Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

e wavelets are analysis tools for time series and images (mostly)

e following work on continuous wavelet transform by Morlet and
co-workers in 1983, Daubechies, Mallat and others introduced
discrete wavelet transform (DW'T) in 1988

e begin with qualitative description of the DW'T
e discuss two key descriptive capabilities of the DW'T"

— multiresolution analysis (an additive decomposition)
— wavelet variance or spectrum (decomposition of sum of squares)

e look at how DW'T is formed based on a wavelet filter
e discuss maximal overlap DWT (MODWT)
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Qualitative Description of DWT: 1

elet X = (X, Xq,... ,XN_l]T be a vector of N time series
values (note: “T" denotes transpose; i.e., X is a column vector)

e assume initially N = 2/ for some positive integer J (will relax
this restriction later on)

e example of time series with N = 16 = 2%
X =] 0.2,—0.4, —0.6, —0.5, —0.8, —0.4, —0.9, 0.0,
—0.2, 0.1,-0.1, 0.1, 0.7, 0.9, 0.0, 03]"

X e

WMTSA: 57, 53 -2



Qualitative Description of DWT: 11

e DWT is a linear transform of X yielding N DW'T coefhicients
e notation: W = WX
— W is vector of DWT coefficients (jth component is W)

— W is N x N orthonormal transform matrix
o orthonormality says W/ W = Iy (N x N identity matrix)
o inverse of W is just its transpose, so WWL = Iy also

WMTSA: 57, 53 -3



Implications of Orthonormality

o let W]T. denote the jth row of W, where 7 =0,1,...,N —1
o let W; | denote [th element of W;,

- T T
e consider two rows, say, Wj o and Wi

e orthonormality says

= 1, when j=k
Wie, Wie) = Wi Wi = ’ : 7
( J ke) % TR {O, when j # k

— Wie, Whe) 1s inner product of jth & kth rows
< 7 k
— (Wje, Wije) = HVVJ-.H2 is squared norm (energy) for Wj,

WMTSA: 57, 42 -4



Example: the Haar DWT

e NV = 16 example of Haar DWT matrix W

W Sl M annnnnnnnnns
*“IL“"“'““"“"’ O wmangy T annnanas
arer Cenernnas () ermnnann, STaaen
e R U P
12 fawaw  eenanaan
ernnmnnnn Tanee 13 bt
4m1..mnum1.ILHF /| S TTTTITTTE
O R 5] E R

I
0 o5 10 15 0 o5 10 15
¢ t

e note that rows are orthogonal to each other (i.e., inner products
are zero)

N O Ot = W N —~ O

WMTSA: 57 -5



Haar DW'T Coefficients: 1

e obtain Haar DW'T coeflicients W by premultiplying X by W:
W = WX
e jth coeflicient W is inner product of jth row W]T. and X:
Wi=W;e, X)
e can interpret coefficients as difference of averages

e to see this, let

14
) == X;_; = ‘scale A" average

[=0
— note: X¢(1) = Xy = scale 1 ‘average’
—note: X y_1(N) = X = sample average

WMTSA: 58 -6



Haar DW'T Coefficients: 11

e consider form Wy = (Wye, X) takes in N = 16 example:

Wo.t ]l—‘ _ _
Wor X, sgresesemmmssns sum oc X (1) — Xo(1)
Xt LW%JJ_L

e similar interpretation for Wi,..., Wy _ = Wy = (Wre, X):
N_

W?,t —]l . _
W7’tXt ersmmnnsnnnnnns® Q) X15<1> — X14<1>
Xt LW#L

WMTSA: 58 -7



Haar DW'T Coefficients: 111

e now consider form of Wy = Wg = (Wg,, X):
2

JA%Y ﬂﬂm
We Xy = pamemmmmmeenes qum ox X3(2) — X1(2)
Xt LW#L

Wiy
4

e similar interpretation for Wy N
2

WMTSA: 58 [-8



Haar DW'T Coefficients: 1V

o Wiy = Wi = (Wi9e, X) takes the following form:
1

War qp e -

We Xy =" papmmmmmeees sum oc X7(4) — X3(4)
Xt Lmﬂ;jgjh

e continuing in this manner, come to Wy _o = (W) 4e, X):

Tarrney
Wiar wiiiiii _

Wig s Xy =ttt qum oc X 15(8) — X7(8)
Xt me‘ffji

WMTSA: 58 -9




Haar DW'T Coefficients: V

e final coeflicient Wjy_1 = W75 has a different interpretation:

W15,t L

W15,tXt ST Pt el V04 OCY15(16>
X, imﬂvfﬁﬁh

e structure of rows in YV

— first % rows yleld W;'s o< changes on scale 1
— next % rows yield W;’s oc changes on scale 2
— next % rows yield Wj’s o< changes on scale 4

— next to last row yields W o< change on scale %

— last row yields W; oc average on scale N

WMTSA: 58-59 [-10



Structure of DW'T Matrices

° % wavelet coefficients for scale T = 2J _1, 9=1,...,J

—Tj = 271 {5 standardized scale
— T, A is physical scale, where A is sampling interval

e cach W, localized in time: as scale T, localization |
e rows of W for given scale 7;:

— circularly shifted with respect to each other
— shift between adjacent rows is 27; = 2/

e similar structure for DW'T's other than the Haar
e differences of averages common theme for DW'T's

— simple differencing replaced by higher order differences
— simple averages replaced by weighted averages

WMTSA: 59-61 11



Two Basic Decompositions Derivable from DW'T

e additive decomposition

— reexpresses X as the sum of J + 1 new time series, each of
which is associated with a particular scale 7;

— called multiresolution analysis (MRA)
e energy decomposition

— yields analysis of variance across J scales

— called wavelet spectrum or wavelet variance

WMTSA: 61-66 [-12



Partitioning of DWT Coefficient Vector W

e decompositions are based on partitioning of W and W

e partition W into subvectors associated with scale:

e W, has N/ 2J elements (scale T = 2= 1 changes)
: J N _N N __oJ _
note: } 5y =5+7+ - +2+1=2"-1=N—-1
e V ;has 1 element, which is equal to v/ N - X (scale N average)

WMTSA: 61-62 13



Example of Partitioning of W

e consider time series X of length N = 16 & its Haar DWT W

W, W, W; W, V,y

WMTSA: 62, 42 114



Partitioning of DWT Matrix VW

e partition YV commensurate with partitioning of W:

o W is QMJ x N matrix (related to scale 7; = 2= changes)
1

e V7is 1 x N row vector (each element is \/_N>

WMTSA: 63 15



Example of Partitioning of W

e NV = 16 example of Haar DWT matrix W

01 IRCTTCTECTERLEry o) L L E———
L fon;lensnmnnnnnn T
] TS 1 NI
3lresesTunnunnas 1] rmnnannanna
L S ) NP
5m-%-m 13 fesnnnnna R0RE Wg
6 [rnnennnnnnnnTon 4 bttt ),
e ] L LR V)
0 5 10 15 0 5 10 15
t t
e two properties: (a) W; = W;X and (b) WjoT =1y

2]

WMTSA: 57, 64 I-16



DWT Analysis and Synthesis Equations

e recall the DW'T analysis equation W = WX

o WIW = Iy because W is an orthonormal transform
o implies that WIW = WIWX = X

e yields DWT synthesis equation:

W,
Wy
X = WIw = [Wf,WQT,...,W}F,Vﬂ ;

W
VY

J

=) WW;+V;V,
1=1

WMTSA: 63 17




Multiresolution Analysis: 1

e synthesis equation leads to additive decomposition:

eD; = Wij is portion of synthesis due to scale 7;
e D; is vector of length N and is called jth ‘detail

e 55 = V?;V 7= X1, where 1 is a vector containing N ones
(later on we will call this the ‘smooth’ of Jth order)

e additive decomposition called multiresolution analysis (MRA)

WMTSA: 64-65 [-18



Multiresolution Analysis: 11

e example of MRA for time series of length N = 16

Sy
pagnenry
IERRRR! D,

et Ds
ﬂﬂ"“"“ﬂj,TDQ

i_r"'ﬁ!lTi-T"-Ji- Dl

0O o5 10 15

e adding values for, e.g.. t =14 in Dy, ..., Dy & S4 yields X4

WMTSA: 64 [-19



Energy Preservation Property of DWT Coefficients

e define ‘energy’ in X as its squared norm:

X" = (X, X) = X' X = Z X
t=0
e cnergy of X is preserved in its DW'T coefficients W because
IW[?=W!w = WX)!wx
= X' wiwx
= XTTyX = XTX = ||X]|?

e note: same argument holds for any orthonormal transform

WMTSA: 43 [-20



Wavelet Spectrum (Variance Decomposition): I

e let X denote sample mean of X;'s: X = ~ Zi\ial X

e let 6%( denote sample variance of X¢'s:

| N—1 ) | N—1
A~ -~ 2 —_—
t=0 t=0
— — | X||© —
N |
2
— —||[W]|]* -
SIW]
- J
o since [W/[2 = zjzl W, -|!2 IV and V7 -

2

WMTSA: 62 [-21
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Wavelet Spectrum (Variance Decomposition): II

e define discrete wavelet power spectrum:
PX(T]') = NHW]-HZ, where 7; = 271

e gives us a scale-based decomposition of the sample variance:

J
.9
oy = Z Px (1)
j=1

e in addition, each W+ in W associated with a portion of X;
i.e. WZt offers scale- & time- based decomposition of & X

WMTSA: 62 [-22



Wavelet Spectrum (Variance Decomposition): III

e wavelet spectra for time series X and Y of length NV = 16,

each with zero sample mean and same sample variance

20 0.3
281 0 X { { I | J l Pt : J l
—2 | RN
20 0.3[
Y 0 . l T I l i ‘ { i J { |
—2 L | | | 0.0 L1
0 5} 10 15 1 2 4 8

[-23
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Defining the Discrete Wavelet Transform (DWT)

e can formulate DW'T via elegant ‘pyramid’ algorithm
e defines VV for non-Haar wavelets (consistent with Haar)
e computes W = WX using O(N) multiplications

— ‘brute force’ method uses O(N?) multiplications

— faster than celebrated algorithm for fast Fourier transform!
(this uses O(N - logy(N)) multiplications)

e can formulate algorithm using linear filters or matrices
(two approaches are complementary)

e need to review ideas from theory of linear (time-invariant) fil-
ters, which requires some Fourier theory

WMTSA: 68 [-24



Fourier Theory for Sequences: 1

o let {as} denote a real-valued sequence such that >, a7 < oo
e discrete Fourier transform (DFT) of {ay}:
Ay =) ae !
t

o f called frequency: e 7/t = cos(27 ft) — i sin(27 ft)

o A(f) defined for all f, but 0 < f < 1/2 is of main interest:
— A(+) periodic with unit period, i.e., A(f + 1) = A(f), all f
— A(—f) = A*(f), complex conjugate of A(f)

— need only know A(f) for 0 < f < 1/2 to know it for all f

e ‘low frequencies’ are those in lower range of 0,1 /2]

e ‘high frequencies’ are those in upper range of [0, 1/2]

WMTSA: 21-22 [-25



Fourier Theory for Sequences: 11

e can recover (synthesize) {a;} from its DF'T:

1/2 |
/ A(f)e?m It df — ap

~1/2
left-hand side called inverse DFT of A()

e {a;} and A(-) are two representations for one ‘thingy’

o large |A(f)| says €2™/T important in synthesizing {as}; i.e.,

{a;} resembles some combination of cos(27 ft) and sin(27 ft)

WMTSA: 22-23 [-26



Convolution of Sequences

e given two sequences {az} and {b:}, define their convolution by

0.0

ct = Z aybt—q

U=——00

e DFT of {¢t} has a simple form, namely,

0

S e 2= A(F)B(S)

t=—00

where A(-) is the DFT of {a+}, and B(-) is the DFT of {b:};
i.e., just multiply two DFTs together!!!

WMTSA: 24 27



Basic Concepts of Filtering

e convolution & linear time-invariant filtering are same concepts:

— {bt} is input to filter
— {az} represents the filter
— {¢t} is filter output

e flow diagram for filtering: {bs} —

{at}

— {ct)

e {a;} is called impulse response sequence for filter

o its DFT A(-) is called transfer function
e in general A(-) is complex-valued, so write A(f) = |A(f) ]eie(f )

— |A(f)| defines gain function

— A(f) = |A(f)|? defines squared gain function
— 0(-) called phase function (well-defined at f if |A(f)| > 0)

WMTSA: 25 [-28



Example of a Low-Pass Filter

(1 4
s\ o 2
Ocon81ert—1—6(5) +2—O( ) ag =471 t=-1lorl
\O otherwise
] 1o} [ {as}| {e}
Oﬂf!TTTTITTTTH& -H'FTTTHTTTT'H!-
TS10 4 S-84 0 4 85-8.40 4 3
) t ) ¢ ) t
2l B() Al A(-)B(-)
1H | i\
0 \. . /f//l . L \\.*—nq . |
0.0 0.50.0 0.50.0 0.5
f f f

e note: A(-) & B(-) both real-valued (A(-) = its gain function)

WMTSA: 25-26
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Example of a High-Pass Filter

L, t=0
e consider same {b;}, but now let a; = —%, t=—1orl
0, otherwise
i I {0} [ {ak| {e)
0 JJ'HTTTT TTTTH& MHTTT"HH JHT-_FLF-TLﬁL
B R
2_\ B(-) | A() | A(+)B(:)
1F u L
0.0 0.50.0 0.50.0 0.5
f f f

e note: {a;} resembles some wavelet filters we'll see later

WMTSA: 26-27 [-30



The Wavelet Filter: 1

e precise definition of DWT begins with notion of wavelet filter
elet {h;:1=0,...,L — 1} be a real-valued filter of width L

— both Ag and hj_q1 must be nonzero
— for convenience, will define hy =0forl < Oand [ > L

— L must be even (2,4,6,8,...) for technical reasons (hence
ruling out {a+} on the previous overhead)

WMTSA: 26-27 [-31



The Wavelet Filter: 11

o {h;} called a wavelet filter if it has these 3 properties

1. summation to zero:

2. unit energy:
L—1
> hi=1
[=0
3. orthogonality to even shifts: for all nonzero integers n, have

L—1
> hhyio, =0
[=0

e 2 and 3 together are called the orthonormality property

WMTSA: 69 [-32



The Wavelet Filter: 111

e summation to zero and unit energy relatively easy to achieve
e orthogonality to even shifts is key property & hardest to satisfy

e define transfer and squared gain functions for wavelet filter:
L—1

H(f)=> e ™ and H(f) = |H(f)

[=0

e orthonormality property is equivalent to
H(f)+H(f+3)=2 forall f

(an elegant — but not obvious! — result)

WMTSA: 69-70 [-33



Haar Wavelet Filter

e simplest wavelet filter is Haar (L = 2): hg = ﬁ & hy = _ﬁ

e note that hg + h; = 0 and h% + h% = 1, as required

e orthogonality to even shitts also readily apparent

e
hihy_g —=essssssssssssss g = ()

WMTSA: 69-70 [-34



D(4) Wavelet Filter: 1

e next simplest wavelet filter is D(4), for which L = 4:

_1—4/3 _ =3+4/3 3443 _ —1-/3
="/ M=—Tpn =Ty B=Ip

— ‘D’ stands for Daubechies

— L = 4 width member of her ‘extremal phase’ wavelets

e computations show » , h; =0& ) hlz = 1, as required

e orthogonality to even shifts apparent except for £2 case:

L N —
S p—

WMTSA: 59 [-35



D(4) Wavelet Filter: 11

e (): what is rationale for D(4) filter?

e consider Xt(l) = Xt — Xp_1 = agXt + a1 X1,
where {ag = 1, a1 = —1} defines 1st difference filter:
1
(X — {113 — {1}

— Haar wavelet filter is normalized 1st difference filter

(1)
t

is difference between two ‘1 point averages’

e consider filter ‘cascade’ with two 1st difference filters:
2

0} — {1, -1 — {1, -1} — ()

e by considering convolution of {1, —1} with itself, can reexpress
the above using a single ‘equivalent” (2nd difference) filter:

{Xy} — {1, -2,1} — {Xt(Q)}

WMTSA: 60-61 [-36



D(4) Wavelet Filter: 111

e renormalizing and shifting 2nd difference filter yields high-pass
filter considered earlier:

ar = <

y

\

DO —

0,

4

t=20
t=—1 or 1
otherwise

e consider ‘2 point weighted average’ followed by 2nd difference:

{ Xt} —

14, 0}

—

{1,-2,1}

— Yt}

e convolution of {a, b} and {1, —2, 1} yields an equivalent filter,
which is how the D(4) wavelet filter arises:

{ Xt} —

WMTSA: 60-61

{ho, h1, ho, ha}

[-37

— Yt



D(4) Wavelet Filter: IV

e using conditions

1. summation to zero: hg+ h; + ho +hy =0
2. unit energy: h% + h% + h% + hE =
3. orthogonality to even shifts: hgho + h1hs =0

can solve for feasible values of a and b

e one solution is a = T—\/Qg = (0.48 and b = _11;\;5/3 = 0.13

(other solutions yield essentially the same filter)

e interpret D(4) filtered output as changes in weighted averages

— ‘change’ now measured by 2nd difference (1st for Haar)
— average is now 2 point weighted average (1 point for Haar)
— can argue that effective scale of weighted average is one

WMTSA: 60-61 [-38



Another Popular Daubechies Wavelet Filter

o LA(8) wavelet filter (‘LA™ stands for ‘least asymmetric’)

hlhl_g *‘"TLT“*““* sum = 0
hl—Q NA—A—lJ—l—.JW

hihj_y ====twsamsssszes qq) — ()
hl—4 WA—A—J—I.JM

hihj_g =====wessmmmmzzs gy = ()
I e

e resembles three-point high-pass filter {—%, %, —%} (somewhat)

e can interpret this filter as cascade consisting of

— 4th difference filter
— weighted average filter of width 4, but effective width 1

e filter output can be interpreted as changes in weighted averages

WMTSA: 108-109 -39



First Level Wavelet Coeflicients: 1

e given wavelet filter {h;} of width L & time series of length
N =2/ . obtain first level wavelet coefficients as follows

e circularly filter X with wavelet filter to yield output

L1 L1
> WX = MXimedN, t=0,...,N—1;
1=0 =0

i.e., if t — [ does not satisty 0 <t —[1 < N — 1, interpret X;_;
as Xt | mod N; €8, X—1=Xny_jand X_9 =Xy 9
e take every other value of filter output to define
L—1

_ N .
Wl,t = ZthQH—l—lmode t:O,...,7— 1;
[=0
{W1 ¢} formed by downsampling filter output by a factor of 2

WMTSA: 70 [-40



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy

X—l mod 16

ik My X mod 16 "we remmmmremess D =

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy

W X1 i mod 16 = mmrmresssnnen 3 =

L
X117 mod 16 fjjiﬁw

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy

X2—l mod 16

I hy Xo i mod 16" wmmmresssnnen 3 = ¥

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy

X371 mod 16

ik i X5l mod 16 = gmm=mmmmmmreee > = ™%

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy

X4~ mod 16

i Xyl mod 16 " mmmmmmmmenn Y = M

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy

X5-1mod 16

t X5 1 mod 16 ") =mmmmmmmrme Y = M

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy ﬂJT‘"‘"‘"“
h7 X6-1 mod 16W D= T
X6-1mod 16 WJ—U%JT‘

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy

X?—l mod 16

ik ho X7_imod 16 = s memmmrememee D = (Mt

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hO N ——
l hOX Z — bl " b
7 X8—1 mod 16W [ ]
X8~ mod 16 TWJLU%L

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy

h? X9—1 mod [erelennennnnes S = J,"i'!i’ﬂ

L
X9 mod 16 JTW”J%

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

T—

Z _ l”"!"’lT'

h? X10-1 mod 16
X 10— mod 16

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

T—

" T L.

TTthn—z mod 16 D= T
#FT'

X11-1 mod 16 R

WMTSA: 70 41
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First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

T—

Z — l!!i_ﬂﬁlh!i

h? X12-1 mod 16
X12—l mod 16

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

hy

X13-1 mod 16

I hi X131 mod 16w =rremmrrsses ) = l”a-ﬂ’f-'a-

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

T—

S Z: l!!i_ﬂﬁlh!“f

h? X14—1 mod 16
X14-1mod 16

WMTSA: 70 41



First Level Wavelet Coefficients: 11

e example of formation of {W7 ;}

T—

I I Z: l”"'ﬂ’lh-“”

h? X15-1 mod 16
X15—1 mod 16

WMTSA: 70 41



First Level Wavelet Coeflicients: 11

e example of formation of {W7 ;}

h? yo! smssssssssss Z: l”"'ﬂ’lh-“”

h? X151 mod 16
X15—1 mod 16 12

Wy, Setint

o {Wj s} are unit scale wavelet coefficients — these are the ele-

ments of W7 and first N/2 elements of W = WX
e also have W1 = WX, with W, being first N/2 rows of W
e hence elements of Wy dictated by wavelet filter

WMTSA: 70 41



Upper Half VW, of Haar DWT Matrix W

e consider Haar wavelet filter (L = 2): hg = ﬁ & hy = —é
e when NV = 16, W looks like
hihgp O 000 OO0 O0OO0O0O0OO0O0 O]
0 0 Ayhg O 0O 0 OO O 0O O 0 0 0 O
0 00 0 hAthp OO O OO0 O0O0 0 0 O
00 0 0 0 O0AthygOOOOOO0O0O0
000 000 0 0hhgOOOO0OO0O0
00 0 000 O0O0O0 0AhAhOOOO
0000 O0O0O0O0O0O0O0 0 A hy OO
000000000000 0 0 ~h h

e rows obviously orthogonal to each other

[-42




Upper Half W, of D(4) DWT Matrix W

e when L =4 & N = 16, W looks like

‘hihg O 000 0O 0 0 0
hy ho hy hg 0 0 0 0 0 O
0 hg ho hy hg O 0 0 O
0 0 O hg ho hy hg O O
0 0 O hg ho hy hg O 0
0 0 0 0 O hg ho hy hg O 0 0O
00 0 0 0 0 0 hAg ho hy hg O O
00 00000000 0 0 hghghyhy

e rows orthogonal because hgho + hihy =0
e note: (Wye, X) vields Wy = h1 Xg + ho X1 + h3X14 + ho X5

e unlike other coefficients from above, this ‘boundary’ coefficient
depends on circular treatment of X (a curse, not a feature!)

0
0
0
0

o O O O O
o O O O O
o O O O

o O O
o O O

WMTSA: 81 [-43



Orthonormality of Upper Half of DWT Matrix: I

e can show that, for all L and even IV,

L—1

Wi =Y MXoti1fmod N+ OF, equivalently, Wi = WX
[=0

forms half an orthonormal transform: i.e.,

W1W1T = ]%

e (): how can we construct the other half of W7

WMTSA: 72 [-44



The Scaling Filter: 1

e create scaling (or ‘father wavelet’) filter {g;} by reversing {h;}
and then changing sign of coefficients with even indices

{h} {h;} reversed {g;}
Haar Tl lT 1
D(4) _ﬂi LT“ 1l
LA<8) Miji.! A.LTF“ ﬂTITT.,

o 2 filters related by g; = (—1 )thL 11 & hp=(— )QL 1—1

WMTSA: 75 [-45



The Scaling Filter: 11

e {g;} is ‘quadrature mirror’ filter corresponding to {h;}
e properties 2 and 3 of {h;} are shared by {g;}:

2. unit energy:
L—1
2
>0 =1
[=0

3. orthogonality to even shifts: for all nonzero integers n, have

L—1
Z 9191+2n = 0
[=0

e scaling & wavelet filters both satisty orthonormality property

WMTSA: 76 [-46



First Level Scaling Coefficients: I

e orthonormality property of {h;} is all that is needed to prove
W is half of an orthonormal transform (never used ) ; h; = 0)

e going back and replacing h; with g; everywhere yields another
half of an orthonormal transform

e circularly filter X using {g;} and downsample to define
L—1

_ N
Vl,t: E :ng2t+1—lmode t:O,...,?—l
[=0

o {V1.¢} called scaling coefficients for level j = 1
e place these N/2 coefficients in vector called V4

WMTSA: 77 47



First Level Scaling Coeflicients: III

e define V in a manner analogous to W; so that Vi = V1 X

e when L =4 and N = 16, V) looks like
91900 0000 0O0O0

0
939291900 00 0 0 0 0
00939291900 0 0 0 0

00 0939291900 0 0

o O O O O
o O O O O

00 0 939291 90 0
00000 0939291900 0
0

00 0 0 0 0 g392 91 90
00 000000000 04939 919

o O O O
o O O
o O O

e )1 obeys same orthonormality property as Wy:

similar to VV1W1T = Iy, have V1V1T =1y
2 2

WMTSA: 77 [-48



Orthonormality of V; and Wj: 1

e (): how does V; help us?
e A: rows of V; and W are pairwise orthogonal!

e readily apparent in Haar case:

g1 Leseeessssseen

gihy JTW sum = 0
—

WMTSA: 77-78 [-49



Orthonormality of V; and Wj: 11

e let’s check that orthogonality holds for D(4) case also:

gihy_o =etssssssssssss gum = ()

S
" I gihy TL_ sum = 0
-



Orthonormality of V; and W;j: 111

e implies that

_ | WM
P1= [Vl ]
1s an N x N orthonormal matrix since
PPl = Wl] WiV
W
vl [y Oy _
oowl ppf Oy Iy N

o if N =2 (not of too much interest!), in fact Py = W

e if N > 2 7P;is an intermediate step: V; spans same subspace
as lower half of WW and will be further manipulated



Interpretation of Scaling Coefficients: I

e consider Haar scaling filter (L = 2): gg = g1 = \/L

2
e when N = 16, matrix Vi looks like

91900 000000000000 0O0]
0 0gigg0000000O0O0GO0O0 O
0000g g000000O00O0O0O0
000000g gO0OO00D0O00O0DO0
0000000O0ggOO0O00O000
0000000O0O0TO0ggO0O0O00
0000000O0DO0GO0OOGgGGg?OO0
0000000000000 0g g

e since V1 = V1 X, each V] 4+ 1s proportional to a 2 point average:
Vio=q1X0+ g0 X1 = \/QXO + \/2X1 o X1(2) and so forth

[-52



Interpretation of Scaling Coefficients: 11

e reconsider shapes of {g;} seen so far:

il

Haar

o for L > 2, can regard V7 ; as proportional to weighted average

e can argue that effective width of {g;} is 2 in each case; thus
scale associated with Vi ¢ is 2, whereas scale is 1 for W7



Frequency Domain Properties of Scaling Filter

e define transfer and squared gain functions for {g;}

L—1
G(f) = ge ™ & G(f) = |G(f)I

[=0
e can argue that G(f) = H(f + %), which, combined with
H(f)+H(f +3) =2

yields
H(f)+G(f) =2

WMTSA: 76 [-54



Frequency Domain Properties of {h;} and {g;}

e since Wy & V7 contain output from filters, consider their
squared gain functions, recalling that H(f) + G(f) = 2

e example: H(-) and G(-) for Haar & D(4) filters

2
Haar 1
O_ |
2_
D4) 1
ol |

0001 02 03 04050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]

WMTSA: 73 [-55



Frequency Domain Properties of {h;} and {g;}

e since Wy & V7 contain output from filters, consider their
squared gain functions, recalling that H(f) + G(f) = 2

e example: H(-) and G(-) for Haar & LA(8) filters

2
Haar 1
0 _ |
2 L
LA(8) 1
0 _ |

0001 02 03 04050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]

WMTSA: 73 [-55



Example of Decomposing X into W and V: 1

e oxygen isotope records X from Antarctic ice core

—62
—69 - Vi

) L L
3.5

oL _PTWHJTthJmW Wl |||“IHITII| leJlWlL“hWHW”‘WIH I‘H '\N]l

_35 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 J
—42

—49 X

5oL
1800 1850 1900 1950 2000

year




Example of Decomposing X into W; and Vq: 11

e oxygen isotope record series X has /N = 352 observations

e spacing between observations is A = (0.5 years

e used Haar DWT, obtaining 176 scaling and wavelet coefficients
e scaling coeflicients V1 related to averages on scale of 2A

e wavelet coefficients W related to changes on scale of A

e coefficients V1 ¢ and W7+ plotted against mid-point of years
associated with Xop and Xop11

e note: variability in wavelet coefficients increasing with time
(thought to be due to diffusion)

e data courtesy of Lars Karlof, Norwegian Polar Institute, Polar
Environmental Centre, Tromsg, Norway

[-57



Reconstructing X from W; and V;

e in matrix notation, form wavelet & scaling coeflicients via

Wi| |WX| | WM B
[W]_[WX]_[W]X_EX

e recall that PlT P1 = I because P is orthonormal
e since 731T P1X = X, premultiplying both sides by Pir yields

\%% \%%
1] - [WlT VlT} Vll

]_M€WQ+WHQ_X

oD = WlT W/ is the first level detail

oS = VlT V is the first level ‘smooth’
e X = D; 4 &7 in this notation

WMTSA: 80-81 [-58



Example of Synthesizing X from D; and &;

e Haar-based decomposition for oxygen isotope records X

—42

—49

—90
3.0

0

—3.9
—42

—49

—50

B S,
l l L L l J

B 4M"W”MW“MMWﬂ‘W”"M”"”WW"M”MMWNMNMW¢WMWW¢WM'WNM “%M D,
L L L L l L L L L l L L L L l L L L L J

- X
A A A A | A A | A A | A A A A J
1800 1850 1900 1950 2000

year
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First Level Variance Decomposition: 1

e recall that ‘energy’ in X is its squared norm HXH2

e because Py is orthonormal, have 771T Py = Iy and hence
IPIX[]" = (P1X) P X = X! P P X = X' X = ||X]|°
o can conclude that [|[X||? = [|[W1||? + ||[V1]|? because

PIX - [ va] and hence [|PX]2 = [[Wy ]2 + |V
e leads to a decomposition of the sample variance for X:
1 N—-1 ) | )
~D ~ 2 3
= — X —X) = —|X|F—-X

t=0

1 9 1 2 52
= WP VP =X
NH il +NH 1l

[-60



First Level Variance Decomposition: 11

e breaks up 6%( into two pieces:

1. %HWlHQ, attributable to changes in averages over scale 1

2. %HV1||2 — YQ, attributable to averages over scale 2

e Haar-based example for oxygen isotope records

— first piece: %HW1H2 = (0.295
— second piece: %HVlHZ ~ X7 = 2.909
— sample variance: (3'%( = 3.204

— changes on scale of A = 0.5 years account for 9% of 6%(
(standardized scale 1 corresponds to physical scale A)

[-61



Summary of First Level of Basic Algorithm

o transforms { Xy : t =0,..., N — 1} into 2 types of coefficients
o N/2 wavelet coefficients {W] 4} associated with:

— Wy, a vector consisting of first N/2 elements of W
— changes on scale 1 and nominal frequencnes 7 < fl] < %

— first level detail Dy
— Wi, an % X N matrix consisting of first g rows of W

o N/2 scaling coefficients {V] 4} associated with:

— V1, a vector of length N /2
— averages on scale 2 and nominal frequencies 0 < |f| < %
— first level smooth &y

— V1, an % x N matrix spanning same subspace as last N/2

rows of YW

WMTSA: 86-87 [-62



Constructing Remaining DWT Coefficients: 1

e have regarded time series X; as ‘one point’ averages X¢(1) over
scale of 1

e first level of basic algorithm transtorms X of length NV into

— N/2 wavelet coefficients W1 o< changes on a scale of 1

— N/2 scaling coefficients V| o< averages of Xy on a scale of 2

e in essence basic algorithm takes length IV series X related to
scale 1 averages and produces

— length N/2 series W associated with the same scale
— length N /2 series V7 related to averages on double the scale

WMTSA: Section 4.5 1-63



Constructing Remaining DW'T Coefficients: 11

e (): what if we now treat V1 in the same manner as X7
e basic algorithm will transform length N /2 series V1 into

— length N /4 series Wy associated with the same scale (2)

— length N/4 series Vo related to averages on twice the scale
e by definition, W9 contains the level 2 wavelet coefficients
e (): what if we treat Vo in the same way?”
e basic algorithm will transform length N/4 series Vo into

— length N/8 series W3 associated with the same scale (4)

— length N/8 series V3 related to averages on twice the scale

e by definition, W3 contains the level 3 wavelet coefficients

WMTSA: Sections 4.5 and 4.6 1-64



Constructing Remaining DW'T Coeflicients: III

e continuing in this manner defines remaining subvectors of W

(recall that W = WX is the vector of DW'T coefficients)

e at each level j, outputs W and V; from the basic algorithm
are each half the length of the input V,;_;

e length of V; given by N/Zj
o since N = 27 , length of V 7is 1, at which point we must stop

e J applications of the basic algorithm defines the remaining
subvectors Wy, ..., W 7.V 7 of DWT coefficient vector W

e overall scheme 1s known as the ‘pyramid’ algorithm

WMTSA: Section 4.6, 100-101 [-65



Scales Associated with DW'T Coefficients

o jth level of algorithm transforms scale 2/ ~! averages into
— differences of averages on scale 2771 i.e., wavelet coefficients
Wi
— averages on scale 2 X 21— =9J , 1.e., scaling coefficients V;

° T = 2J=1 denotes scale associated with W

—for j=1,...,J, takes on values 1,2,4,..., N/4, N/2
°\; = 2] = 27; denotes scale associated with V

— takes on values 2,4,8,... , N/2, N

WMTSA: 85 [-66



Matrix Description of Pyramid Algorithm: I

o form % x l matrix [5; in same way as & N« N matrix Wy

27 " 9J—
e when I = 4 and N/2/~1 = 16, have

‘hihg O 0000 0 0
hy ho hy ho 0 0 0 0 0O
0 hg ho hy hg O 0 O
0 O O hg ho hy hg O
0 O hg ho hy hg O 0O O
0 0 0 0 hg hy hy hg O 0 O

0 00 0 0 0 hAg ho hy hg O 0O
00 0 0 0 0 0 0 hzhy hy hy

o O O O
o O OO
o O O O
o O O O

o O O O O O

o O o O
o O O O

0
0
0
I 0

e matrix gets us jth level wavelet coefficients via W; = 5,V ;_4

WMTSA: 94 [-67



Matrix Description of Pyramid Algorithm: II

o form & x N matrix A in same way as % X N matrix Vy

27 7 271
e when I = 4 and N/2/~1 = 16, have

91900 00000 O0O0O0O0O0 0 ¢3¢
3691900 00000000000
0 0g3g291900 0 0 000000 O
A — 10000992919 00000000
77100 0000939291900 00 0 0 0
00000O0O0O0GgGgeEggoO00oO0
00000O0O0O0O0O0Ggggg 00
00 0000000O0GO 0O0g3gaqa g

e matrix gets us jth level scaling coefficients via V; = A;V,;_4

WMTSA: 94 [-68



Matrix Description of Pyramid Algorithm: III

e if we define Vg = X and let 7 = 1, then
W, =5;V,;_1 reduces to Wi =B51Vy=5,X=WX
because B has the same definition as W,
e likewise, when 3 =1,
V,;=A;V;_1 reducesto Vi = A1 Vy) = A X =V X

because A; has the same definition as V

WMTSA: 94 [-69



Formation of Submatrices of VV: 1

e using V; = A;V,_q repeatedly and Vi = A1 X, can write
W] — BjVj—l
— B]’Aj_lvj'_g
= BjA;_1A;_9V;_3
= B'Aj 1./4]‘ o~ A1 X = W;X,
where W, 1s N % N submatrix of W responsible for W

e likewise, can get 1 x N submatrix V; responsible for V ;
Vj = AV
= AJAT1V =2
= AjA-1A; 2V -3
= A;jA; Ao - AIX=V;X
e V7 is the last row of W, & all its elements are equal to 1/1/N

WMTSA: 94 I-70



Formation of Submatrices of VV: 11

e have now constructed all of DW'T' matrix:

Wi B

Wo By Ay

Wy B3 A A

Wiy Bi A3 A A4

W=1: | = :

W, BiA;_1--- Ay
W BjAj1--- A
Vil [AJA-1 AL

WMTSA: 94 71



Examples of VV and its Partitioning: 1

e N = 16 case for Haar DW'T matrix W

()W S tennnnnnnnnns
| B
A ETTESRETETT CE TR 1] CEECTECR RO 2
B N e L T

Wi S b I LI
5 [ R F | R— R
S O et AV
e L L V)
0 5 10 15 0 5 10 15

t t



Examples of /V and its Partitioning: 11

e N = 16 case for D(4) DWT matrix W

o IFSLINRRSR 1) SRR SR A€
] PRI ENPRRREE | f P L -
Wi ) PPRPRSPRS S 1) ) IS —L L
5 PRSP SR  § L L P — Ws
T A
g o e L R
0 5 1015 0 5 10 15
t t

e note: elements of last row equal to 1/1/N = 1/4, as claimed



e J repetitions of pyramid algorithm for X of length N = 2J
yields ‘complete’ DWT, i.e., W = WX

e can choose to stop at Jy < J repetitions, yielding a ‘partial’

DWT of level Jp:

OVJO 18

WMTSA: 104

VJO i

- X N, yleldmg

5y
By Aq

BiA; -

BJOAJ()—l o
‘AJOAJ()—l o

[-74

Partial DWT: 1

- Aq

- Aq

CAp

"W,

_VJO_

Coefﬁcients for scale A 5, = 270



Partial DWT: 11

e only requires N to be integer multiple of 2J0
e partial DW'T more common than complete DW'T
e choice of Jj is application dependent

e multiresolution analysis for partial DW'T":

S J, represents averages on scale A j = 270 (includes X)

e analysis of variance for partial DWT:
2 2
6% = NZHW | _HVJOH

WMTSA: 104 I-75



Example of Jy =4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core

—44.2 1

—53.8

1800 1850 1900 1950 2000
year

I-76



Example of Jy =4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core

—442
-—5353

W/MMJM«W

1800 1850 1900 1950 2000
year

I-76



Example of MRA from J) =4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core

: __1—1__r_f_w f—f_j__L_1_J__F_X_J__F_l_I_j__f_l_J__ S,
. \U“WL/L“WJM D,
] D,
e D,
] D
—44.2 [ |
—49.0 X
—953.8 i R L LA LA
1800 1850 1900 1950 2000

year

-7



Example of Variance Decomposition

e decomposition of sample variance from Jy = 4 partial DW'T

N-1

2

Ox
=0

v 2 (-

X)’

4

1 o 1 e
ZNHW]'H +NHV4H — X

j=1

2

e Haar-based example for oxygen isotope records

— 0.5 year changes:
— 1.0 years changes:
— 2.0 years changes:

— 4.0 years changes:

— 8.0 years averages: %HVKLHQ - X

— sample variance:

e s s =

I-

78

2

2
2
2
2

=0.295 (= 9.2% of 65
= 0.464 (= 14.5%)

= 0.652 (= 20.4%)

= 0.846 (= 26.4%)

= 0.947 (= 29.5%)

= 3.204



{fu}

{hoi}
{hs}
{haa}
{o}

{92.}
{931}
{941}

o L;= 27 is width of {hj,l} and {gj,l}

e note: convenient to define {hy ;} to be same as {h;}

Haar Equivalent Wavelet & Scaling Filters

I-79

L=2
Ly =
Ls =
Ly =16
I —
Ly=4
Ls =38
Ly =16



D(4) Equivalent Wavelet & Scaling Filters

-

(o} oo

{hg,l} ﬂ--ml.ﬂ'i;-g-"'-

{]’L 4, l} wﬂfﬂﬁfﬁﬁﬁuﬁ S —

{g} =

{ gl } ettt T e,

L=4
Ly = 10
Ly =22
Ly = 46
[ =

Ly =10
Ly =22
Ly = 46

e L; dictated by general formula L, = (27 —1)(L —1)+1,
but can argue that effective width is 2/ (same as Haar L)

WMTSA: 98
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LA (8) Equivalent Wavelet & Scaling Filters

{hi} %J;-' L =38
{hg’l} Wni.:J'P'“““ L2 — 22
{hs.} *'“““"“'“"-iaﬁ"ﬂi-w-““'"“"“““ L3 =50

T “-'#TTTTT’!H il L i “i..lllllllllllllllllnnllllllnm L 4 = 106

[} = L=
{92.} Rl N Lo =22
{QS,Z} *“““"-""ﬂﬂmm"'--"““'"“'“““' L3 =50

{g 4,l} ﬂ.............,,,mm.,..-wﬁﬁTTTTTTTTTTTTH--WW L, =106

WMTSA: 98 [-81



Maximal Overlap Discrete Wavelet Transform

e abbreviation is MODW'T (pronounced ‘mod WT")

e transforms very similar to the MODWT have been studied in
the literature under the following names:

— undecimated DWT (or nondecimated DWT)
— stationary DW'T

— translation invariant DWT

— time mvariant DW'T

— redundant DW'T

e also related to notions of ‘wavelet frames’ and ‘cycle spinning’

e basic idea: use values removed from DW'T by downsampling

WMTSA: 159 [-82



Quick Comparison of the MODWT to the DWT

e unlike the DWT, MODWT is not orthonormal (in fact MODW'T
is highly redundant)

e unlike the DW'T, MODWT is defined naturally for all samples

sizes (i.e., N need not be a multiple of a power of two)

e similar to the DWT, can form multiresolution analyses (MRAs)
using MODWTT with certain additional desirable features; e.g.,

unlike the DWT, MODWT-based MRA has details and smooths
that shift along with X (if X has detail D;, then 7™X has

detail 7 mﬁj, where 7" circularly shifts X by m units)

e similar to the DWT, an analysis of variance (ANOVA) can be
based on MODW'T wavelet coefficients

e unlike the DWT, MODWT discrete wavelet power spectrum
same for X and its circular shifts 7" X

WMTSA: 159-160 [-83



Definition of MODWT Coefficients: 1

e define MODWT filters {ZL]‘,Z} and {g;} by renormalizing the

DWT filters:

hji=hj /27 and g;; = g;1/2

e level 1 MODW'T wavelet and scaling coeflicients are defined to
be output obtaining by filtering X with {h] (b and {g; 1}

X — {h]g} — W and X — {91} — Vj

e compare the above to its DW'T equivalent:

X — {hj,l} — W and X — {g]‘,l} — Vj
127 127

e level Jo MODWT consists of Jy + 1 vectors, namely;,
Wl,WQ,... ’WJO and VJO’
each of which has length N

WMTSA: 169 -84



Definition of MODWT Coefhicients: 11

o MODWT of level Jjy has (Jg+ 1) coefficients, whereas DW'T
has N coefficients for any given Jj

e whereas DW'T of level Jy requires IV to be integer multiple of
270 MODWT of level Jo is well-defined for any sample size N

e when NV is divisible by 2‘]0, we can write

Lj_l Lj—l
Wj7t - Z hjalXQJ(t+1)—1—l mod NV & Wjﬂf - Z hj,lXt—l mod V>
[=0 [=0

and we have the relationship

/2757 : - Jy/2
W= 21/ Wj’2j<t+1>_1 &, likewise, Vi, 4 =2 o/

~

Jo,270(t+1)—1
(here /ij’t & ‘71]07,5 denote the tth elements of \7\/7]- &V 7o)

WMTSA: 96-97, 169, 203 -85



Properties of the MODWT

e as was true with the DW'T', we can use the MODWTT to obtain
— a scale-based additive decomposition (MRA):
Jo
X = Z 5j + gJO
1=1
— a scale-based energy decomposition (basis for ANOVA):
Jo
IXI* =D WP+ [Vl
j=1

e in addition, the MODWT can be computed efliciently via a
pyramid algorithm

WMTSA: 159-160 [-86



Example of Jy=4 LA(8) MODWT

e oxygen isotope records X from Antarctic ice core

—44.2 [

—5H3.8 | | |

1900 1950 2000

year

1800 1850

[-87

TV,
7——53W4
7——25‘7{73
7——11‘7\’72
7W,



Relationship Between MODWT and DWT

e hottom plot shows W from DWT after circular shift 73 to
align coefficients properly in time

e top plot shows \7\74 from MODW'T and subsamples that, upon
rescaling, yield Wy via Wy 4 = 4W4,16(t 1)-1

ar
O/xbkayé%b/hhyCI3wr4&%¥7Yfﬁkﬂgfx%/AK%KvﬂEf\¥§}“Uf f71_53§i?4
Y

121 ‘
0 | | — | . L | ! ‘ | TZ'—-31V\74
—12 ‘

L L L L I L L L L I L L L L I L L L L J
1800 1850 1900 1950 2000
year
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Example of Jy = 4 LA(8) MODWT MRA

e oxygen isotope records X from Antarctic ice core

—44.2 [

—53.8

1800

1850

1900

year
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2000



Example of Variance Decomposition

e decomposition of sample variance from MODW'T

N—1 4
=S (= X) = S W2 |V -
XN ’f NI
t=0 j=1

e LA(8)-based example for oxygen isotope records

— 0.5 year changes: % Wi|I? = 0.145 (= 4.5% of 6%()
— 1.0 years changes: % Wol|2 = 0.500 (= 15.6%)
— 2.0 years changes: % W2 = 0.751 (= 23.4%)
— 4.0 years changes: % W, |12 = 0.839 (= 26.2%)
— 8.0 years averages: %H{QHQ ~ X7 = 0.969 (= 30.2%)

— sample variance: oy = 3.204

I-90



Summary of Key Points about the DWT: I

o the DWT W is orthonormal, i.c., satisfies WIW = Iy

e construction of W starts with a wavelet filter {h;} of even
length L that by definition

1. sums to zero; i.e., Y ,; h; = 0;
2. has unit energy; i.e., > hl2 = 1: and
3. is orthogonal to its even shifts; i.e., Y ; hjhji o, =0

e 2 and 3 together called orthonormality property
o wavelet filter defines a scaling filter via g; = (—=1)!""h; 1

e scaling filter satisfies the orthonormality property, but sums to
v/2 and is also orthogonal to {h;}; i.e., >y gihji9, =0

e while {h;} is a high-pass filter, {g;} is a low-pass filter

WMTSA: 150-156 [-91



Summary of Key Points about the DWT: 11

e {h;} and {g;} work in tandem to split time series X into

— wavelet coefficients W (related to changes in averages on a
unit scale) and

— scaling coefficients V (related to averages on a scale of 2)
e {h;} and {g;} are then applied to V7, yielding

— wavelet coefficients Wy (related to changes in averages on a
scale of 2) and
— scaling coefficients Vg (related to averages on a scale of 4)
e continuing beyond these first 2 levels, scaling coefficients V;_;

at level 7 — 1 are transformed into wavelet and scaling coeffi-
cients W and V; of scales 7; = 2)=1 and Aj=2)

WMTSA: 150-156 [-92



Summary of Key Points about the DWT: 111

e after Jy repetitions, this ‘pyramid’ algorithm transforms time
series X whose length NV is an integer multiple of 270 into DWT

coefficients W1, Wo, ..., W j and V j (sizes of vectors are

0
%, %, . 2]}[0 and {\]f , for a total of N coefficients in all)

e DWTT coefficients lead to two basic decompositions

e first decomposition is additive and is known as a multiresolution
analysis (MRA), in which X is reexpressed as

where D; is a time series reflecting variations in X on scale 7,
while § 7, 1s a series reflecting its A j, averages

WMTSA: 150-156 I-93



Summary of Key Points about the DWT: IV

e second decomposition reexpresses the energy (squared norm)
of X on a scale by scale basis, i.e.,

Jo

2 2 2
IX1 =D WS+ 1Vl
j=1

leading to an analysis of the sample variance of X:

| N- .
% N; (Xi = X)

Jo

1 9 1 9 —)
= ¥ 2 Wil + IV - X

WMTSA: 150-156 [-94



Summary of Key Points about the MODWT

e similar to the DW'T, the MODWT offers

— a scale-based multiresolution analysis
— a scale-based analysis of the sample variance
— a pyramid algorithm for computing the transform efliciently

e unlike the DW'T, the MODWT is

— defined for all sample sizes (no ‘power of 2’ restrictions)

— unaffected by circular shifts to X in that coefficients, details
and smooths shitt along with X

— highly redundant in that a level Jy transform consists of
(Jo+ 1)N values rather than just N

e MODWT can eliminate ‘alignment’ artifacts, but its redundan-
cies are problematic for some uses

WMTSA: 159-160 [-95



