Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images (mostly)
- following work on continuous wavelet transform by Morlet and co-workers in 1983. Daubechies. Mallat and others introduced discrete wavelet transform (DWT) in 1988
- begin with qualitative description of the DWT
- discuss two key descriptive capabilities of the DWT:
- multiresolution analysis (an additive decomposition)
- wavelet variance or spectrum (decomposition of sum of squares)
- look at how DWT is formed based on a wavelet filter
- discuss maximal overlap DWT (MODWT)

I-1

Qualitative Description of DWT: II

- DWT is a linear transform of \mathbf{X} yielding N DWT coefficients
- notation: $\mathbf{W} = \mathcal{W}\mathbf{X}$
 - W is vector of DWT coefficients (*j*th component is W_i) $-\mathcal{W}$ is $N \times N$ orthonormal transform matrix
- orthonormality says $\mathcal{W}^T \mathcal{W} = I_N (N \times N \text{ identity matrix})$
- inverse of \mathcal{W} is just its transpose, so $\mathcal{W}\mathcal{W}^T = I_N$ also

Qualitative Description of DWT: I

- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ be a vector of N time series values (note: 'T' denotes transpose; i.e., \mathbf{X} is a column vector)
- assume initially $N = 2^J$ for some positive integer J (will relax this restriction later on)
- example of time series with $N = 16 = 2^4$:
 - $\mathbf{X} = \begin{bmatrix} 0.2, -0.4, -0.6, -0.5, -0.8, -0.4, -0.9, 0.0, \end{bmatrix}$ -0.2, 0.1, -0.1, 0.1, 0.7, 0.9, 0.0, 0.3

WMTSA: 57, 53

I-2

Implications of Orthonormality

- let $\mathcal{W}_{i\bullet}^T$ denote the *j*th row of \mathcal{W} , where $j = 0, 1, \ldots, N-1$
- let $\mathcal{W}_{i,l}$ denote *l*th element of $\mathcal{W}_{i\bullet}$
- consider two rows, say, $\mathcal{W}_{i\bullet}^T$ and $\mathcal{W}_{k\bullet}^T$
- orthonormality says

$$\langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle \equiv \sum_{l=0}^{N-1} \mathcal{W}_{j,l} \mathcal{W}_{k,l} = \begin{cases} 1, & \text{when } j = k, \\ 0, & \text{when } j \neq k \end{cases}$$

 $-\langle \mathcal{W}_{i\bullet}, \mathcal{W}_{k\bullet} \rangle$ is inner product of *j*th & *k*th rows $-\langle \mathcal{W}_{i\bullet}, \mathcal{W}_{i\bullet} \rangle = \|\mathcal{W}_{i\bullet}\|^2$ is squared norm (energy) for $\mathcal{W}_{i\bullet}$

WMTSA: 57, 42

Example: the Haar DWT Haar DWT Coefficients: I • obtain Haar DWT coefficients \mathbf{W} by premultiplying \mathbf{X} by \mathcal{W} : • N = 16 example of Haar DWT matrix \mathcal{W} $\mathbf{W} = \mathcal{W} \mathbf{X}$ • *j*th coefficient W_j is inner product of *j*th row $\mathcal{W}_{j\bullet}^T$ and **X**: 10 $W_i = \langle \mathcal{W}_{i \bullet}, \mathbf{X} \rangle$ 11 12 • can interpret coefficients as difference of averages 13 14 • to see this, let 15 $\overline{X}_t(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l} = \text{`scale } \lambda \text{' average}$ 0 5 10 15 0 5 10 15 • note that rows are orthogonal to each other (i.e., inner products - note: $\overline{X}_t(1) = X_t = \text{scale 1 'average'}$ are zero) - note: $\overline{X}_{N-1}(N) = \overline{X}$ = sample average WMTSA: 57 I-5WMTSA: 58 I--6 Haar DWT Coefficients: II Haar DWT Coefficients: III • consider form $W_0 = \langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$ takes in N = 16 example: • now consider form of $W_{\frac{N}{2}} = W_8 = \langle \mathcal{W}_{8\bullet}, \mathbf{X} \rangle$: • similar interpretation for $W_1, \ldots, W_{\frac{N}{2}-1} = W_7 = \langle \mathcal{W}_{7\bullet}, \mathbf{X} \rangle$: • similar interpretation for $W_{\frac{N}{2}+1}, \ldots, W_{\frac{3N}{4}-1}$ $\mathcal{W}_{7,t} \xrightarrow{\bullet} \mathcal{W}_{7,t} X_t \xrightarrow{\bullet} \mathcal{W}_{7,t} X_t \xrightarrow{\bullet} \mathcal{W}_{7,t} X_t$ sum $\propto \overline{X}_{15}(1) - \overline{X}_{14}(1)$ WMTSA: 58 I-7WMTSA: 58 I-8

Haar DWT Coefficients: V • final coefficient $W_{N-1} = W_{15}$ has a different interpretation: $W_{15,t}$ $(M_{15,t}, M_{15,t}, X_t) = (M_{15,t}, X_t)$ $(M_{15,t}, X_t) = (M_{15,t}, X_t)$ $(M_{15,t}, X_t) = (M_{15,t}, X_t)$ • structure of rows in W• structure of rows in W= first $\frac{N}{2}$ rows yield W_j 's \propto changes on scale 1 = next $\frac{N}{4}$ rows yield W_j 's \propto changes on scale 2 = next $\frac{N}{8}$ rows yield W_j 's \propto changes on scale 4 = next to last row yields $W_j \propto$ change on scale $\frac{N}{2}$ = last row yields $W_j \propto$ average on scale N

Two Basic Decompositions Derivable from DWT

- additive decomposition
 - reexpresses **X** as the sum of J + 1 new time series, each of which is associated with a particular scale τ_i
 - called multiresolution analysis (MRA)
- energy decomposition
- yields analysis of variance across J scales
- called wavelet spectrum or wavelet variance

Partitioning of DWT Coefficient Vector W

- \bullet decompositions are based on partitioning of ${\bf W}$ and ${\cal W}$
- partition **W** into subvectors associated with scale:

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_j \\ \vdots \\ \mathbf{W}_J \\ \mathbf{V}_J \end{bmatrix}$$

- - - - **-**

•
$$\mathbf{W}_j$$
 has $N/2^j$ elements (scale $\tau_j = 2^{j-1}$ changes)
note: $\sum_{j=1}^J \frac{N}{2^j} = \frac{N}{2} + \frac{N}{4} + \dots + 2 + 1 = 2^J - 1 = N - 1$

• \mathbf{V}_J has 1 element, which is equal to $\sqrt{N} \cdot \overline{X}$ (scale N average)

WMTSA: 61–62

I–13

Partitioning of DWT Matrix ${\mathcal W}$

• partition \mathcal{W} commensurate with partitioning of \mathbf{W} :

$\mathcal{W} = egin{bmatrix} \mathcal{W}_1 \ \mathcal{W}_2 \ dots \ \mathcal{W}_j \ dots \ \mathcal{W}_J \ \mathcal{W}_J \ \mathcal{V}_J \end{bmatrix}$

I-15

Example of Partitioning of W

Example of Partitioning of ${\mathcal W}$

• N = 16 example of Haar DWT matrix \mathcal{W}

WMTSA: 57, 64

DWT Analysis and Synthesis Equations

- \bullet recall the DWT analysis equation $\mathbf{W}=\mathcal{W}\mathbf{X}$
- $\mathcal{W}^T \mathcal{W} = I_N$ because \mathcal{W} is an orthonormal transform
- implies that $\mathcal{W}^T \mathbf{W} = \mathcal{W}^T \mathcal{W} \mathbf{X} = \mathbf{X}$
- yields DWT synthesis equation:

$$\mathbf{X} = \mathcal{W}^T \mathbf{W} = \begin{bmatrix} \mathcal{W}_1^T, \mathcal{W}_2^T, \dots, \mathcal{W}_J^T, \mathcal{V}_J^T \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \vdots \\ \mathbf{W}_J \\ \mathbf{V}_J \end{bmatrix}$$
$$= \sum_{j=1}^J \mathcal{W}_j^T \mathbf{W}_j + \mathcal{V}_J^T \mathbf{V}_J$$

WMTSA: 63

I–17

Multiresolution Analysis: II

• example of MRA for time series of length N = 16

• adding values for, e.g., t = 14 in $\mathcal{D}_1, \ldots, \mathcal{D}_4$ & \mathcal{S}_4 yields X_{14}

Multiresolution Analysis: I

• synthesis equation leads to additive decomposition:

$$\mathbf{X} = \sum_{j=1}^{J} \mathcal{W}_{j}^{T} \mathbf{W}_{j} + \mathcal{V}_{J}^{T} \mathbf{V}_{J} \equiv \sum_{j=1}^{J} \mathcal{D}_{j} + \mathcal{S}_{J}$$

- $\mathcal{D}_j \equiv \mathcal{W}_j^T \mathbf{W}_j$ is portion of synthesis due to scale τ_j
- \mathcal{D}_j is vector of length N and is called *j*th 'detail'
- $S_J \equiv \mathcal{V}_J^T \mathbf{V}_J = \overline{X} \mathbf{1}$, where $\mathbf{1}$ is a vector containing N ones (later on we will call this the 'smooth' of Jth order)
- additive decomposition called multiresolution analysis (MRA)

WMTSA: 64–65

I-18

Energy Preservation Property of DWT Coefficients

• define 'energy' in **X** as its squared norm:

$$\|\mathbf{X}\|^2 = \langle \mathbf{X}, \mathbf{X} \rangle = \mathbf{X}^T \mathbf{X} = \sum_{t=0}^{N-1} X_t^2$$

 \bullet energy of ${\bf X}$ is preserved in its DWT coefficients ${\bf W}$ because

$$\begin{aligned} \|\mathbf{W}\|^2 &= \mathbf{W}^T \mathbf{W} = (\mathcal{W} \mathbf{X})^T \mathcal{W} \mathbf{X} \\ &= \mathbf{X}^T \mathcal{W}^T \mathcal{W} \mathbf{X} \\ &= \mathbf{X}^T I_N \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\| \end{aligned}$$

12

• note: same argument holds for *any* orthonormal transform

WMTSA: 64

Wavelet Spectrum (Variance Decomposition): I

- let \overline{X} denote sample mean of X_t 's: $\overline{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$
- let $\hat{\sigma}_X^2$ denote sample variance of X_t 's:

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 - \overline{X}^2$$
$$= \frac{1}{N} \|\mathbf{X}\|^2 - \overline{X}^2$$
$$= \frac{1}{N} \|\mathbf{W}\|^2 - \overline{X}^2$$
$$\bullet \text{ since } \|\mathbf{W}\|^2 = \sum_{j=1}^J \|\mathbf{W}_j\|^2 + \|\mathbf{V}_J\|^2 \text{ and } \frac{1}{N} \|\mathbf{V}_J\|^2 = \overline{X}^2,$$
$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^J \|\mathbf{W}_j\|^2$$

WMTSA: 62

I-21

Wavelet Spectrum (Variance Decomposition): III

• wavelet spectra for time series \mathbf{X} and \mathbf{Y} of length N = 16, each with zero sample mean and same sample variance

Wavelet Spectrum (Variance Decomposition): II

• define discrete wavelet power spectrum:

$$P_X(\tau_j) \equiv \frac{1}{N} \|\mathbf{W}_j\|^2$$
, where $\tau_j = 2^{j-1}$

• gives us a scale-based decomposition of the sample variance:

$$\hat{\sigma}_X^2 = \sum_{j=1}^J P_X(\tau_j)$$

• in addition, each $W_{j,t}$ in \mathbf{W}_j associated with a portion of \mathbf{X} ; i.e., $W_{j,t}^2$ offers scale- & time-based decomposition of $\hat{\sigma}_X^2$

WMTSA: 62

I-22

Defining the Discrete Wavelet Transform (DWT)

- can formulate DWT via elegant 'pyramid' algorithm
- defines \mathcal{W} for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using O(N) multiplications
 - 'brute force' method uses $O(N^2)$ multiplications
 - faster than celebrated algorithm for fast Fourier transform! (this uses $O(N \cdot \log_2(N))$ multiplications)
- can formulate algorithm using linear filters or matrices (two approaches are complementary)
- need to review ideas from theory of linear (time-invariant) filters, which requires some Fourier theory

Fourier Theory for Sequences: I

- let $\{a_t\}$ denote a real-valued sequence such that $\sum_t a_t^2 < \infty$
- discrete Fourier transform (DFT) of $\{a_t\}$:

$$A(f) \equiv \sum_{t} a_{t} e^{-i2\pi f t}$$

- f called frequency: $e^{-i2\pi ft} = \cos(2\pi ft) i\sin(2\pi ft)$
- A(f) defined for all f, but $0 \le f \le 1/2$ is of main interest:
 - $-A(\cdot)$ periodic with unit period, i.e., A(f+1) = A(f), all f
 - $-A(-f) = A^*(f)$, complex conjugate of A(f)
 - need only know A(f) for $0 \leq f \leq 1/2$ to know it for all f
- \bullet 'low frequencies' are those in lower range of [0,1/2]
- \bullet 'high frequencies' are those in upper range of [0,1/2]

WMTSA: 21–22

I-25

Convolution of Sequences

• given two sequences $\{a_t\}$ and $\{b_t\}$, define their convolution by

$$c_t \equiv \sum_{u=-\infty}^{\infty} a_u b_{t-u}$$

• DFT of $\{c_t\}$ has a simple form, namely,

$$\sum_{=-\infty}^{\infty} c_t e^{-i2\pi ft} = A(f)B(f),$$

where $A(\cdot)$ is the DFT of $\{a_t\}$, and $B(\cdot)$ is the DFT of $\{b_t\}$; i.e., just multiply two DFTs together!!!

Fourier Theory for Sequences: II

• can recover (synthesize) $\{a_t\}$ from its DFT:

$$\int_{-1/2}^{1/2} A(f) e^{i2\pi ft} \, df = a_t;$$

left-hand side called inverse DFT of $A(\cdot)$

- $\{a_t\}$ and $A(\cdot)$ are two representations for one 'thingy'
- large |A(f)| says $e^{i2\pi ft}$ important in synthesizing $\{a_t\}$; i.e., $\{a_t\}$ resembles some combination of $\cos(2\pi ft)$ and $\sin(2\pi ft)$

WMTSA: 22–23

I-26

Basic Concepts of Filtering

- convolution & linear time-invariant filtering are same concepts:
 - $\{b_t\}$ is input to filter
- $-\{a_t\}$ represents the filter
- $-\{c_t\}$ is filter output
- flow diagram for filtering: $\{b_t\} \longrightarrow \overline{\{a_t\}} \longrightarrow \{c_t\}$
- $\{a_t\}$ is called impulse response sequence for filter
- its DFT $A(\cdot)$ is called transfer function
- in general $A(\cdot)$ is complex-valued, so write $A(f) = |A(f)|e^{i\theta(f)}$
 - -|A(f)| defines gain function
- $-\mathcal{A}(f) \equiv |A(f)|^2$ defines squared gain function
- $\; \theta(\cdot)$ called phase function (well-defined at f if |A(f)| > 0)

The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let $\{h_l : l = 0, \dots, L-1\}$ be a real-valued filter of width L
- both h_0 and h_{L-1} must be nonzero
- for convenience, will define $h_l = 0$ for l < 0 and $l \ge L$
- -L must be even (2, 4, 6, 8, ...) for technical reasons (hence ruling out $\{a_t\}$ on the previous overhead)

Example of a High-Pass Filter

The Wavelet Filter: II

 \bullet $\{h_l\}$ called a wavelet filter if it has these 3 properties

1. summation to zero:

$$\sum_{l=0}^{L-1} h_l = 0$$

2. unit energy:

$$\sum_{l=0}^{L-1} h_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} h_l h_{l+2n} = 0$$

• 2 and 3 together are called the *orthonormality property*

WMTSA: 69

I-32

The Wavelet Filter: III

- summation to zero and unit energy relatively easy to achieve
- \bullet orthogonality to even shifts is key property & hardest to satisfy
- define transfer and squared gain functions for wavelet filter:

$$H(f) \equiv \sum_{l=0}^{L-1} h_l e^{-i2\pi f l}$$
 and $\mathcal{H}(f) \equiv |H(f)|^2$

• orthonormality property is equivalent to

$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$$
 for all f

(an elegant – but not obvious! – result)

WMTSA: 69–70

I--33

D(4) Wavelet Filter: I

• next simplest wavelet filter is D(4), for which L = 4:

$$h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}}, \ h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}}, \ h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \ h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}}$$

- 'D' stands for Daubechies
- -L = 4 width member of her 'extremal phase' wavelets
- computations show $\sum_{l} h_{l} = 0 \& \sum_{l} h_{l}^{2} = 1$, as required
- orthogonality to even shifts apparent except for ± 2 case:

I-35

$$h_l \xrightarrow{l} h_{l-2} \xrightarrow{l} h_l h_{l-2} \xrightarrow{l} \dots \qquad \text{sum} = 0$$

Haar Wavelet Filter

- Q: what is rationale for D(4) filter?
- consider $X_t^{(1)} \equiv X_t X_{t-1} = a_0 X_t + a_1 X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter:

$$\{X_t\} \longrightarrow \boxed{\{1, -1\}} \longrightarrow \{X_t^{(1)}\}$$

- Haar wavelet filter is normalized 1st difference filter
- $-X_t^{(1)}$ is difference between two '1 point averages'
- consider filter 'cascade' with two 1st difference filters:

$$\{X_t\} \longrightarrow \boxed{\{1,-1\}} \longrightarrow \boxed{\{1,-1\}} \longrightarrow \{X_t^{(2)}\}$$

• by considering convolution of $\{1, -1\}$ with itself, can reexpress the above using a single 'equivalent' (2nd difference) filter:

$$\{X_t\} \longrightarrow [\{1, -2, 1\}] \longrightarrow \{X_t^{(2)}\}$$

WMTSA: 60-61

D(4) Wavelet Filter: III

• renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

$$a_t = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$

• consider '2 point weighted average' followed by 2nd difference:

$$\{X_t\} \longrightarrow \boxed{\{a,b\}} \longrightarrow \boxed{\{1,-2,1\}} \longrightarrow \{Y_t\}$$

• convolution of $\{a, b\}$ and $\{1, -2, 1\}$ yields an equivalent filter, which is how the D(4) wavelet filter arises:

$$\{X_t\} \longrightarrow \overline{\{h_0, h_1, h_2, h_3\}} \longrightarrow \{Y_t\}$$

WMTSA: 60-61

I–37

Another Popular Daubechies Wavelet Filter

• LA(8) wavelet filter ('LA' stands for 'least asymmetric')

- resembles three-point high-pass filter $\{-\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}\}$ (somewhat)
- can interpret this filter as cascade consisting of
- 4th difference filter
- weighted average filter of width 4, but effective width 1
- filter output can be interpreted as changes in weighted averages

WMTSA: 108–109

D(4) Wavelet Filter: IV

- using conditions
- 1. summation to zero: $h_0 + h_1 + h_2 + h_3 = 0$ 2. unit energy: $h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1$ 3. orthogonality to even shifts: $h_0h_2 + h_1h_3 = 0$ can solve for feasible values of a and b
- one solution is $a = \frac{1+\sqrt{3}}{4\sqrt{2}} \doteq 0.48$ and $b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \doteq 0.13$ (other solutions yield essentially the same filter)
- interpret D(4) filtered output as changes in weighted averages
- 'change' now measured by 2nd difference (1st for Haar)
- average is now 2 point weighted average (1 point for Haar)
- can argue that effective scale of weighted average is one

```
WMTSA: 60-61
```

I-38

First Level Wavelet Coefficients: I

- given wavelet filter $\{h_l\}$ of width L & time series of length $N = 2^J$, obtain first level wavelet coefficients as follows
- circularly filter **X** with wavelet filter to yield output

$$\sum_{l=0}^{L-1} h_l X_{t-l} = \sum_{l=0}^{L-1} h_l X_{t-l \mod N}, \quad t = 0, \dots, N-1;$$

i.e., if $t-l$ does not satisfy $0 \le t-l \le N-1$, interpret X_{t-l}

as
$$X_{t-l \mod N}$$
; e.g., $X_{-1} = X_{N-1}$ and $X_{-2} = X_{N-2}$

• take every other value of filter output to define

$$W_{1,t} \equiv \sum_{l=0}^{L-1} h_l X_{2t+1-l \bmod N}, \quad t = 0, \dots, \frac{N}{2} - 1;$$

 $\{W_{1,t}\}$ formed by *downsampling* filter output by a factor of 2

First Level Wavelet Coefficients: II

• example of formation of $\{W_{1,t}\}$

$$h_{l}^{\circ} \xrightarrow{1} h_{l}^{\circ} X_{15-l \mod 16} \xrightarrow{1} \sum_{l=1}^{l} h_{l}^{\circ} X_{15-l \mod 16} \xrightarrow{1} \sum_{l=1}^{l} \frac{1}{l} \underbrace{1}_{l=1}^{l} \underbrace{1}$$

- $\{W_{1,t}\}$ are unit scale wavelet coefficients these are the elements of \mathbf{W}_1 and first N/2 elements of $\mathbf{W} = \mathcal{W}\mathbf{X}$
- also have $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$, with \mathcal{W}_1 being first N/2 rows of \mathcal{W}
- hence elements of \mathcal{W}_1 dictated by wavelet filter

WMTSA: 70

I-41

Upper Half W_1 of D(4) DWT Matrix W

Upper Half W_1 of Haar DWT Matrix W

I-42

Orthonormality of Upper Half of DWT Matrix: I

• can show that, for all L and even N,

$$W_{1,t} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}, \text{ or, equivalently, } \mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$$

forms *half* an orthonormal transform; i.e.,

$$\mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$$

• Q: how can we construct the other half of \mathcal{W} ?

WMTSA: 81

The Scaling Filter: I

The Scaling Filter: II

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : **II Orthonormality of** \mathcal{V}_1 and \mathcal{W}_1 : **I** • Q: how does \mathcal{V}_1 help us? • let's check that orthogonality holds for D(4) case also: • A: rows of \mathcal{V}_1 and \mathcal{W}_1 are pairwise orthogonal! • readily apparent in Haar case: WMTSA: 77-78 I - 49I-50**Orthonormality of** \mathcal{V}_1 and \mathcal{W}_1 : **III** Interpretation of Scaling Coefficients: I • consider Haar scaling filter (L=2): $g_0 = g_1 = \frac{1}{\sqrt{2}}$ • implies that $\mathcal{P}_1 \equiv \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix}$ • when N = 16, matrix \mathcal{V}_1 looks like is an $N \times N$ orthonormal matrix since $\mathcal{P}_{1}\mathcal{P}_{1}^{T} = \begin{bmatrix} \mathcal{W}_{1} \\ \mathcal{V}_{1} \end{bmatrix} \begin{bmatrix} \mathcal{W}_{1}^{T}, \mathcal{V}_{1}^{T} \end{bmatrix}$ $= \begin{bmatrix} \mathcal{W}_1 \mathcal{W}_1^T \ \mathcal{W}_1 \mathcal{V}_1^T \\ \mathcal{V}_1 \mathcal{W}_1^T \ \mathcal{V}_1 \mathcal{V}_1^T \end{bmatrix} = \begin{bmatrix} I_N & 0_N \\ \frac{N}{2} & \frac{N}{2} \\ 0_N & I_N \end{bmatrix} = I_N$ • if N = 2 (not of too much interest!), in fact $\mathcal{P}_1 = \mathcal{W}$ • since $\mathbf{V}_1 = \mathcal{V}_1 \mathbf{X}$, each $V_{1,t}$ is proportional to a 2 point average: • if N > 2, \mathcal{P}_1 is an intermediate step: \mathcal{V}_1 spans same subspace $V_{1,0} = g_1 X_0 + g_0 X_1 = \frac{1}{\sqrt{2}} X_0 + \frac{1}{\sqrt{2}} X_1 \propto \overline{X}_1(2)$ and so forth as lower half of \mathcal{W} and will be further manipulated I-51I-52

Interpretation of Scaling Coefficients: II

• reconsider shapes of $\{g_l\}$ seen so far:

- for L > 2, can regard $V_{1,t}$ as proportional to weighted average
- can argue that effective width of $\{g_l\}$ is 2 in each case; thus scale associated with $V_{1,t}$ is 2, whereas scale is 1 for $W_{1,t}$

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$

I-53

- since \mathbf{W}_1 & \mathbf{V}_1 contain output from filters, consider their squared gain functions, recalling that $\mathcal{H}(f) + \mathcal{G}(f) = 2$
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(4) filters

- \bullet $\{h_l\}$ is high-pass filter with nominal pass-band [1/4,1/2]
- $\bullet \; \{g_l\}$ is low-pass filter with nominal pass-band [0,1/4]

Frequency Domain Properties of Scaling Filter

• define transfer and squared gain functions for $\{g_l\}$

$$G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi f l} \& \mathcal{G}(f) \equiv |G(f)|^2$$

• can argue that $\mathcal{G}(f) = \mathcal{H}(f + \frac{1}{2})$, which, combined with

$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$$

yields

WMTSA: 76

$$\mathcal{H}(f) + \mathcal{G}(f) = 2$$

I-54

Example of Decomposing X into W_1 and V_1 : I

Example of Decomposing X into W_1 and V_1 : II

- oxygen isotope record series **X** has N = 352 observations
- spacing between observations is $\Delta \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients \mathbf{V}_1 related to averages on scale of 2Δ
- wavelet coefficients \mathbf{W}_1 related to changes on scale of Δ
- coefficients $V_{1,t}$ and $W_{1,t}$ plotted against mid-point of years associated with X_{2t} and X_{2t+1}
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway

I-57

Example of Synthesizing X from \mathcal{D}_1 and \mathcal{S}_1

• Haar-based decomposition for oxygen isotope records ${f X}$

Reconstructing X from \mathbf{W}_1 and \mathbf{V}_1

• in matrix notation, form wavelet & scaling coefficients via

$$\begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \mathbf{X} \\ \mathcal{V}_1 \mathbf{X} \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \mathbf{X} = \mathcal{P}_1 \mathbf{X}$$

- recall that $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ because \mathcal{P}_1 is orthonormal • since $\mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}$, premultiplying both sides by \mathcal{P}_1^T yields $\mathcal{P}_1^T \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1^T \ \mathcal{V}_1^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1 = \mathbf{X}$
- $\mathcal{D}_1 \equiv \mathcal{W}_1^T \mathbf{W}_1$ is the first level detail
- $\mathcal{S}_1 \equiv \mathcal{V}_1^T \mathbf{V}_1$ is the first level 'smooth'
- $\mathbf{X} = \mathcal{D}_1 + \mathcal{S}_1$ in this notation
- WMTSA: 80–81

I-58

First Level Variance Decomposition: I

First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_{\mathbf{x}}^2$ into two pieces:
- 1. $\frac{1}{N} \|\mathbf{W}_1\|^2$, attributable to changes in averages over scale 1 2. $\frac{1}{N} \|\mathbf{V}_1\|^2 - \overline{X}^2$, attributable to averages over scale 2
- Haar-based example for oxygen isotope records
- $\frac{1}{N} \|\mathbf{W}_1\|^2 \doteq 0.295$ - first piece: - second piece: $\frac{1}{N} \|\mathbf{V}_1\|^2 - \overline{X}^2 \doteq 2.909$
- $\hat{\sigma}_V^2 \doteq 3.204$ - sample variance:
- changes on scale of $\Delta \doteq 0.5$ years account for 9% of $\hat{\sigma}_{\mathbf{X}}^2$ (standardized scale 1 corresponds to physical scale Δ)

I-61

Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as 'one point' averages $\overline{X}_t(1)$ over scale of 1
- first level of basic algorithm transforms \mathbf{X} of length N into
 - -N/2 wavelet coefficients $\mathbf{W}_1 \propto$ changes on a scale of 1
 - -N/2 scaling coefficients $\mathbf{V}_1 \propto$ averages of X_t on a scale of 2
- in essence basic algorithm takes length N series \mathbf{X} related to scale 1 averages and produces
- length N/2 series \mathbf{W}_1 associated with the same scale
- length N/2 series \mathbf{V}_1 related to averages on double the scale

Summary of First Level of Basic Algorithm

- transforms $\{X_t : t = 0, \dots, N-1\}$ into 2 types of coefficients
- N/2 wavelet coefficients $\{W_{1,t}\}$ associated with:
- $-\mathbf{W}_1$, a vector consisting of first N/2 elements of \mathbf{W}
- changes on scale 1 and nominal frequencies $\frac{1}{4} \leq |f| \leq \frac{1}{2}$
- first level detail \mathcal{D}_1
- $-\mathcal{W}_1$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- N/2 scaling coefficients $\{V_{1,t}\}$ associated with:
- $-\mathbf{V}_1$, a vector of length N/2
- averages on scale 2 and nominal frequencies $0 \le |f| \le \frac{1}{4}$
- first level smooth S_1
- $-\mathcal{V}_1$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last N/2rows of $\overline{\mathcal{W}}$
- WMTSA: 86-87

 I_{-62}

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat \mathbf{V}_1 in the same manner as \mathbf{X} ?
- basic algorithm will transform length N/2 series \mathbf{V}_1 into
- length N/4 series \mathbf{W}_2 associated with the same scale (2)
- length N/4 series \mathbf{V}_2 related to averages on twice the scale
- by definition, \mathbf{W}_2 contains the level 2 wavelet coefficients
- Q: what if we treat \mathbf{V}_2 in the same way?
- basic algorithm will transform length N/4 series \mathbf{V}_2 into
- length N/8 series \mathbf{W}_3 associated with the same scale (4)
- length N/8 series \mathbf{V}_3 related to averages on twice the scale
- by definition, \mathbf{W}_3 contains the level 3 wavelet coefficients

WMTSA: Sections 4.5 and 4.6

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W} = \mathcal{W}\mathbf{X}$ is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_j and \mathbf{V}_j from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of \mathbf{V}_{i} given by $N/2^{j}$

WMTSA: Section 4.6, 100-101

- since $N = 2^J$, length of \mathbf{V}_J is 1, at which point we must stop
- J applications of the basic algorithm defines the remaining subvectors $\mathbf{W}_2, \ldots, \mathbf{W}_J, \mathbf{V}_J$ of DWT coefficient vector \mathbf{W}

I-65

Matrix Description of Pyramid Algorithm: I

• form $\frac{N}{2j} \times \frac{N}{2j-1}$ matrix \mathcal{B}_j in same way as $\frac{N}{2} \times N$ matrix \mathcal{W}_1

• when L = 4 and $N/2^{j-1} = 16$, have

• overall scheme is known as the 'pyramid' algorithm

Scales Associated with DWT Coefficients

• *j*th level of algorithm transforms scale 2^{j-1} averages into - differences of averages on scale 2^{j-1} , i.e., wavelet coefficients \mathbf{W}_i - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., scaling coefficients \mathbf{V}_i • $\tau_i \equiv 2^{j-1}$ denotes scale associated with \mathbf{W}_i - for j = 1, ..., J, takes on values 1, 2, 4, ..., N/4, N/2• $\lambda_i \equiv 2^j = 2\tau_i$ denotes scale associated with \mathbf{V}_i - takes on values $2, 4, 8, \ldots, N/2, N$ WMTSA: 85 I-66 Matrix Description of Pyramid Algorithm: II

• when L	= 4 Γ _α	an		V/2	, , , , , , , , , , , , , , , , , , ,	- =	10	, na	ve	0	0	0	0	0	~	~
$\mathcal{A}_j =$	$ g_1 $	g_0	0	0	0	0	0	0	0	0	0	0	0	0	g_3	g_2
	g_3	g_2	g_1	g_0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	g_3	g_2	g_1	g_0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	g_3	g_2	g_1	g_0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	g_3	g_2	g_1	g_0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	g_3	g_2	g_1	g_0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	g_3	g_2	g_1	g_0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	g_3	g_2	g_1	$g_{(}$
• matrix g																

WMTSA: 94

• matrix gets us *j*th level wavelet coefficients via $\mathbf{W}_{j} = \mathcal{B}_{j} \mathbf{V}_{j-1}$

Examples of W and its Partitioning: II Partial DWT: I • J repetitions of pyramid algorithm for **X** of length $N = 2^J$ • N = 16 case for D(4) DWT matrix \mathcal{W} vields 'complete' DWT, i.e., $\mathbf{W} = \mathcal{W}\mathbf{X}$ • can choose to stop at $J_0 < J$ repetitions, yielding a 'partial' \mathcal{W}_2 DWT of level J_0 : 10 \mathcal{W}_1 $\begin{vmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \vdots \\ \mathcal{W}_j \\ \vdots \\ \mathcal{W}_{J_0} \\ \mathcal{V}_{J_0} \end{vmatrix} \mathbf{X} = \begin{vmatrix} \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_{J_0} \mathcal{A}_{J_0-1} \cdots \mathcal{A}_1 \\ \mathcal{A}_{J_0} \mathcal{A}_{J_0-1} \cdots \mathcal{A}_1 \end{vmatrix} \mathbf{X} = \begin{vmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_j \\ \vdots \\ \mathbf{W}_{J_0} \\ \mathbf{V}_{J_0} \end{vmatrix}$ 12 \mathcal{W}_3 13 \mathcal{W}_{4} \mathcal{V}_{4} 10 0 5 10 15 15 • note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed • \mathcal{V}_{J_0} is $\frac{N}{2J_0} \times N$, yielding $\frac{N}{2J_0}$ coefficients for scale $\lambda_{J_0} = 2^{J_0}$ WMTSA: 104 I - 73I-74 Partial DWT: II Example of $J_0 = 4$ Partial Haar DWT • only requires N to be integer multiple of 2^{J_0} • oxygen isotope records **X** from Antarctic ice core • partial DWT more common than complete DWT \mathbf{V}_{4} • choice of J_0 is application dependent • multiresolution analysis for partial DWT: \mathbf{W}_{4} $\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$ والمريالين ووقاتني ومعروق الألمني \mathbf{W}_3 \mathcal{S}_{J_0} represents averages on scale $\lambda_{J_0} = 2^{J_0}$ (includes \overline{X}) \mathbf{W}_{2} • analysis of variance for partial DWT: . The second \mathbf{W}_1 -44.2 $\hat{\sigma}_X^2 = \frac{1}{N} \sum_{i=1}^{J_0} \|\mathbf{W}_i\|^2 + \frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2$ May in Mar Mar Mar Mar х -53.818501900 19502000 1800 vear WMTSA: 104 I - 75WMTSA: 104 I-76

Quick Comparison of the MODWT to the DWT

- unlike the DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- \bullet unlike the DWT, MODWT is defined naturally for all samples sizes (i.e., N need not be a multiple of a power of two)
- similar to the DWT, can form multiresolution analyses (MRAs) using MODWT with certain additional desirable features; e.g., unlike the DWT, MODWT-based MRA has details and smooths that shift along with **X** (if **X** has detail $\widetilde{\mathcal{D}}_j$, then $\mathcal{T}^m \mathbf{X}$ has detail $\mathcal{T}^m \widetilde{\mathcal{D}}_j$, where \mathcal{T}^m circularly shifts **X** by *m* units)
- similar to the DWT, an analysis of variance (ANOVA) can be based on MODWT wavelet coefficients
- unlike the DWT, MODWT discrete wavelet power spectrum same for ${\bf X}$ and its circular shifts ${\cal T}^m {\bf X}$

WMTSA: 159–160

Maximal Overlap Discrete Wavelet Transform

- abbreviation is MODWT (pronounced 'mod WT')
- transforms very similar to the MODWT have been studied in the literature under the following names:
- undecimated DWT (or nondecimated DWT)
- stationary DWT
- translation invariant DWT
- time invariant DWT
- redundant DWT
- also related to notions of 'wavelet frames' and 'cycle spinning'
- basic idea: use values removed from DWT by downsampling

I-82

Definition of MODWT Coefficients: I

• define MODWT filters $\{\tilde{h}_{j,l}\}$ and $\{\tilde{g}_{j,l}\}$ by renormalizing the DWT filters:

$$\tilde{h}_{j,l} = h_{j,l}/2^{j/2}$$
 and $\tilde{g}_{j,l} = g_{j,l}/2^{j/2}$

• level j MODWT wavelet and scaling coefficients are *defined* to be output obtaining by filtering **X** with $\{\tilde{h}_{j,l}\}$ and $\{\tilde{g}_{j,l}\}$:

$$\mathbf{X} \longrightarrow \overline{\{\tilde{h}_{j,l}\}} \longrightarrow \widetilde{\mathbf{W}}_j \text{ and } \mathbf{X} \longrightarrow \overline{\{\tilde{g}_{j,l}\}} \longrightarrow \widetilde{\mathbf{V}}_j$$

• compare the above to its DWT equivalent:

$$\mathbf{X} \longrightarrow \overline{\{h_{j,l}\}} \xrightarrow{}_{\downarrow 2^j} \mathbf{W}_j \text{ and } \mathbf{X} \longrightarrow \overline{\{g_{j,l}\}} \xrightarrow{}_{\downarrow 2^j} \mathbf{V}_j$$

• level J_0 MODWT consists of $J_0 + 1$ vectors, namely, $\widetilde{\mathbf{W}}_1, \widetilde{\mathbf{W}}_2, \dots, \widetilde{\mathbf{W}}_{J_0}$ and $\widetilde{\mathbf{V}}_{J_0}$,

each of which has length N

WMTSA: 169

I-84

Definition of MODWT Coefficients: II

- MODWT of level J_0 has $(J_0 + 1)N$ coefficients, whereas DWT has N coefficients for any given J_0
- whereas DWT of level J_0 requires N to be integer multiple of 2^{J_0} , MODWT of level J_0 is well-defined for any sample size N
- when N is divisible by 2^{J_0} , we can write

$$W_{j,t} = \sum_{l=0}^{L_j - 1} h_{j,l} X_{2^j(t+1) - 1 - l \mod N} \& \widetilde{W}_{j,t} = \sum_{l=0}^{L_j - 1} \tilde{h}_{j,l} X_{t-l \mod N},$$

and we have the relationship

. . .

$$W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^{j}(t+1)-1} \& \text{, likewise, } V_{J_0,t} = 2^{J_0/2} \widetilde{V}_{J_0,2^{J_0}(t+1)-1} \\ \text{(here } \widetilde{W}_{j,t} \& \widetilde{V}_{J_0,t} \text{ denote the } t\text{th elements of } \widetilde{\mathbf{W}}_j \& \widetilde{\mathbf{V}}_{J_0})$$

WMTSA: 96–97, 169, 203

I-85

Example of $J_0 = 4$ LA(8) MODWT

• oxygen isotope records \mathbf{X} from Antarctic ice core

Properties of the MODWT

- as was true with the DWT, we can use the MODWT to obtain
 - a scale-based additive decomposition (MRA):

$$\mathbf{X} = \sum_{j=1}^{J_0} \widetilde{\mathcal{D}}_j + \widetilde{\mathcal{S}}_{J_0}$$

- a scale-based energy decomposition (basis for ANOVA):

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\widetilde{\mathbf{W}}_j\|^2 + \|\widetilde{\mathbf{V}}_{J_0}\|^2$$

• in addition, the MODWT can be computed efficiently via a pyramid algorithm

WMTSA: 159–160

I-86

Relationship Between MODWT and DWT

- bottom plot shows \mathbf{W}_4 from DWT after circular shift \mathcal{T}^{-3} to align coefficients properly in time
- top plot shows $\widetilde{\mathbf{W}}_4$ from MODWT and subsamples that, upon rescaling, yield \mathbf{W}_4 via $W_{4,t} = 4\widetilde{W}_{4,16(t+1)-1}$

Example of $J_0 = 4$ LA(8) MODWT MRA

• oxygen isotope records **X** from Antarctic ice core

Summary of Key Points about the DWT: I

- the DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^T \mathcal{W} = I_N$
- construction of \mathcal{W} starts with a wavelet filter $\{h_l\}$ of even length L that by definition
- 1. sums to zero; i.e., $\sum_{l} h_{l} = 0$;
- 2. has unit energy; i.e., $\sum_{l} h_{l}^{2} = 1$; and
- 3. is orthogonal to its even shifts; i.e., $\sum_{l} h_{l} h_{l+2n} = 0$
- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$
- \bullet while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter

WMTSA: 150–156

Example of Variance Decomposition

• decomposition of sample variance from MODWT

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \sum_{j=1}^4 \frac{1}{N} \| \widetilde{\mathbf{W}}_j \|^2 + \frac{1}{N} \| \widetilde{\mathbf{V}}_4 \|^2 - \overline{X}^2$$

- LA(8)-based example for oxygen isotope records
- $\begin{array}{ll} -0.5 \text{ year changes:} & \frac{1}{N} \|\widetilde{\mathbf{W}}_1\|^2 \doteq 0.145 \ (\doteq 4.5\% \text{ of } \hat{\sigma}_X^2) \\ -1.0 \text{ years changes:} & \frac{1}{N} \|\widetilde{\mathbf{W}}_2\|^2 \doteq 0.500 \ (\doteq 15.6\%) \\ -2.0 \text{ years changes:} & \frac{1}{N} \|\widetilde{\mathbf{W}}_3\|^2 \doteq 0.751 \ (\doteq 23.4\%) \\ -4.0 \text{ years changes:} & \frac{1}{N} \|\widetilde{\mathbf{W}}_4\|^2 \doteq 0.839 \ (\doteq 26.2\%) \\ -8.0 \text{ years averages:} & \frac{1}{N} \|\widetilde{\mathbf{V}}_4\|^2 \overline{X}^2 \doteq 0.969 \ (\doteq 30.2\%) \\ -\text{ sample variance:} & \hat{\sigma}_X^2 \doteq 3.204 \end{array}$

Summary of Key Points about the DWT: II

- $\{h_l\}$ and $\{g_l\}$ work in tandem to split time series **X** into
 - wavelet coefficients \mathbf{W}_1 (related to changes in averages on a unit scale) and
 - scaling coefficients \mathbf{V}_1 (related to averages on a scale of 2)
- $\{h_l\}$ and $\{g_l\}$ are then applied to \mathbf{V}_1 , yielding
- wavelet coefficients \mathbf{W}_2 (related to changes in averages on a scale of 2) and
- scaling coefficients \mathbf{V}_2 (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients \mathbf{V}_{j-1} at level j-1 are transformed into wavelet and scaling coefficients \mathbf{W}_j and \mathbf{V}_j of scales $\tau_j = 2^{j-1}$ and $\lambda_j = 2^j$

Summary of Key Points about the DWT: III

- after J_0 repetitions, this 'pyramid' algorithm transforms time series **X** whose length N is an integer multiple of 2^{J_0} into DWT coefficients $\mathbf{W}_1, \mathbf{W}_2, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J_0}}$ and $\frac{N}{2^{J_0}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- first decomposition is additive and is known as a multiresolution analysis (MRA), in which **X** is reexpressed as

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0},$$

where \mathcal{D}_j is a time series reflecting variations in **X** on scale τ_j , while \mathcal{S}_{J_0} is a series reflecting its λ_{J_0} averages

WMTSA: 150-156

I-93

Summary of Key Points about the MODWT

- similar to the DWT, the MODWT offers
- a scale-based multiresolution analysis
- a scale-based analysis of the sample variance
- a pyramid algorithm for computing the transform efficiently
- unlike the DWT, the MODWT is
- defined for all sample sizes (no 'power of 2' restrictions)
- unaffected by circular shifts to ${\bf X}$ in that coefficients, details and smooths shift along with ${\bf X}$
- highly redundant in that a level J_0 transform consists of $(J_0 + 1)N$ values rather than just N
- MODWT can eliminate 'alignment' artifacts, but its redundancies are problematic for some uses

WMTSA: 159–160

Summary of Key Points about the DWT: IV

• second decomposition reexpresses the energy (squared norm) of **X** on a scale by scale basis, i.e.,

$$\|\mathbf{X}\|^{2} = \sum_{j=1}^{J_{0}} \|\mathbf{W}_{j}\|^{2} + \|\mathbf{V}_{J_{0}}\|^{2}$$

leading to an analysis of the sample variance of **X**:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} \sum_{j=1}^{J_0} ||\mathbf{W}_j||^2 + \frac{1}{N} ||\mathbf{V}_{J_0}||^2 - \overline{X}^2$$

WMTSA: 150–156

I-94