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- first decomposition is additive and is known as a multiresolution analysis (MRA), in which X is reexpressed as
 \[
 X = \sum_{j=1}^{J_0} D_j + S_{J_0},
 \]
 where D_j is a time series reflecting variations in X on scale τ_j, while S_{J_0} is a series reflecting its λ_{J_0} averages
Summary of Key Points about the DWT: IV

- second decomposition reexpresses the energy (squared norm) of \mathbf{X} on a scale by scale basis, i.e.,

$$
\| \mathbf{X} \|^2 = \sum_{j=1}^{J_0} \| \mathbf{W}_j \|^2 + \| \mathbf{V}_{J_0} \|^2,
$$

leading to an analysis of the sample variance of \mathbf{X}:

$$
\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2
$$

$$
= \frac{1}{N} \sum_{j=1}^{J_0} \| \mathbf{W}_j \|^2 + \frac{1}{N} \| \mathbf{V}_{J_0} \|^2 - \bar{X}^2
$$
Summary of Key Points about the MODWT

• similar to the DWT, the MODWT offers
 – a scale-based multiresolution analysis
 – a scale-based analysis of the sample variance
 – a pyramid algorithm for computing the transform efficiently

• unlike the DWT, the MODWT is
 – defined for all sample sizes (no ‘power of 2’ restrictions)
 – unaffected by circular shifts to \(X \) in that coefficients, details and smooths shift along with \(X \)
 – highly redundant in that a level \(J_0 \) transform consists of \((J_0 + 1)N \) values rather than just \(N \)

• MODWT can eliminate ‘alignment’ artifacts, but its redundancies are problematic for some uses