Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

e wavelets are analysis tools for time series and images (mostly)

e following work on continuous wavelet transform by Morlet and
co-workers in 1983, Daubechies, Mallat and others introduced
discrete wavelet transform (DWT) in 1988

e begin with qualitative description of the DWT
e discuss two key descriptive capabilities of the DW'T:

— multiresolution analysis (an additive decomposition)
— wavelet variance or spectrum (decomposition of sum of squares)

e look at how DWT is formed based on a wavelet filter

e discuss maximal overlap DWT (MODWT)
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Qualitative Description of DWT: 1

elet X = [Xp, X1,... ,XN_l]T be a vector of N time series
values (note: ‘T denotes transpose; i.e., X is a column vector)

e assume initially N = 27 for some positive integer J (will relax
this restriction later on)

e example of time series with N = 16 = 2%
X =[] 02,-04,-0.6,—0.5, —0.8, —0.4, —0.9, 0.0,
-0.2, 0.1,-0.1, 0.1, 0.7, 0.9, 0.0, 0.3 ]T

Kyl

WMTSA: 57, 53 -2

Qualitative Description of DWT: II

e DWT is a linear transform of X yielding N DWT coefficients
e notation: W = WX
— W is vector of DWT coefficients (jth component is W)

— Wis N x N orthonormal transform matrix
o orthonormality says WIW = Iy (N x N identity matrix)
e inverse of W is just its transpose, so WWT = T ~ also

WMTSA: 57, 53 -3

Implications of Orthonormality

o lct WJT. denote the jth row of W, where 7 =0,1,..., N — 1
e let W; ; denote [th element of Wje
e consider two rows, say, WJT. and WkT.

e orthonormality says

N—1
Wje Wie) = D W; Wy = {
1=0

— (We, W) is inner product of jth & kth rows
— Wje, Wije) = ||Wjo||2 is squared norm (energy) for Wi,

1, when j =k,
0, when j #k

WMTSA: 57, 42 14




Example: the Haar DWT

e N = 16 example of Haar DWT matrix W

0 ‘T St

1 JI'F 9 Ll

2 N 10 “”

3 *T 11 “'F'F

4 1 [REN

5 a2 13 ™

6 M“H..._‘l., |} N TTT YT

T it
1 1 1 1 1 1 1 1
0 5 10 15 0 5 10 15

t t
e note that rows are orthogonal to each other (i.e., inner products
are zero)
WMTSA: 57 I-5

Haar DWT Coefficients: 1

e obtain Haar DW'T coefficients W by premultiplying X by W:
W =WwWX

e jth coefficient W is inner product of jth row WJT. and X:
Wi = (Wje, X)

e can interpret coefficients as difference of averages

e to see this, let

A—1

Z X;_ = ‘scale X" average

=0

—note: X¢(1) = Xy = scale 1 ‘average’

Xi(A)

> =

—note: X y_1(N) = X = sample average

WMTSA: 58 -6

Haar DWT Coefficients: 11

e consider form Wy = (Wpe, X) takes in N = 16 example:

I
Wi Xy wpeessssssssssss= sum o< X1(1) — Xo(1)
Xt J_W_V_.J_UAL

e similar interpretation for W1y, ..., Wy 1= Wy = (Wre, X):
N

S
W7_th sessnennsnenene® g 715(1) — 714(1)
Xt W‘L

WMTSA: 58 -7

Haar DWT Coefficients: 111
e now consider form of Wy = Wg = (Ws,, X):
2

Wit
X

II Wy Xy wtgeesssssssees sum oc X3(2) — X1(2)

e similar interpretation for Wy IRTE
7

Wy
4

WMTSA: 58 -8




Haar DWT Coefficients: IV

o Wan = Wig = (Wi2e, X) takes the following form:
_4_

Wagp quap e

Wy Xy =Pppresssssse sum oc X7(4) — X3(4)
X, W‘JL

e continuing in this manner, come to Wy _9 = (W 4e, X):

Wiy o _ _
W14,tXt ettt qum o X15<8) - X7(8)
X WT‘JLL
WMTSA: 58 -9

Haar DWT Coefficients: V

e final coefficient W_1 = W5 has a different interpretation:

RILALTALLATLLET
Wis

Wiz Xy womgegeesest= gum o X15(16)
X, WLU‘L

e structure of rows in W
— first % rows yield W;’s oc changes on scale 1
— next % rows yield W;’s oc changes on scale 2
— next % rows yield W;’s o< changes on scale 4
— next to last row yields W; oc change on scale %

— last row yields W; o< average on scale N

WMTSA: 58-59 I-10

Structure of DWT Matrices

° % wavelet coefficients for scale 7; = 0=l j=1,...,J

-7 = 21=1 is standardized scale

— 7; A is physical scale, where A is sampling interval
e cach W; localized in time: as scale T, localization |
e rows of W for given scale 7;:

— circularly shifted with respect to each other
— shift between adjacent rows is 27; = 2/

e similar structure for DWTs other than the Haar

e differences of averages common theme for DWT's
— simple differencing replaced by higher order differences
— simple averages replaced by weighted averages

WMTSA: 59-61 11

Two Basic Decompositions Derivable from DWT

e additive decomposition

— reexpresses X as the sum of J + 1 new time series, each of
which is associated with a particular scale 7;

— called multiresolution analysis (MRA)
e energy decomposition

— yields analysis of variance across J scales

— called wavelet spectrum or wavelet variance

WMTSA: 61-66 12




Partitioning of DWT Coefficient Vector W

e decompositions are based on partitioning of W and W

e partition W into subvectors associated with scale:

e W; has N/ 27 clements (scale T = 271 changes)
note: Yl S =F+F+-42+41=2/—1=N-1
e V; has 1 element, which is equal to v/N - X (scale N average)

WMTSA: 61-62 13

Example of Partitioning of W

e consider time series X of length N = 16 & its Haar DWT W

W, W, W3 W, V,
9
W o I hs T L ] [ Ll I ] l n T [ I
-2
o
X o P l : l . ! T 1
-2 | | | |
0 5 10 15
t
WMTSA: 62, 42 114

Partitioning of DWT Matrix W

e partition YW commensurate with partitioning of W:

V]

oW is QM] x N matrix (related to scale 7; = 2J=1 changes)

e )V;is 1 x N row vector (each element is \/Lﬁ)

WMTSA: 63 15

Example of Partitioning of W

e N = 16 example of Haar DWT matrix W

O flesssnssansanse 8| Mieriannnen
e S I S :
| WL SRR T WAL SV 4
erseralisnssnns 1] [srsnrsansnnag !t
¢ Y FRSRoRS RR 1 N TR
] PO SR 1 N —— .
6 frererrnnnnnalon 14 pmpptesesees )
Yﬂm""“-“]l L Vi
0 5 10 15 0 5 10 15
t t
e two properties: (a) W; = W;X and (b) WjWJT =1y

2]

WMTSA: 57, 64 I-16




DWT Analysis and Synthesis Equations

e recall the DWT analysis equation W = WX

e WIW = Iy because W is an orthonormal transform
o implies that WITW = WIWX =X

e yields DW'T synthesis equation:

Wi
Wjy
T T \asT T T
X =WI'w = [WE g WiV |

W
\Fi

J

= ZWJTWJ—‘FV?VJ
j=1
WMTSA: 63 117

Multiresolution Analysis: I

e synthesis equation leads to additive decomposition:
J J
T T _
X=) WW;+V]V;=) D;+8;
J=1 J=1

eD; = WJTW] is portion of synthesis due to scale 7;
e D; is vector of length N and is called jth ‘detail’
oSy = V;VJ = X1, where 1 is a vector containing N ones

(later on we will call this the ‘smooth’ of Jth order)

e additive decomposition called multiresolution analysis (MRA)

WMTSA: 64-65 I-18

Multiresolution Analysis: I

e example of MRA for time series of length N = 16

e
et - Dy
ﬂﬁ"""“ﬂrr D,
JT-‘;JTLH%H% D,

=

X Ol,—ﬂ—l—q-‘—‘n—‘—d—L
-1

0 5 10 15

t
e adding values for, e.g., t = 14 in Dy, ..., Dy & Sy yields X4

WMTSA: 64 19

Energy Preservation Property of DWT Coefficients

e define ‘energy’ in X as its squared norm:
N—-1
IX[7 = (X, X) =XIX = 3 X7
t=0
e energy of X is preserved in its DW'T coefficients W' because
IW|?=wIw = wx)Twx
= xX"'whwx
= XTIyX = XTX = |X]?

e note: same argument holds for any orthonormal transform

WMTSA: 43 20




Wavelet Spectrum (Variance Decomposition): I

e let X denote sample mean of Xy's: X = ~ Zi\; 61 Xy

o let 63( denote sample variance of Xy's:

1N—l 5 1N—l 5
A2 X E: 2 ¥
t=0 t=0
1 2 —2
= —|IX||*=-X
]YH I
<2
= —|W|?-X
SIwl

. J —9
o since [|[W|2 = 527 [|W[|2 + [|V]|? and [ V| =X,
1 J
5 2
X =% > Wl
=1

WMTSA: 62 I-21

Wavelet Spectrum (Variance Decomposition): IT

e define discrete wavelet power spectrum:
Px (7)) = %HW]'HQ, where 7; = 9j—1

e gives us a scale-based decomposition of the sample variance:
J
o X = Z P X(T ])
J=1

e in addition, each W in W associated with a portion of X;
ie., W]-Qt offers scale- & time-based decomposition of &g(

WMTSA: 62 1-22

Wavelet Spectrum (Variance Decomposition): IIT

e wavelet spectra for time series X and Y of length N = 16,
each with zero sample mean and same sample variance

20 0.3
X 0 [ { { I T . Lot , l l PX(T/)
-2 C ool L]
20 0.3
Y o= I L - l { . 1 { I Py(7;)
-2 1 | | I 0.0 L1
0 5 10 15 1248
t Tj

Defining the Discrete Wavelet Transform (DWT)

e can formulate DW'T via elegant ‘pyramid’ algorithm
e defines W for non-Haar wavelets (consistent with Haar)
e computes W = WX using O(N) multiplications

— ‘brute force’ method uses O(N?) multiplications

— faster than celebrated algorithm for fast Fourier transform!
(this uses O(N - logy(N)) multiplications)

e can formulate algorithm using linear filters or matrices
(two approaches are complementary)

e need to review ideas from theory of linear (time-invariant) fil-
ters, which requires some Fourier theory

WMTSA: 68 24




Fourier Theory for Sequences: 1

e let {a;} denote a real-valued sequence such that 3, a% <00
e discrete Fourier transform (DFT) of {a;}:
A(f) = Zateﬂ'%ﬁ
t

o f called frequency: e ~™27ft = cos(2 ft) — i sin(2n ft)

e A(f) defined for all f, but 0 < f < 1/2 is of main interest:
— A(+) periodic with unit period, i.e., A(f + 1) = A(f), all f
— A(—f) = A*(f), complex conjugate of A(f)

— need only know A(f) for 0 < f < 1/2 to know it for all f

e ‘low frequencies’ are those in lower range of [0, 1/2]

e ‘high frequencies’ are those in upper range of [0, 1/2]

WMTSA: 21-22 1-25

Fourier Theory for Sequences: 11

e can recover (synthesize) {a;} from its DFT:

1/2 ,
/ AP df = ap

_1/2
left-hand side called inverse DET of A(-)

e {a;} and A(-) are two representations for one ‘thingy’

o large |A(f)| says e2™ft important in synthesizing {a}; ie.,
{a} resembles some combination of cos(27 ft) and sin(27 ft)

WMTSA: 22-23 1-26

Convolution of Sequences

e given two sequences {a;} and {b¢}, define their convolution by

o

ct = Z Aubi—y

U=—00

e DET of {¢t} has a simple form, namely,

Y ae = A(N)B()),
t=—00

where A(-) is the DFT of {a;}, and B(-) is the DFT of {b:};
i.e., just multiply two DFTs together!!!

WMTSA: 24 I-27

Basic Concepts of Filtering

e convolution & linear time-invariant filtering are same concepts:
— {b¢} is input to filter
— {at} represents the filter
— {¢t} is filter output

o flow diagram for filtering: {b;} — — {ct}

e {a;} is called impulse response sequence for filter

e its DFT A(-) is called transfer function

o in general A(-) is complex-valued, so write A(f) = |A(f)[e??)

— |A(f)| defines gain function
— A(f) = |A(f)|? defines squared gain function
— 6(+) called phase function (well-defined at f if |A(f)| > 0)

WMTSA: 25 28




Example of a Low-Pass Filter

Lot=0
, s (1M 1o\ i
e consider by = ¢ (5) +355 (—5> &ap=497 t=—-lorl
0, otherwise
i {0} [ {ar}[ {eid

0 --!-TTTTTTTTTH-- 1Ty wertt 100,

THR IR N N O Y N B T R N
-8 -4 0 4 8-8-4 0 4 8-8-4 0 4 8
t t t

2?\ B() [ AC) | A()B()
1H — H
0 \ | \\\ \ R
0.0 0.50.0 0.50.0 0.5
/ ! f

e note: A(-) & B(-) both real-valued (A(-) = its gain function)

WMTSA: 25-26 1-29

Example of a High-Pass Filter

5t=0
e consider same {b¢}, but now let a; = —%, t=—1or1l
0, otherwise
[ b} [ a ¢
AR o I A o

o
-
-

[ [ R N
-8—-40 4 8-8-4 0 4 8-8-4 0 4 38
t t t

2h B() [ A() A()B()

1H L .

0 \‘ — «//‘ ] /\
0.0 0.50.0 0.50.0 0.5

! f f
e note: {as} resembles some wavelet filters we'll see later

WMTSA: 26-27 1-30

The Wavelet Filter: I

e precise definition of DWT begins with notion of wavelet filter
elet {h;:1=0,...,L — 1} be areal-valued filter of width L
— both hg and hj_; must be nonzero

— for convenience, will define hy =0 for i < 0and !> L

— L must be even (2,4,6,8,...) for technical reasons (hence
ruling out {a;} on the previous overhead)

WMTSA: 26-27 I-31

The Wavelet Filter: 11

e {h;} called a wavelet filter if it has these 3 properties

1. summation to zero:

2. unit energy:

L—-1
2 _
D=1
=0
3. orthogonality to even shifts: for all nonzero integers n, have

L1
> Wil =0
1=0

e 2 and 3 together are called the orthonormality property

WMTSA: 69 32




The Wavelet Filter: III

e summation to zero and unit energy relatively easy to achieve
e orthogonality to even shifts is key property & hardest to satisty

e define transfer and squared gain functions for wavelet filter:
L—1

H(f)=Y " hye ™ and H(f) = |H(f)

=0
e orthonormality property is equivalent to
Hf)+H(f+1)=2 forall f

(an elegant — but not obvious! — result)

WMTSA: 69-70 133

Haar Wavelet Filter

e simplest wavelet filter is Haar (L = 2): hg = % & hy = —ﬁ

e note that hg+ hy = 0 and h% + h% =1, as required

e orthogonality to even shifts also readily apparent

hi—s

-
hih_g —e=sssssssssssass g = ()

WMTSA: 69-70 1-34

D(4) Wavelet Filter: I

e next simplest wavelet filter is D(4), for which L = 4:

_1—4/3 _ =3+4/3 _ 3+/3 _ —1-/3
h()_4\/27h1_ 4\/27h2_4\/27h3_ /2

— ‘D’ stands for Daubechies

— L = 4 width member of her ‘extremal phase’ wavelets
e computations show »  hy=0& 7, hl2 = 1, as required

e orthogonality to even shifts apparent except for 4+2 case:

hl TAJT““““‘“““
hihi_o *'Ilm sum = 0
T B—

WMTSA: 59 1-35

D(4) Wavelet Filter: 11

e (): what is rationale for D(4) filter?

e consider Xt(l) =X — Xi1 = ag Xy + a1 X1,
where {ag = 1,a; = —1} defines 1st difference filter:

(X} — —{x1")
— Haar wavelet filter is normalized 1st difference filter
— Xt(l) is difference between two ‘1 point averages’
e consider filter ‘cascade’ with two 1st difference filters:
(X} — {1} — {1 -1} — ()

e by considering convolution of {1, —1} with itself, can reexpress
the above using a single ‘equivalent’” (2nd difference) filter:

(X} — {1, -2, 1} — {x,"}

WMTSA: 60-61 1-36




D(4) Wavelet Filter: III

e renormalizing and shifting 2nd difference filter yields high-pass

filter considered earlier:

1 _
5 t=0

ar = —%1, t=—1or1l
0, otherwise

e consider ‘2 point weighted average’ followed by 2nd difference:

{Xt} - ‘{a’a b}‘ - ‘{17 —2, 1}‘ - {Yi‘}

e convolution of {a, b} and {1, —2,1} yields an equivalent filter,
which is how the D(4) wavelet filter arises:

{Xi} — [{ho, h1, ho, ha} — {Vi}

WMTSA: 60-61 1-37

D(4) Wavelet Filter: IV

e using conditions
1. summation to zero: hg+ h1 + ho + hy =0
2. unit energy: h% + h% + h% + h% =1
3. orthogonality to even shifts: hghg + hihg =0
can solve for feasible values of a and b

e one solution is a = 1Y = 0.48 and b= ¥ = 0.13
(other solutions yield essentially the same filter)

e interpret D(4) filtered output as changes in weighted averages
— ‘change’ now measured by 2nd difference (1st for Haar)
— average is now 2 point weighted average (1 point for Haar)
— can argue that effective scale of weighted average is one

WMTSA: 60-61 [-38

Another Popular Daubechies Wavelet Filter

o LA(8) wavelet filter (‘LA’ stands for ‘least asymmetric’)

hl JAqJ—IHm
hihi_o *"TLn*“"“* sum = 0

h172 «-qj—l—'lm
hihy_y eestesmmsssssss g = ()

hl,4 “-A—A—lj—l—.l«w
hihj_g —wewereswsrsrsee qum = ()

hi—¢ ""‘"“TLI"’*

e resembles three-point high-pass filter {—%l, %, —%(} (somewhat)
e can interpret this filter as cascade consisting of

— 4th difference filter
— weighted average filter of width 4, but effective width 1

e filter output can be interpreted as changes in weighted averages

WMTSA: 108-109 -39

First Level Wavelet Coefficients: I

e given wavelet filter {h;} of width L & time series of length
N =2/ , obtain first level wavelet coefficients as follows

e circularly filter X with wavelet filter to yield output

L1 L1
S Xp =Y WXy jmean, t=0,...,N-1;
1=0 1=0

ie., if t — 1 does not satisty 0 <t —1 < N — 1, interpret X;_;
as Xt | mod N; €8, X1 =Xy_jand X_9=Xy_»
e take every other value of filter output to define
L—-1
Wi = Z b Xoti 1 imod Ny t=0,..., % -1
=0
{WLt} formed by downsampling filter output by a factor of 2

WMTSA: 70 140




First Level Wavelet Coeflicients: 11

e example of formation of {W7 4}

hi

h?XIS—lmodl()‘ TJ Z: l”*'-‘!lT'-“”
X15—[mod]6 lj_l'w l2

Wy, St

o {Wy 4} are unit scale wavelet coefficients — these are the ele-
ments of Wy and first N/2 elements of W = WX

e also have W1 = Wi X with W being first N/2 rows of W
e hence elements of W, dictated by wavelet filter

WMTSA: 70 I-41

Upper Half W, of Haar DWT Matrix W

e consider Haar wavelet filter (L = 2): hozﬁ&hlz—ﬁ

e when N = 16, W looks like
[hihg 000 00O 0O 0O0O0O0O0O0 0]
0 0hthg O 00000000000
000 0hh 0000000000
00000 0HhHhOO0O00000 0
00 0O0O0O0O0O0AhAhRhOOOOOO0
00 0O00O0O0OO0O0OO0Ahhh OOOO
00 0O00O0O0OO0O0OO0OO0O0Ah hyOO O
0000000000000 0 hh

e rows obviously orthogonal to each other

1-42

Upper Half W, of D(4) DWT Matrix W

e when L =4 & N = 16, W looks like

(hihg 0 0 0 0 0 00 0 0 0 0 0 hghy
hshyhihg 0 0000 0 0O0O0O0 0O
0 0 hahohyhg 0 0 0 00000 0 O
00 0 0hghyhihg O 0 0000 0O
00000 O0hshohihg 0O 000 0 0
00 000O0O0O0Hhyhyh hg O 00 0
00000 O0GO0O0O0 0 hy3hyh hy OO
0000000000 0 0 hshghyhg

e rows orthogonal because hghg + h1hg =0
e note: (Wpe, X) yields Wy = h1 Xy + ho X1 + hs X4 + ho X5

e unlike other coefficients from above, this ‘boundary’ coefficient
depends on circular treatment of X (a curse, not a feature!)

WMTSA: 81 143

Orthonormality of Upper Half of DWT Matrix: I

e can show that, for all L and even N,

L—-1

Wit = Z hi X111 mod N, OF, equivalently, Wy =W X
=0

forms half an orthonormal transform; i.e.,

wiwi = Iy

e Q: how can we construct the other half of W?

WMTSA: 72 I-44




The Scaling Filter: 1

e create scaling (or ‘father wavelet’) filter {g;} by reversing {h;}
and then changing sign of coefficients with even indices

{h} {h} reversed  {gi}
Haar 1 | lT i
oo ] | 1

o 2 filters related by g; = (=) hy 1 & by = (—=D)lgr_1_;

WMTSA: 75 1-45

The Scaling Filter: 11

e {g;} is ‘quadrature mirror’ filter corresponding to {h;}
e properties 2 and 3 of {h;} are shared by {g;}:

2. unit energy:
L

I
—

2
gy =1
=
3. orthogonality to even shifts: for all nonzero integers n, have

L-1
> 919100 =0
1=0

e scaling & wavelet filters both satisfy orthonormality property

o

WMTSA: 76 1-46

First Level Scaling Coefficients: I

e orthonormality property of {h;} is all that is needed to prove
W is half of an orthonormal transform (never used ), hy = 0)

e going back and replacing h; with g; everywhere yields another
half of an orthonormal transform

e circularly filter X using {g;} and downsample to define
L—1

_ N
VLt = § ng2t+1fl mod N» t= 0,..., 9 1
=0

o {14} called scaling coefficients for level j =1
e place these N/2 coefficients in vector called V

WMTSA: 77 147

First Level Scaling Coefficients: II1

e define V| in a manner analogous to W, so that V| = VX
e when L =4 and N = 16, V] looks like
(g1 900 000 00 00

0
93929190 0 0.0 0 0 0 0
0 0g392919 0 0 000
0 0

0

[\

93 g

w

0
0
0
00 0g3929190 0 0
0

O O O O O

00 0939 919
000009392919 00
00

0000 0939291 9
_0000000000093929190_

e V1 obeys same orthonormality property as Wy:
similar to W1W1T = Iy, have V1V1T =1y
2 2

00
00
0 0
00
00
00

o O O O
o O O
o O O

o

WMTSA: 77 148




Orthonormality of V; and Wi: 1

e Q: how does Vy help us?
e A: rows of V| and W are pairwise orthogonal!

e readily apparent in Haar case:

P | E—

gihi sum = 0
SEmE

WMTSA: 77-78 1-49

Orthonormality of V; and Wy: 11

e let’s check that orthogonality holds for D(4) case also:

glh‘l—Q i ssnnnnnnan sum = 0

P E—
qgihy WL_ sum = 0

T

hl*? *"ﬂll’w

Orthonormality of V; and W: III

e implies that
w
P = [ Vll]

is an N x N orthonormal matrix since

PPl = R}‘H Wi vl

_ [ wpy!
wwi vl

Iy Oy
On In Iy
)

2
e if N =2 (not of too much interest!), in fact P; = W

o if N > 2 Py is an intermediate step: V; spans same subspace
as lower half of YW and will be further manipulated

Interpretation of Scaling Coefficients: I

e consider Haar scaling filter (L = 2): gy = g1 = ﬁ

e when N = 16, matrix V looks like

(g1 900 000000000000 O]
00gigp0000000DO0O0O0GOO
0000g g000000O0O0O0O
000000gg0000O0O0O00O
0000000 O0ggOo00000
00000000O0O0GgOoO0O00
000000000O0O0OGGgO00
(0000000000000 0 g go

e since Vi = V1 X, each V7 ¢ is proportional to a 2 point average:

Vio=g1X0+ goX1 = ﬁXo + ﬁXl o X1(2) and so forth

52




Interpretation of Scaling Coefficients: II

e reconsider shapes of {g;} seen so far:

Haar

o for L > 2, can regard Vi 4 as proportional to weighted average

e can argue that effective width of {g;} is 2 in each case; thus
scale associated with Vi ¢ is 2, whereas scale is 1 for Wy ¢

Frequency Domain Properties of Scaling Filter

e define transfer and squared gain functions for {g;}
L-1

G(f) =Y ge ™ & g(f) = |G

=0
e can argue that G(f) = H(f + %), which, combined with
H(f) +H(f+5) =2

yields
H(f)+G(f) =2

WMTSA: 76 I-54

Frequency Domain Properties of {/;} and {g;}

esince W; & V7 contain output from filters, consider their
squared gain functions, recalling that H(f) + G(f) =2

e example: H(-) and G(-) for Haar & D(4) filters

2L H() ! g()
Haar 1 r

07 | | | ] | | | )

QHV o
D(4) 1r N

07 | | | ] I | | ]

1
0001 02 03 04050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]

WMTSA: 73 I-55

Example of Decomposing X into W and V: 1

e oxygen isotope records X from Antarctic ice core
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Example of Decomposing X into W and Vy: 11

e oxygen isotope record series X has N = 352 observations

e spacing between observations is A = (0.5 years

e used Haar DWT, obtaining 176 scaling and wavelet coefficients
e scaling coefficients V' related to averages on scale of 2A

e wavelet coefficients W7 related to changes on scale of A

e coefficients V7 ; and W plotted against mid-point of years
associated with Xo; and Xop4q

e note: variability in wavelet coefficients increasing with time
(thought to be due to diffusion)

e data courtesy of Lars Karlof, Norwegian Polar Institute, Polar
Environmental Centre, Tromsg, Norway
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Reconstructing X from W; and V;

e in matrix notation, form wavelet & scaling coeflicients via

Wil [wiX] Wile
{Vl]_{le}_{Vl}X_ﬂX

e recall that 731T Py = I because Pj is orthonormal

e since PlT P1X = X, premultiplying both sides by 731T yields

W A%
P V] - v [V

}—W{Wﬁv'{vl—x

oD = W’ir W is the first level detail
eS| = VlT V| is the first level ‘smooth’
e X =Dy + & in this notation

WMTSA: 80-81 [-58

Example of Synthesizing X from D; and S

e Haar-based decomposition for oxygen isotope records X
—42[
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First Level Variance Decomposition: I

o recall that ‘energy’ in X is its squared norm || X||?

e because Py is orthonormal, have 73? P1 = Iy and hence
[PIX]? = (PIX)TPIX = XTPIPIX = XTX = [|X]?

e can conclude that [|X|[|? = [|[W||? + || V1]|? because

PiX = {\3711] and hence ||'731XH2 = HVVlH2 + ||V1||2

e leads to a decomposition of the sample variance for X:
1 N—-1 5 1

— X —X) = |IX|?P-X

N pr ( t ) NH H

2 2
UX:

1 9 1 2 —2
—||W —|V1]]* = X
AIWill”+ Sl Vi

1-60




First Level Variance Decomposition: 11

e breaks up 63( into two pieces:
L. %HW1||2, attributable to changes in averages over scale 1
2. %HV1||2 - 72, attributable to averages over scale 2

e Haar-based example for oxygen isotope records

— first piece: %HWlﬂ2 =0.295
— second piece: %||V1||2 ~ X% =2.909
— sample variance: 63( = 3.204

— changes on scale of A = 0.5 years account for 9% of 6%
(standardized scale 1 corresponds to physical scale A)

I-61

Summary of First Level of Basic Algorithm

o transforms { Xy : ¢t =0,..., N — 1} into 2 types of coefficients
e N/2 wavelet coefficients {W7 ;} associated with:

— W, a vector consisting of first N/2 elements of W

— changes on scale 1 and nominal frequencies % <|f] < %

— first level detail Dy

— Wy, an % x N matrix consisting of first g rows of W
o N/2 scaling coefficients {V7 ;} associated with:

— V1, a vector of length N/2

— averages on scale 2 and nominal frequencies 0 < |f] < %

— first level smooth &;

— V1, an % x N matrix spanning same subspace as last N/2
rows of W
WMTSA: 86-87 1-62

Constructing Remaining DWT Coefficients: 1

e have regarded time series X; as ‘one point’ averages X (1) over
scale of 1

e first level of basic algorithm transforms X of length NV into

— N/2 wavelet coefficients W o< changes on a scale of 1

— N/2 scaling coefficients V| o< averages of X3 on a scale of 2

e in essence basic algorithm takes length N series X related to
scale 1 averages and produces

— length N/2 series W7 associated with the same scale
— length N/2 series V| related to averages on double the scale

WMTSA: Section 4.5 163

Constructing Remaining DWT Coefficients: II

e ): what if we now treat V7 in the same manner as X7
e basic algorithm will transform length N/2 series V7 into
— length N/4 series Wy associated with the same scale (2)
— length N/4 series Vg related to averages on twice the scale
e by definition, W4 contains the level 2 wavelet coefficients
e (): what if we treat Vo in the same way?
e basic algorithm will transform length N/4 series Vo into
— length N/8 series W3 associated with the same scale (4)
— length N/8 series V3 related to averages on twice the scale

e by definition, W3 contains the level 3 wavelet coefficients

WMTSA: Sections 4.5 and 4.6 164




Constructing Remaining DWT Coefficients: III

e continuing in this manner defines remaining subvectors of W
(recall that W = WX is the vector of DWT coefficients)

e at each level j, outputs W, and V; from the basic algorithm
are each half the length of the 1nput Vi

e length of V; given by N/2J
e since N = 27 , length of V ;is 1, at which point we must stop

e J applications of the basic algorithm defines the remaining
subvectors Wo, ..., W, V ; of DWT coefficient vector W

e overall scheme is known as the ‘pyramid’ algorithm

WMTSA: Section 4.6, 100-101 1-65

Scales Associated with DWT Coefficients

e jth level of algorithm transforms scale 27! averages into
— differences of averages on scale 27=1 ie., wavelet coefficients
Wi
— averages on scale 2 x 2071 =927 ., scaling coefficients V;
°T; = 27~ denotes scale associated with W;
—forj=1,...,J, takes on values 1,2,4,... , N/4, N/2
o\ = 2 = 27; denotes scale associated with V;

— takes on values 2,4,8, ..., N/2, N

WMTSA: 85 [-66

Matrix Description of Pyramid Algorithm: I

e form é\j X QJN1 matrix B; in same way as % N % N matrix Wi

e when L = 4 and N/2/~! = 16, have

hihg 00 00 000000 0 0 hsho
hshohihg 0 00000 0O0O0O0O0 0
0 0 h3hohihg O 0000 0O0O0 0 0
5|0 0 0 0hshyhihg 00 000000
7710 0 0 0 0 0h3shohihg 00000 0
000000 0O0Hh3hhihgO OO0
00 000U0O0O0O0O0Hhghyhghg O 0
(000000000000 0 hghyhyh

e matrix gets us jth level wavelet coefficients via W, = B;V;_

WMTSA: 94 167

Matrix Description of Pyramid Algorithm: II

e form é\j X 2JN 1 matrix A; in same way as 4 N % N matrix V;

e when L = 4 and N/2/~! = 16, have

(91900 0000000000 0 g3g]
939291900 00000000000
00g3g291900 000000000
400009599900 0000000
77100000 0g3g29190 0000 0
0000000O0Ggggg 0000
00000000O0O0Gg;gg g 00
000000000000 g3g g1 90

e matrix gets us jth level scaling coefficients via V; = A;V;_4

WMTSA: 94 68




Matrix Description of Pyramid Algorithm: III

e if we define Vg = X and let 5 = 1, then
W, =B;V;_1 reduces to Wy =BVy=BX=WX
because By has the same definition as W,
e likewise, when j =1,
V,;=A;V,_q reduces to Vi = A41Vy=A4X=VX

because A; has the same definition as Vg

WMTSA: 94 69

Formation of Submatrices of W: 1

o using V; = A;V;_j repeatedly and Vi = A1 X, can write
W]‘ = BjVj—l
= BjAj_lvj'_Q
= BjA;_1A; 9V 3
= BjA; 1A 9 AAX =W,;X|
where W is QHJ X N submatrix of VW responsible for W
e likewise, can get 1 x N submatrix V; responsible for V 5
Vy=AVia
= AjAj-1V -2
= AjAj1A 2V -3
=AjA; JAf o - 41X =V;X
e V; is the last row of W, & all its elements are equal to 1/y/N

WMTSA: 94 I-70

Formation of Submatrices of W: II

e have now constructed all of DWT matrix:

Wi B
W» ByAy
Ws B3 As Ay

Wy By A3A2A
Wj BjAj,1 Ay

Wy ByAj_1--- Ay
Vy AJA 1 Ap

WMTSA: 94 71

Examples of W and its Partitioning: I

e N = 16 case for Haar DWT matrix W

()T'Lm..m Y L PP
1W o EEEPELLERE A
B R T O | L W,
3W 11 freenensnsnsa 1T
Wi ey e I SRS
5 fremnsssses Lo R e LLLE Wi
I I I I I I I I
0 5 10 15 0 5 10 15
t t

e above agrees with qualitative description given previously




Examples of VW and its Partitioning: 11 Partial DWT: 1

e N = 16 case for D(4) DWT matrix W e J repetitions of pyramid algorithm for X of length N = 2/
_ ~ yields ‘complete’ DWT, i.e., W = WX
(1) " a 2 T . e can choose to stop at Jy < J repetitions, yielding a ‘partial’
oen, T Wa DWT of level Jy:
W, i T g - RAZN [ By | [ Wy ]
5lesssessslrnesee Bttt V3 Wy By Ay Wy
(] PETTTERRRR, B 14 Hwweetftee,, W, : : :
7 L I P Vi Wi | X=| BjAj_1 A | X=|W,
0 5 1015 0 5 10 1 : : :
t t ‘ Wi, BiAs 1Al W,
e note: elements of last row equal to 1/4/N = 1/4, as claimed ZN _AJOAJo—l A V]

°Vjy, is % x N, yielding 2—]\]0 coefficients for scale A j, = 20

73 WMTSA: 104 I-74

Partial DWT: I1 Example of Jy =4 Partial Haar DWT

: ; : Jo ) ..
e only requires IV to be integer multiple of 2 e oxygen isotope records X from Antarctic ice core

e partial DW'T more common than complete DWT r

e choice of Jj is application dependent L Vv,

e multiresolution analysis for partial DW'T: i | ‘
Jo L ‘ | \ [ S ‘ o ‘ W,
X:ZDJ—FSJO I N \ I

g=1 + H“ AR RRERENN ‘w\H ““‘\ W;

S j, represents averages on scale A j, = 2J0 (includes X)) B L R U D \“_ _“‘ W,

e analysis of variance for partial DWT: I bl oo oy e W
—u2[

24— 2 _x? —53.8 W/‘MW\’MMNM
UX NZ W17+ HV‘]U” 1800 1900 2000

year

WMTSA: 104 75 WMTSA: 104 176




Example of MRA from Jy =4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core

I m % S,
e[l il o,

e

Dy

!

—44.2

—49.0

—53.8

L L L L L L L L L L L L L L L |
1800 1850 1900 1950 2000

WMTSA: 104 77

Example of Variance Decomposition

e decomposition of sample variance from Jy = 4 partial DWT

4

N—-1
o1 2 1 2, 1 2 _ w2
UX:NZt() (Xe=X)"= > FIW,I° + FlVall® - X

j=1
e Haar-based example for oxygen isotope records
— 0.5 year changes: %HW1H2 =0.295 (= 9.2% Ofé'%()
— 1.0 years changes: %”WQHZ = 0.464 (= 14.5%)
— 2.0 years changes: %HWgHQ = 0.652 (= 20.4%)
— 4.0 years changes: %||W4||2 = 0.846 (= 26.4%)
— 8.0 years averages: %||V4||2 — Xtz 0.047 (=29.5%)
— sample variance: &g( =3.204
WMTSA: 104 L7

Haar Equivalent Wavelet & Scaling Filters

{hu} Tl L=
{ha} TTM Ly=4
{hasy Mg L=
{hay T Ly =16
{oy 1 L=
{g20y I Ly=4
P L=
(s, I Li=16

oL;= 27 is width of {hji} and {g;,}
e note: convenient to define {hy ;} to be same as {h;}

79

D(4) Equivalent Wavelet & Scaling Filters

{h} =k

{hay} -sealepe

) p— Sl

{hag} 2l —
{o} 1=

{go1} .,

{g&] } -TTTTTTTTF- .

{gu1} w1 T ten,

L=4
Ly =10
Ly =22
Ly=46
L=4
Ly =10
Ly=22
Ly=46

e L; dictated by general formula L; = (27 —1)(L —1) +1,
but can argue that effective width is 27 (same as Haar L)

WMTSA: 98 1-80




LA (8) Equivalent Wavelet & Scaling Filters

{h} =l L=
{ha} '-JT T Ly =22
{h3.1} - e L3 =50
{ha} __‘w_.mTTTh._.w___ Ly =106
{g} - e, L=38
{go} e Sl Lo =22
{g3:} o110, Ls = 50
{941} L L. Ly = 106
WMTSA: 08 181

Maximal Overlap Discrete Wavelet Transform

e abbreviation is MODWT (pronounced ‘mod WT")

e transforms very similar to the MODWT have been studied in
the literature under the following names:

— undecimated DWT (or nondecimated DWT)
— stationary DWT

— translation invariant DW'T

— time invariant DW'T

— redundant DWT

e also related to notions of ‘wavelet frames” and ‘cycle spinning’

e basic idea: use values removed from DWT by downsampling

WMTSA: 159 1-82

Quick Comparison of the MODWT to the DWT

e unlike the DWT, MODWT is not orthonormal (in fact MODWT
is highly redundant)

e unlike the DWT, MODWT is defined naturally for all samples
sizes (i.e., N need not be a multiple of a power of two)

e similar to the DWT, can form multiresolution analyses (MRAs)
using MODWT with certain additional desirable features; e.g.,
unlike the DWT, MODWT-based MRA has details and smooths
that shift along with X (if X has detail D;, then 7"X has

detail Tmﬁj, where 7" circularly shifts X by m units)

e similar to the DWT, an analysis of variance (ANOVA) can be
based on MODWT wavelet coefficients

e unlike the DWT, MODWT discrete wavelet power spectrum
same for X and its circular shifts 7"X

WMTSA: 159-160 1-83

Definition of MODWT Coefficients: 1

e define MODWT filters {ﬁﬂ} and {g;,;} by renormalizing the
DWT filters:

- ™ ) 1o
hjp=hja/?? and gjy = g/
e level j MODWT wavelet and scaling coefficients are defined to
be output obtaining by filtering X with {h;;} and {g;}:

X — {ijJ} — Wj and X — {gj,l} — vj

e compare the above to its DWT equivalent:

X — {hﬂ} — W and X — {gj,l} — V;
127 127

e level Jy MODWT consists of Jy + 1 vectors, namely,
W1, Wo,..., Wy and V,
each of which has length N

WMTSA: 169 -84




Definition of MODWT Coefficients: II

e MODWT of level Jj has (Jy+1)N coefficients, whereas DWT
has N coefficients for any given .Jj
e whereas DW'T of level Jj requires N to be integer multiple of
270, MODWT of level Jy is well-defined for any sample size N
e when N is divisible by 270, we can write
Li—1 Li—1
Wj’t - Z hjleQJ(t+1)—1—l mod N & Wjﬂf - Z hj'JXt—l mod N
=0 =0
and we have the relationship

_oj/2wr . : ‘e __oJy/2
W= 93/ Wj,QJ(t+1)—1 &, likewise, V4 =2 0/ VJ0,2J0(t+1)71

(here ﬁ//j,t & 17(]07,5 denote the tth elements of Wj &V Jo)

WMTSA: 96-97, 169, 203 -85

Properties of the MODWT

e as was true with the DW'T, we can use the MODW'T to obtain
— a scale-based additive decomposition (MRA):
Jo
X= Z Dj+Sy
j=1
— a scale-based energy decomposition (basis for ANOVA):
Jo
2 W .12 \7 2
X = IWSIP + [Vl
j=1
e in addition, the MODW'T can be computed efficiently via a
pyramid algorithm

WMTSA: 159-160 [-86

Example of Jy =4 LA(8) MODWT

e oxygen isotope records X from Antarctic ice core

T_'ds\?z;

r M\MW\A/\/\/\/ T753W4
T 2
i WMMWVWMWWMWA/\M}WNWMM T-1W,

WMMMMWWWVMWWMW 774\/\7\7]

—44271

—53.8

1800 1850

L 1 L L L
1900
year

L L L L L |
1950 2000

187

Relationship Between MODWT and DWT

e bottom plot shows W from DWT after circular shift 72 to
align coefficients properly in time

e top plot shows W4 from MODWT and subsamples that, upon
rescaling, yield Wy via Wy ; = 4W4,16(t 1)1

ol
0 \/m\y v e A \/NA\ a T-%W,
0 ‘ - ‘ . . ‘ | ‘ 773W4
12 .
1800 1850 1900 1950 2000

year

I-88




Example of Jy =4 LA(8) MODWT MRA

e oxygen isotope records X from Antarctic ice core

| ! T T v Doy M D)
AR S ettt A b AR I | A ML L ML | Dl

—442[

—53.8

L L L L 1 L L L L L L
1800 1850 1900

L L L L L |
1950 2000

year

-89

Example of Variance Decomposition

e decomposition of sample variance from MODWT

= B ST
ox =5 2. (Xe=X)" =3 SlIW,IP + Vil = X
=0 j=1
e LA(8)-based example for oxygen isotope records
— 0.5 year changes: %H\’K/}HQ =0.145 (= 4.5% 0f6§()
— 1.0 years changes: %”WQHQ = 0.500 (= 15.6%)
— 2.0 years changes: %H{?v\/'gﬂ2 = 0.751 (= 23.4%)
— 4.0 years changes: %HVN\QH2 = 0.839 (= 26.2%)
— 8.0 years averages: %H\NQH2 ~ X% =0.969 (=30.2%)
— sample variance: &g( = 3.204

1-90

Summary of Key Points about the DWT: I

o the DWT W is orthonormal, i.e., satisfies WIW = T N

e construction of W starts with a wavelet filter {h;} of even
length L that by definition

1. sums to zero; i.e., > ; hy =0;
2. has unit energy; i.c., ) hl2 =1; and
3. is orthogonal to its even shifts; i.e., >, hthji0, =0
e 2 and 3 together called orthonormality property
o wavelet filter defines a scaling filter via g; = (—=1)"hy 1

e scaling filter satisfies the orthonormality property, but sums to
v/2 and is also orthogonal to {f;}; i.e., > gihyio, =0

e while {h;} is a high-pass filter, {g;} is a low-pass filter

WMTSA: 150-156 91

Summary of Key Points about the DWT: I1

e {h;} and {g;} work in tandem to split time series X into
— wavelet coefficients W (related to changes in averages on a
unit scale) and
— scaling coefficients V' (related to averages on a scale of 2)

e {h;} and {g;} are then applied to V7, yielding

— wavelet coefficients Wy (related to changes in averages on a
scale of 2) and
— scaling coefficients Vg (related to averages on a scale of 4)
e continuing beyond these first 2 levels, scaling coefficients V;_1

at level j — 1 are transformed into wavelet and scaling coeffi-
cients W and V; of scales 7; = 27—1 and Aj= 2J

WMTSA: 150-156 192




Summary of Key Points about the DWT: III

e after Jy repetitions, this ‘pyramid’ algorithm transforms time
series X whose length N is an integer multiple of 270 into DWT

coefficients W1, Wy, ..., W jand V j, (sizes of vectors are

0
%. %, e % and %, for a total of N coefficients in all)
' 270 270

e DWT coefficients lead to two basic decompositions
e first decomposition is additive and is known as a multiresolution
analysis (MRA), in which X is reexpressed as
Jo
X = Z Dj + SQ Jo»
j=1
where Dj is a time series reflecting variations in X on scale 75,
while S is a series reflecting its A 7, averages

WMTSA: 150-156 1-93

Summary of Key Points about the DWT: IV

e second decomposition reexpresses the energy (squared norm)
of X on a scale by scale basis, i.e.,

Jo

2 2 2
X =D WP+ IV 17
=1

leading to an analysis of the sample variance of X:
1 N-1 5
) -
0X =N > (% -X)
t=0
. 1
2 2 ¥
= = IW I VP - X
7=1

2

WMTSA: 150-156 1-94

Summary of Key Points about the MODWT

e similar to the DWT, the MODWT offers

— a scale-based multiresolution analysis

— a scale-based analysis of the sample variance

— a pyramid algorithm for computing the transform efficiently

e unlike the DWT, the MODWT is

— defined for all sample sizes (no ‘power of 2’ restrictions)

— unaffected by circular shifts to X in that coefficients, details
and smooths shift along with X

— highly redundant in that a level Jy transform consists of
(Jo + 1)N values rather than just N

e MODWT can eliminate ‘alignment’ artifacts, but its redundan-
cies are problematic for some uses

WMTSA: 159-160 1-95




