Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images (mostly)
- following work on continuous wavelet transform by Morlet and co-workers in 1983, Daubechies, Mallat and others introduced discrete wavelet transform (DWT) in 1988
- begin with qualitative description of the DWT
- discuss two key descriptive capabilities of the DWT:
 - multiresolution analysis (an additive decomposition)
 - wavelet variance or spectrum (decomposition of sum of squares)
- look at how DWT is formed based on a wavelet filter
- discuss maximal overlap DWT (MODWT)

Qualitative Description of DWT: I

- let \(X = [X_0, X_1, \ldots, X_{N−1}]^T \) be a vector of \(N \) time series values (note: ‘\(T \)’ denotes transpose; i.e., \(X \) is a column vector)
- assume initially \(N = 2^J \) for some positive integer \(J \) (will relax this restriction later on)
- example of time series with \(N = 16 = 2^4 \):
 \[
 X = \begin{bmatrix}
 0.2, -0.4, -0.6, -0.5, -0.8, -0.4, -0.9, & 0.0, \\
 -0.2, & 0.1, -0.1, & 0.1, & 0.7, & 0.9, & 0.0, & 0.3
 \end{bmatrix}^T
 \]

Qualitative Description of DWT: II

- DWT is a linear transform of \(X \) yielding \(N \) DWT coefficients
- notation: \(W = WX \)
 - \(W \) is vector of DWT coefficients (\(j \)th component is \(W_j \))
 - \(W \) is \(N \times N \) orthonormal transform matrix
- orthonormality says \(W^TW = I_N \) (\(N \times N \) identity matrix)
- inverse of \(W \) is just its transpose, so \(WW^T = I_N \) also

Implications of Orthonormality

- let \(W^T_j \) denote the \(j \)th row of \(W \), where \(j = 0, 1, \ldots, N – 1 \)
- let \(W_{j,l} \) denote \(l \)th element of \(W_{j,\bullet} \)
- consider two rows, say, \(W^T_j \) and \(W^T_k \)
- orthonormality says
 \[
 \langle W^T_j, W^T_k \rangle \equiv \sum_{l=0}^{N−1} W_{j,l} W_{k,l} = \begin{cases} 1, & \text{when } j = k, \\
 0, & \text{when } j \neq k \end{cases}
 \]
 - \(\langle W^T_j, W^T_k \rangle \) is inner product of \(j \)th & \(k \)th rows
 - \(\langle W^T_j, W^T_j \rangle = ||W^T_j||^2 \) is squared norm (energy) for \(W^T_j \)
Example: the Haar DWT

- \(N = 16 \) example of Haar DWT matrix \(\mathcal{W} \)

\[
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

- note that rows are orthogonal to each other (i.e., inner products are zero)

Haar DWT Coefficients: I

- obtain Haar DWT coefficients \(\mathbf{W} \) by premultiplying \(\mathbf{X} \) by \(\mathcal{W} \):
 \[\mathbf{W} = \mathcal{W} \mathbf{X} \]

- \(j \)th coefficient \(\mathbf{W}_j \) is inner product of \(j \)th row \(\mathcal{W}^T_j \) and \(\mathbf{X} \):
 \[\mathbf{W}_j = \langle \mathcal{W}^T_j, \mathbf{X} \rangle \]

- can interpret coefficients as difference of averages
- to see this, let
 \[
 \bar{X}_t(\lambda) = \frac{1}{\lambda} \sum_{t=0}^{\lambda-1} X_{t-l} = \text{‘scale } \lambda \text{’ average}
 \]
 - note: \(\bar{X}_1(1) = X_t = \text{scale } 1 \text{ ‘average’} \)
 - note: \(\bar{X}_{N-1}(N) = \bar{X} = \text{sample average} \)

Haar DWT Coefficients: II

- consider form \(W_0 = \langle \mathcal{W}_0^\dagger, \mathbf{X} \rangle \) takes in \(N = 16 \) example:

\[
\begin{array}{cccccccccccccccc}
\mathcal{W}_0^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_t(1) - \bar{X}_0(1) \\
\mathcal{W}_0^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_t(1) - \bar{X}_0(1) \\
\mathcal{W}_0^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_t(1) - \bar{X}_0(1) \\
\mathcal{W}_0^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_t(1) - \bar{X}_0(1) \\
\mathcal{W}_0^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_t(1) - \bar{X}_0(1) \\
\mathcal{W}_0^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_t(1) - \bar{X}_0(1) \\
\mathcal{W}_0^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_t(1) - \bar{X}_0(1) \\
\mathcal{W}_0^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_t(1) - \bar{X}_0(1) \\
\end{array}
\]

- similar interpretation for \(W_1, \ldots, W_{\frac{N}{2}-1} = W_7 = \langle \mathcal{W}_7^\dagger, \mathbf{X} \rangle \):

\[
\begin{array}{cccccccccccccccc}
\mathcal{W}_7^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{15}(1) - \bar{X}_1(1) \\
\mathcal{W}_7^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{15}(1) - \bar{X}_1(1) \\
\mathcal{W}_7^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{15}(1) - \bar{X}_1(1) \\
\mathcal{W}_7^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{15}(1) - \bar{X}_1(1) \\
\mathcal{W}_7^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{15}(1) - \bar{X}_1(1) \\
\mathcal{W}_7^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{15}(1) - \bar{X}_1(1) \\
\mathcal{W}_7^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{15}(1) - \bar{X}_1(1) \\
\mathcal{W}_7^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{15}(1) - \bar{X}_1(1) \\
\end{array}
\]

Haar DWT Coefficients: III

- now consider form of \(W_{\frac{N}{2}} = W_8 = \langle \mathcal{W}_8^\dagger, \mathbf{X} \rangle \):

\[
\begin{array}{cccccccccccccccc}
\mathcal{W}_8^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{16}(2) - \bar{X}_1(2) \\
\mathcal{W}_8^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{16}(2) - \bar{X}_1(2) \\
\mathcal{W}_8^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{16}(2) - \bar{X}_1(2) \\
\mathcal{W}_8^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{16}(2) - \bar{X}_1(2) \\
\mathcal{W}_8^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{16}(2) - \bar{X}_1(2) \\
\mathcal{W}_8^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{16}(2) - \bar{X}_1(2) \\
\mathcal{W}_8^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{16}(2) - \bar{X}_1(2) \\
\mathcal{W}_8^\dagger & \mathbf{X}_t & \sum & \propto & \bar{X}_{16}(2) - \bar{X}_1(2) \\
\end{array}
\]

- similar interpretation for \(W_{\frac{N}{2}+1}, \ldots, W_{\frac{3N}{4}-1} \)
Haar DWT Coefficients: IV

- $W_{N}^{N} = W_{12} = \langle W_{12}^{\bullet}, X \rangle$ takes the following form:
 $$W_{N}^{N} \propto \sum X \tau(4) - X(4)$$
- continuing in this manner, come to $W_{N-2} = \langle W_{14}^{\bullet}, X \rangle$:
 $$W_{N-2} \propto \sum X \tau(16) - X(8)$$

Structure of DWT Matrices

- $\frac{N}{2^{j}}$ wavelet coefficients for scale $\tau_j = 2^{j-1}$, $j = 1, \ldots, J$
 - $\tau_j = 2^{j-1}$ is standardized scale
 - $\tau_j \Delta$ is physical scale, where Δ is sampling interval
 - each W_j localized in time: as scale \uparrow, localization \downarrow
 - rows of W for given scale τ_j:
 - circularly shifted with respect to each other
 - shift between adjacent rows is $2\tau_j = 2^j$
 - similar structure for DWTs other than the Haar
 - differences of averages common theme for DWTs
 - simple differencing replaced by higher order differences
 - simple averages replaced by weighted averages

Haar DWT Coefficients: V

- final coefficient $W_{N-1} = W_{15}$ has a different interpretation:
 $$W_{N-1} \propto \sum \omega \tau(4) - \omega(4)$$
- structure of rows in W
 - first $\frac{N}{2}$ rows yield $W_j \propto$ changes on scale 1
 - next $\frac{N}{4}$ rows yield $W_j \propto$ changes on scale 2
 - next $\frac{N}{8}$ rows yield $W_j \propto$ changes on scale 4
 - next to last row yields $W_j \propto$ average on scale $\frac{N}{2}$
 - last row yields $W_j \propto$ average on scale N

Two Basic Decompositions Derivable from DWT

- additive decomposition
 - reexpresses X as the sum of $J + 1$ new time series, each of which is associated with a particular scale τ_j
 - called multiresolution analysis (MRA)
- energy decomposition
 - yields analysis of variance across J scales
 - called wavelet spectrum or wavelet variance
Partitioning of DWT Coefficient Vector \mathbf{W}

- decompositions are based on partitioning of \mathbf{W} and \mathbf{V}
- partition \mathbf{W} into subvectors associated with scale:

$$\mathbf{W} = \begin{bmatrix}
\mathbf{W}_1 \\
\mathbf{W}_2 \\
\vdots \\
\mathbf{W}_j \\
\mathbf{V}_j
\end{bmatrix}$$

- \mathbf{W}_j has $N/2^j$ elements (scale $\tau_j = 2^{j-1}$ changes)
 note: $\sum_{j=1}^{J} \frac{N}{2^j} = \frac{N}{2} + \frac{N}{4} + \cdots + 2 + 1 = 2^j - 1 = N - 1$
- \mathbf{V}_j has 1 element, which is equal to $\sqrt{N} \cdot \bar{X}$ (scale N average)

Partitioning of DWT Matrix \mathbf{W}

- partition \mathbf{W} commensurate with partitioning of \mathbf{W}:

$$\mathbf{W} = \begin{bmatrix}
\mathbf{W}_1 \\
\mathbf{W}_2 \\
\vdots \\
\mathbf{W}_j \\
\mathbf{V}_j
\end{bmatrix}$$

- \mathbf{W}_j is $\frac{N}{2^j} \times N$ matrix (related to scale $\tau_j = 2^{j-1}$ changes)
- \mathbf{V}_j is $1 \times N$ row vector (each element is $\frac{1}{\sqrt{N}}$)

Example of Partitioning of \mathbf{W}

- consider time series \mathbf{X} of length $N = 16$ & its Haar DWT \mathbf{W}

Example of Partitioning of \mathbf{W}

- $N = 16$ example of Haar DWT matrix \mathbf{W}
 - two properties: (a) $\mathbf{W}_j \mathbf{X} = \mathbf{W}_j$ and (b) $\mathbf{W}_j \mathbf{W}_j^T = I_{\frac{N}{2^j}}$
DWT Analysis and Synthesis Equations

- recall the DWT analysis equation \(W = \mathcal{W}X \)
- \(\mathcal{W}^T \mathcal{W} = I_N \) because \(\mathcal{W} \) is an orthonormal transform
- implies that \(\mathcal{W}^T \mathcal{W} = \mathcal{W}^T \mathcal{W} X = X \)
- yields DWT synthesis equation:

\[
X = \mathcal{W}^T W = \begin{bmatrix} \mathcal{W}_1^T \\ \mathcal{W}_2 \\ \vdots \\ \mathcal{W}_J \\ \mathcal{V}_J \end{bmatrix} \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \vdots \\ \mathcal{W}_J \\ \mathcal{V}_J \end{bmatrix}
\]

\[
= \sum_{j=1}^{J} \mathcal{W}_j^T \mathcal{W}_j + \mathcal{V}_j \mathcal{V}_j
\]

Multiresolution Analysis: I

- synthesis equation leads to additive decomposition:

\[
X = \sum_{j=1}^{J} \mathcal{W}_j^T \mathcal{W}_j + \mathcal{V}_j \mathcal{V}_j \equiv \sum_{j=1}^{J} \mathcal{D}_j + \mathcal{S}_j
\]

- \(\mathcal{D}_j \equiv \mathcal{W}_j^T \mathcal{W}_j \) is portion of synthesis due to scale \(\tau_j \)
- \(\mathcal{D}_j \) is vector of length \(N \) and is called \(j \)th ‘detail’
- \(\mathcal{S}_j \equiv \mathcal{V}_j \mathcal{V}_j \mathcal{V}_j = \mathbf{X} \mathbf{1} \), where \(\mathbf{1} \) is a vector containing \(N \) ones
 (later on we will call this the ‘smooth’ of \(J \)th order)
- additive decomposition called multiresolution analysis (MRA)

Multiresolution Analysis: II

- example of MRA for time series of length \(N = 16 \)

\[
X = \begin{bmatrix} S_4 \\ D_4 \\ D_3 \\ D_2 \\ D_1 \\ 1 \\ 0 \\ -1 \end{bmatrix}
\]

- adding values for, e.g., \(t = 14 \) in \(D_1, \ldots, D_4 \) & \(S_4 \) yields \(X_{14} \)

Energy Preservation Property of DWT Coefficients

- define ‘energy’ in \(X \) as its squared norm:

\[
\|X\|^2 = \langle X, X \rangle = X^T X = \sum_{t=0}^{N-1} X_t^2
\]

- energy of \(X \) is preserved in its DWT coefficients \(\mathcal{W} \) because

\[
\|\mathcal{W}\|^2 = \mathcal{W}^T \mathcal{W} = \langle \mathcal{W}X, \mathcal{W}X \rangle
\]

\[
= X^T \mathcal{W}^T \mathcal{W} X
\]

\[
= X^T I_N X = X^T X = \|X\|^2
\]

- note: same argument holds for any orthonormal transform
Wavelet Spectrum (Variance Decomposition): I

- Let \bar{X} denote sample mean of X_t: $\bar{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$
- Let σ_X^2 denote sample variance of X_t's:
 \[\sigma_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 - \bar{X}^2 \]
 \[= \frac{1}{N} \|X\|^2 - \bar{X}^2 \]
 \[= \frac{1}{N} \|W\|^2 - \bar{X}^2 \]
- Since $\|W\|^2 = \sum_{j=1}^{J} \|W_j\|^2 + \|V_j\|^2$ and $\frac{1}{N} \|V_j\|^2 = \bar{X}^2$,
 \[\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J} \|W_j\|^2 \]

Wavelet Spectrum (Variance Decomposition): II

- Define discrete wavelet power spectrum:
 \[P_X(\tau_j) \equiv \frac{1}{N} \|W_j\|^2, \text{ where } \tau_j = 2^{j-1} \]
- Gives us a scale-based decomposition of the sample variance:
 \[\hat{\sigma}_X^2 = \sum_{j=1}^{J} P_X(\tau_j) \]
- In addition, each $W_{j,t}$ in W_j associated with a portion of X; i.e., $W_{j,t}^2$ offers scale- & time-based decomposition of $\hat{\sigma}_X^2$

Wavelet Spectrum (Variance Decomposition): III

- Wavelet spectra for time series X and Y of length $N = 16$, each with zero sample mean and same sample variance

Defining the Discrete Wavelet Transform (DWT)

- Can formulate DWT via elegant ‘pyramid’ algorithm
- Defines \mathcal{W} for non-Haar wavelets (consistent with Haar)
- Computes $\mathcal{W} = \mathcal{W} \mathcal{X}$ using $O(N)$ multiplications
 - ‘brute force’ method uses $O(N^2)$ multiplications
 - Faster than celebrated algorithm for fast Fourier transform!
 (this uses $O(N \cdot \log_2(N))$ multiplications)
- Can formulate algorithm using linear filters or matrices
 (two approaches are complementary)
- Need to review ideas from theory of linear (time-invariant) filters, which requires some Fourier theory
Fourier Theory for Sequences: I

- let \(\{a_t\} \) denote a real-valued sequence such that \(\sum_t a_t^2 < \infty \)
- discrete Fourier transform (DFT) of \(\{a_t\} \):
 \[
 A(f) \equiv \sum_t a_t e^{-i2\pi ft}
 \]
- \(f \) called frequency: \(e^{-i2\pi ft} = \cos(2\pi ft) - i \sin(2\pi ft) \)
- \(A(f) \) defined for all \(f \), but \(0 \leq f \leq 1/2 \) is of main interest:
 - \(A(\cdot) \) periodic with unit period, i.e., \(A(f + 1) = A(f) \), all \(f \)
 - \(A(-f) = A^*(f) \), complex conjugate of \(A(f) \)
 - need only know \(A(f) \) for \(0 \leq f \leq 1/2 \) to know it for all \(f \)
- ‘low frequencies’ are those in lower range of \([0, 1/2]\)
- ‘high frequencies’ are those in upper range of \([0, 1/2]\)

Convolution of Sequences

- given two sequences \(\{a_t\} \) and \(\{b_t\} \), define their convolution by
 \[
 c_t \equiv \sum_{u=-\infty}^{\infty} a_u b_{t-u}
 \]
- DFT of \(\{c_t\} \) has a simple form, namely,
 \[
 \sum_{t=-\infty}^{\infty} c_t e^{-i2\pi ft} = A(f)B(f),
 \]
 where \(A(\cdot) \) is the DFT of \(\{a_t\} \), and \(B(\cdot) \) is the DFT of \(\{b_t\} \);
 i.e., just multiply two DFTs together!!!

Fourier Theory for Sequences: II

- can recover (synthesize) \(\{a_t\} \) from its DFT:
 \[
 \int_{-1/2}^{1/2} A(f)e^{i2\pi ft} df = a_t;
 \]
 left-hand side called inverse DFT of \(A(\cdot) \)
- \(\{a_t\} \) and \(A(\cdot) \) are two representations for one ‘thingy’
- large \(|A(f)| \) says \(e^{i2\pi ft} \) important in synthesizing \(\{a_t\} \); i.e.,
 \(\{a_t\} \) resembles some combination of \(\cos(2\pi ft) \) and \(\sin(2\pi ft) \)

Basic Concepts of Filtering

- convolution & linear time-invariant filtering are same concepts:
 - \(\{b_t\} \) is input to filter
 - \(\{a_t\} \) represents the filter
 - \(\{c_t\} \) is filter output
- flow diagram for filtering: \(\{b_t\} \longrightarrow \{a_t\} \longrightarrow \{c_t\} \)
- \(\{a_t\} \) is called impulse response sequence for filter
- its DFT \(A(\cdot) \) is called transfer function
- in general \(A(\cdot) \) is complex-valued, so write \(A(f) = |A(f)|e^{i\theta(f)} \)
 - \(|A(f)| \) defines gain function
 - \(A(f) \equiv |A(f)|^2 \) defines squared gain function
 - \(\theta(\cdot) \) called phase function (well-defined at \(f \) if \(|A(f)| > 0 \))
Example of a Low-Pass Filter

- consider $b_t = \frac{3}{16} \left(\frac{3}{4} \right)^{|t|} + \frac{1}{20} \left(-\frac{2}{5} \right)^{|t|}$ & $a_t = \begin{cases} \frac{1}{4}, & t = 0 \\ 0, & t = -1 \text{ or } 1 \\ \frac{1}{2}, & \text{otherwise} \end{cases}$

- note: $A(\cdot) & B(\cdot)$ both real-valued ($A(\cdot)$ = its gain function)

Example of a High-Pass Filter

- consider same $\{b_t\}$, but now $a_t = \begin{cases} \frac{1}{4}, & t = 0 \\ -\frac{1}{2}, & t = -1 \text{ or } 1 \\ 0, & \text{otherwise} \end{cases}$

- note: $\{a_t\}$ resembles some wavelet filters we’ll see later

The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let $\{h_l : l = 0, \ldots, L - 1\}$ be a real-valued filter of width L
 - both h_0 and h_{L-1} must be nonzero
 - for convenience, will define $h_l = 0$ for $l < 0$ and $l \geq L$
 - L must be even ($2, 4, 6, \ldots$) for technical reasons (hence ruling out $\{a_t\}$ on the previous overhead)

The Wavelet Filter: II

- $\{h_l\}$ called a wavelet filter if it has these 3 properties
 1. summation to zero: $\sum_{l=0}^{L-1} h_l = 0$
 2. unit energy: $\sum_{l=0}^{L-1} h_l^2 = 1$
 3. orthogonality to even shifts: for all nonzero integers n, have $\sum_{l=0}^{L-1} h_l h_{l+2n} = 0$

- 2 and 3 together are called the orthonormality property
The Wavelet Filter: III

- summation to zero and unit energy relatively easy to achieve
- orthogonality to even shifts is key property & hardest to satisfy
- define transfer and squared gain functions for wavelet filter:
 \[H(f) = \sum_{l=0}^{L-1} h_l e^{-i2\pi fl} \quad \text{and} \quad \mathcal{H}(f) = |H(f)|^2 \]
- orthonormality property is equivalent to
 \[\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2 \quad \text{for all} \quad f \]
 (an elegant – but not obvious! – result)

D(4) Wavelet Filter: I

- next simplest wavelet filter is D(4), for which \(L = 4 \):
 \[h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}}, \quad h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}}, \quad h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \quad h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}} \]
 – ‘D’ stands for Daubechies
 – \(L = 4 \) width member of her ‘extremal phase’ wavelets
- computations show \(\sum_l h_l = 0 \) & \(\sum_l h_l^2 = 1 \), as required
- orthogonality to even shifts apparent except for \(\pm 2 \) case:

\[
\begin{align*}
 h_l & \quad h_l h_{l-2} & \text{sum} = 0 \\
 h_{l-2} & \\
\end{align*}
\]

Haar Wavelet Filter

- simplest wavelet filter is Haar (\(L = 2 \)): \(h_0 = \frac{1}{\sqrt{2}} \) & \(h_1 = -\frac{1}{\sqrt{2}} \)
- note that \(h_0 + h_1 = 0 \) and \(h_0^2 + h_1^2 = 1 \), as required
- orthogonality to even shifts also readily apparent

D(4) Wavelet Filter: II

- Q: what is rationale for D(4) filter?
- consider \(X_t^{(1)} = X_t - X_{t-1} = a_0 X_t + a_1 X_{t-1} \),
 where \(\{a_0 = 1, a_1 = -1\} \) defines 1st difference filter:
 \[\{X_t\} \rightarrow \{1, -1\} \rightarrow \{X_t^{(1)}\} \]
 – Haar wavelet filter is normalized 1st difference filter
 – \(X_t^{(1)} \) is difference between two ‘1 point averages’
- consider filter ‘cascade’ with two 1st difference filters:
 \[
 \{X_t\} \rightarrow \{1, -1\} \rightarrow \{1, -1\} \rightarrow \{X_t^{(2)}\}
 \]
- by considering convolution of \(\{1, -1\} \) with itself, can reexpress
 the above using a single ‘equivalent’ (2nd difference) filter:
 \[
 \{X_t\} \rightarrow \{1, -2, 1\} \rightarrow \{X_t^{(2)}\}
 \]
D(4) Wavelet Filter: III

- renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:
 \[a_t = \begin{cases} \frac{1}{2}, & t = 0 \\ -\frac{1}{4}, & t = -1 \text{ or } 1 \\ 0, & \text{otherwise} \end{cases} \]

- consider ‘2 point weighted average’ followed by 2nd difference:
 \[\{X_t\} \rightarrow \{(a, b)\} \rightarrow \{(1, -2, 1)\} \rightarrow \{Y_t\} \]

- convolution of \(\{a, b\} \) and \(\{1, -2, 1\} \) yields an equivalent filter, which is how the D(4) wavelet filter arises:
 \[\{X_t\} \rightarrow \{(h_0, h_1, h_2, h_3)\} \rightarrow \{Y_t\} \]

Another Popular Daubechies Wavelet Filter

- LA(8) wavelet filter (‘LA’ stands for ‘least asymmetric’)
 \[
 h_1 \quad h_{h1-2} \\
 h_{h1-2} \quad h_{h1-4} \\
 h_{h1-4} \quad h_{h1-6} \\
 \]

 - resembles three-point high-pass filter \(\{-\frac{1}{3}, \frac{1}{2}, -\frac{1}{4}\} \) (somewhat)
 - can interpret this filter as cascade consisting of
 - 4th difference filter
 - weighted average filter of width 4, but effective width 1
 - filter output can be interpreted as changes in weighted averages

\[
W_{1,t} \equiv \sum_{l=0}^{L-1} h_l X_{2t+1-l} \mod N, \quad t = 0, \ldots, N \frac{N}{2} - 1;
\]

\(\{W_{1,t}\} \) formed by downsampling filter output by a factor of 2

D(4) Wavelet Filter: IV

- using conditions
 1. summation to zero: \(h_0 + h_1 + h_2 + h_3 = 0 \)
 2. unit energy: \(h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1 \)
 3. orthogonality to even shifts: \(h_0 h_2 + h_1 h_3 = 0 \)

 can solve for feasible values of \(a \) and \(b \)

 - one solution is \(a = \frac{1+\sqrt{3}}{4\sqrt{2}} \approx 0.48 \) and \(b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \approx 0.13 \)

 (other solutions yield essentially the same filter)

 - interpret D(4) filtered output as changes in weighted averages
 - ‘change’ now measured by 2nd difference (1st for Haar)
 - average is now 2 point weighted average (1 point for Haar)
 - can argue that effective scale of weighted average is one

First Level Wavelet Coefficients: I

- given wavelet filter \(\{h_l\} \) of width \(L \) & time series of length \(N = 2^L \), obtain first level wavelet coefficients as follows

 - circularly filter \(X \) with wavelet filter to yield output
 \[
 \sum_{l=0}^{L-1} h_l X_{t-l} = \sum_{l=0}^{L-1} h_l X_{t-l \mod N}, \quad t = 0, \ldots, N - 1;
 \]
 i.e., if \(t - l \) does not satisfy \(0 \leq t - l \leq N - 1 \), interpret \(X_{t-l} \)
 as \(X_{t-l \mod N} \); e.g., \(X_{-1} = X_{N-1} \) and \(X_{-2} = X_{N-2} \)

 - take every other value of filter output to define
 \[
 W_{1,t} \equiv \sum_{l=0}^{L-1} h_l X_{2t+1-l} \mod N, \quad t = 0, \ldots, N \frac{N}{2} - 1;
 \]
 \(\{W_{1,t}\} \) formed by downsampling filter output by a factor of 2
First Level Wavelet Coefficients: II

- example of formation of \{W_{1,t}\}

\[
\begin{align*}
W_{1,t} & \equiv \sum_{l=0}^{1/2} h_{j_1}^2 X_{15-l \bmod 16} \quad h_{j_1}^2 \equiv h_{j_1} \bmod 16 \\
&= \sum_{l=0}^{1/2} h_{j_1}^2 X_{15-l \bmod 16}
\end{align*}
\]

- \{W_{1,t}\} are unit scale wavelet coefficients – these are the elements of \(W_1\) and first \(N/2\) elements of \(W = WX\)
- also have \(W_1 = W_1X\), with \(W_1\) being first \(N/2\) rows of \(W\)
- hence elements of \(W_1\) dictated by wavelet filter

Upper Half \(W_1\) of Haar DWT Matrix \(W\)

- consider Haar wavelet filter \((L = 2): h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}\)
- when \(N = 16\), \(W_1\) looks like

\[
\begin{bmatrix}
h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 \end{bmatrix}
\]

- rows obviously orthogonal to each other

Upper Half \(W_1\) of D(4) DWT Matrix \(W\)

- when \(L = 4\) & \(N = 16\), \(W_1\) looks like

\[
\begin{bmatrix}
h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 \end{bmatrix}
\]

- rows orthogonal because \(h_0h_2 + h_1h_3 = 0\)

- note: \((W_0, X)\) yields \(W_0 = h_1X_0 + h_0X_1 + h_3X_{14} + h_2X_{15}\)
- unlike other coefficients from above, this ‘boundary’ coefficient depends on circular treatment of \(X\) (a curse, not a feature!)

Orthonormality of Upper Half of DWT Matrix: I

- can show that, for all \(L\) and even \(N\),

\[
W_{1,t} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \bmod N}, \text{ or, equivalently, } W_1 = W_1X
\]

forms half an orthonormal transform; i.e.,

\[
W_1W_1^T = I_N/2
\]

- Q: how can we construct the other half of \(W\)?
The Scaling Filter: I

- create scaling (or ‘father wavelet’) filter \(\{g_l\} \) by reversing \(\{h_l\} \) and then changing sign of coefficients with even indices

<table>
<thead>
<tr>
<th>({h_l})</th>
<th>({h_l}) reversed</th>
<th>({g_l})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA(8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 2 filters related by \(g_l \equiv (-1)^{t+1} h_{L-1-t} \) & \(h_l = (-1)^t g_{L-1-t} \)

First Level Scaling Coefficients: I

- orthonormality property of \(\{h_l\} \) is all that is needed to prove \(\mathcal{W}_1 \) is half of an orthonormal transform (never used \(\sum h_l = 0 \))
- going back and replacing \(h_l \) with \(g_l \) everywhere yields another half of an orthonormal transform
- circularly filter \(X \) using \(\{g_l\} \) and downsample to define
 \[
 V_{1,t} = \sum_{l=0}^{L-1} g_l X_{2t+1-l \mod N}, \quad t = 0, \ldots, \frac{N}{2} - 1
 \]
- \(\{V_{1,t}\} \) called scaling coefficients for level \(j = 1 \)
- place these \(N/2 \) coefficients in vector called \(V_1 \)

The Scaling Filter: II

- \(\{g_l\} \) is ‘quadrature mirror’ filter corresponding to \(\{h_l\} \)
- properties 2 and 3 of \(\{h_l\} \) are shared by \(\{g_l\} \):
 1. unit energy:

 \[
 \sum_{l=0}^{L-1} g_l^2 = 1
 \]
 3. orthogonality to even shifts: for all nonzero integers \(n \), have

 \[
 \sum_{l=0}^{L-1} g_l g_{l+2n} = 0
 \]
- scaling & wavelet filters both satisfy orthonormality property

First Level Scaling Coefficients: III

- define \(\mathcal{V}_1 \) in a manner analogous to \(\mathcal{W}_1 \) so that \(V_1 = \mathcal{V}_1 X \)
- when \(L = 4 \) and \(N = 16 \), \(\mathcal{V}_1 \) looks like

 \[
 \begin{bmatrix}
 g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \end{bmatrix}
 \]
- \(\mathcal{V}_1 \) obeys same orthonormality property as \(\mathcal{W}_1 \):

 similar to \(\mathcal{W}_1 \mathcal{W}_1^T = I_N \), have \(\mathcal{V}_1 \mathcal{V}_1^T = I_{N/2} \)
Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: I

- Q: how does \mathcal{V}_1 help us?
- A: rows of \mathcal{V}_1 and \mathcal{W}_1 are pairwise orthogonal!
- readily apparent in Haar case:

\[
\begin{align*}
g_1 &
\begin{array}{c}
\vdots \\
\end{array} \\
h_1 &
\begin{array}{c}
\vdots \\
\end{array}
\end{align*}
\]

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: II

- let’s check that orthogonality holds for $\text{D}(4)$ case also:

\[
\begin{align*}
g_l & \notin \begin{array}{c}
\vdots \\
\end{array} \\
h_l & \notin \begin{array}{c}
\vdots \\
\end{array}
\end{align*}
\]

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: III

- implies that $\mathcal{P}_1 \equiv \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix}$

is an $N \times N$ orthonormal matrix since

\[
\mathcal{P}_1 \mathcal{P}_{1}^T = \begin{bmatrix} \mathcal{W}_1 & \mathcal{V}_1 \\ \mathcal{V}_1 & \mathcal{V}_1 \end{bmatrix} = \begin{bmatrix} I_N & 0_N \\ 0_N & I_N \end{bmatrix} = I_N
\]

- if $N = 2$ (not of too much interest!), in fact $\mathcal{P}_1 = \mathcal{W}$
- if $N > 2$, \mathcal{P}_1 is an intermediate step: \mathcal{V}_1 spans same subspace as lower half of \mathcal{W} and will be further manipulated

Interpretation of Scaling Coefficients: I

- consider Haar scaling filter ($L = 2$): $g_0 = g_1 = \frac{1}{\sqrt{2}}$
- when $N = 16$, matrix \mathcal{V}_1 looks like

\[
\begin{bmatrix}
g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0
\end{bmatrix}
\]

- since $\mathcal{V}_1 = \mathcal{V}_1 \mathbf{X}$, each $\mathcal{V}_{1,t}$ is proportional to a 2 point average:

\[
\hat{V}_{1,0} = g_1 X_0 + g_0 X_1 = \frac{1}{\sqrt{2}} X_0 + \frac{1}{\sqrt{2}} X_1 \propto \mathbf{X}_1(2)
\]

and so forth
Interpretation of Scaling Coefficients: II

- reconsider shapes of \(\{g_l\} \) seen so far:
 - Haar
 - D(4)
 - LA(8)

 - for \(L > 2 \), can regard \(V_{1,t} \) as proportional to weighted average
 - can argue that effective width of \(\{g_l\} \) is 2 in each case; thus scale associated with \(V_{1,t} \) is 2, whereas scale is 1 for \(W_{1,t} \)

Frequency Domain Properties of Scaling Filter

- define transfer and squared gain functions for \(\{g_l\} \):
 \[
 G(f) \equiv \sum_{l=0}^{L-1} g_le^{-i2\pi fl} \quad \& \quad \mathcal{G}(f) \equiv |G(f)|^2
 \]

- can argue that \(\mathcal{G}(f) = \mathcal{H}(f + \frac{1}{2}) \), which, combined with
 \[
 \mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2,
 \]
 yields
 \[
 \mathcal{H}(f) + \mathcal{G}(f) = 2
 \]

Frequency Domain Properties of \(\{h_l\} \) and \(\{g_l\} \)

- since \(W_{1} \) & \(V_{1} \) contain output from filters, consider their squared gain functions, recalling that \(\mathcal{H}(f) + \mathcal{G}(f) = 2 \)

- example: \(\mathcal{H}(\cdot) \) and \(\mathcal{G}(\cdot) \) for Haar & D(4) filters

- \(\{h_l\} \) is high-pass filter with nominal pass-band \([1/4, 1/2] \)
- \(\{g_l\} \) is low-pass filter with nominal pass-band \([0, 1/4] \)

Example of Decomposing \(X \) into \(W_{1} \) and \(V_{1} \): I

- oxygen isotope records \(X \) from Antarctic ice core
Example of Decomposing X into W_1 and V_1: II

- oxygen isotope record series X has $N = 352$ observations
- spacing between observations is $\Delta \approx 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients V_1 related to averages on scale of 2Δ
- wavelet coefficients W_1 related to changes on scale of Δ
- coefficients $V_{1,t}$ and $W_{1,t}$ plotted against mid-point of years associated with X_{2t} and X_{2t+1}
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karløf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway

Reconstructing X from W_1 and V_1

- in matrix notation, form wavelet & scaling coefficients via
 \[
 \begin{bmatrix}
 W_1 \\
 V_1
 \end{bmatrix} = \begin{bmatrix}
 \mathcal{W}_1 X \\
 \mathcal{V}_1 X
 \end{bmatrix} = \begin{bmatrix}
 W_1 \\
 V_1
 \end{bmatrix} X = \mathcal{P}_1 X
 \]
- recall that $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ because \mathcal{P}_1 is orthonormal
- since $\mathcal{P}_1^T \mathcal{P}_1 X = X$, premultiplying both sides by \mathcal{P}_1^T yields
 \[
 \mathcal{P}_1^T \begin{bmatrix}
 W_1 \\
 V_1
 \end{bmatrix} = \mathcal{P}_1^T \mathcal{V}_1 = \begin{bmatrix}
 W_1 \\
 V_1
 \end{bmatrix} = \mathcal{W}_1^T \mathcal{W}_1 + \mathcal{V}_1^T \mathcal{V}_1 = X
 \]
- $\mathcal{D}_1 \equiv \mathcal{W}_1^T \mathcal{W}_1$ is the first level detail
- $\mathcal{S}_1 \equiv \mathcal{V}_1^T \mathcal{V}_1$ is the first level ‘smooth’
- $X = \mathcal{D}_1 + \mathcal{S}_1$ in this notation

Example of Synthesizing X from \mathcal{D}_1 and \mathcal{S}_1

- Haar-based decomposition for oxygen isotope records X

First Level Variance Decomposition: I

- recall that ‘energy’ in X is its squared norm $\|X\|^2$
- because \mathcal{P}_1 is orthonormal, have $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ and hence
 \[
 \|\mathcal{P}_1 X\|^2 = (\mathcal{P}_1 X)^T \mathcal{P}_1 X = X^T \mathcal{P}_1^T \mathcal{P}_1 X = X^T X = \|X\|^2
 \]
- can conclude that $\|X\|^2 = \|W_1\|^2 + \|V_1\|^2$ because
 \[
 \mathcal{P}_1 X = \begin{bmatrix}
 W_1 \\
 V_1
 \end{bmatrix}
 \]
- leads to a decomposition of the sample variance for X:
 \[
 \sigma_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \frac{1}{N} \|X\|^2 - \bar{X}^2
 = \frac{1}{N} \|W_1\|^2 + \frac{1}{N} \|V_1\|^2 - \bar{X}^2
 \]
First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_X^2$ into two pieces:
 1. $\frac{1}{N} \| W_1 \|^2$, attributable to changes in averages over scale 1
 2. $\frac{1}{N} \| V_1 \|^2 - \overline{X}^2$, attributable to averages over scale 2
- Haar-based example for oxygen isotope records
 - first piece: $\frac{1}{N} \| W_1 \|^2 = 0.295$
 - second piece: $\frac{1}{N} \| V_1 \|^2 - \overline{X}^2 = 2.909$
 - sample variance: $\hat{\sigma}_X^2 = 3.204$
 - changes on scale of $\Delta = 0.5$ years account for 9% of $\hat{\sigma}_X^2$
 (standardized scale 1 corresponds to physical scale Δ)

Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as ‘one point’ averages $\overline{X}_t(1)$ over scale of 1
- first level of basic algorithm transforms X of length N into
 - $N/2$ wavelet coefficients $W_1 \propto$ changes on a scale of 1
 - $N/2$ scaling coefficients $V_1 \propto$ averages of X_t on a scale of 2
- in essence basic algorithm takes length N series X related to scale 1 averages and produces
 - length $N/2$ series W_1 associated with the same scale
 - length $N/2$ series V_1 related to averages on double the scale

Summary of First Level of Basic Algorithm

- transforms $\{X_t : t = 0, \ldots, N - 1\}$ into 2 types of coefficients
- $N/2$ wavelet coefficients $\{W_{1,t}\}$ associated with:
 - W_1, a vector consisting of first $N/2$ elements of W
 - changes on scale 1 and nominal frequencies $\frac{1}{4} \leq |f| \leq \frac{1}{2}$
 - first level detail D_1
 - W_1, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of W
- $N/2$ scaling coefficients $\{V_{1,t}\}$ associated with:
 - V_1, a vector of length $N/2$
 - averages on scale 2 and nominal frequencies $0 \leq |f| \leq \frac{1}{4}$
 - first level smooth S_1
 - V_1, an $\frac{N}{2} \times N$ matrix spanning same subspace as last $N/2$
 rows of W

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat V_1 in the same manner as X?
- basic algorithm will transform length $N/2$ series V_1 into
 - length $N/4$ series W_2 associated with the same scale (2)
 - length $N/4$ series V_2 related to averages on twice the scale
- by definition, W_2 contains the level 2 wavelet coefficients
- Q: what if we treat V_2 in the same way?
- basic algorithm will transform length $N/4$ series V_2 into
 - length $N/8$ series W_3 associated with the same scale (4)
 - length $N/8$ series V_3 related to averages on twice the scale
- by definition, W_3 contains the level 3 wavelet coefficients
Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of W
 (recall that $W = WX$ is the vector of DWT coefficients)
- at each level j, outputs W_j and V_j from the basic algorithm
 are each half the length of the input V_{j-1}
- length of V_j given by $N/2^j$
- since $N = 2^J$, length of V_J is 1, at which point we must stop
- J applications of the basic algorithm defines the remaining
 subvectors W_2, \ldots, W_J, V_J of DWT coefficient vector W
- overall scheme is known as the ‘pyramid’ algorithm

Scales Associated with DWT Coefficients

- jth level of algorithm transforms scale 2^{j-1} averages into
 - differences of averages on scale 2^{j-1}, i.e., wavelet coefficients
 W_j
 - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., scaling coefficients V_j
- $\tau_j \equiv 2^{j-1}$ denotes scale associated with W_j
 - for $j = 1, \ldots, J$, takes on values $1, 2, 4, \ldots, N/4, N/2$
- $\lambda_j \equiv 2^J = 2\tau_j$ denotes scale associated with V_j
 - takes on values $2, 4, 8, \ldots, N/2, N$

Matrix Description of Pyramid Algorithm: I

- form $\frac{N}{2} \times \frac{N}{2}$ matrix B_j in same way as $\frac{N}{2} \times N$ matrix W_1
- when $L = 4$ and $N/2^{j-1} = 16$, have

\[
B_j = \begin{bmatrix}
h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 \\
h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

- matrix gets us jth level wavelet coefficients via $W_j = B_j V_{j-1}$

Matrix Description of Pyramid Algorithm: II

- form $\frac{N}{2} \times \frac{N}{2}$ matrix A_j in same way as $\frac{N}{2} \times N$ matrix V_1
- when $L = 4$ and $N/2^{j-1} = 16$, have

\[
A_j = \begin{bmatrix}
g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

- matrix gets us jth level scaling coefficients via $V_j = A_j V_{j-1}$
Matrix Description of Pyramid Algorithm: III

- if we define $V_0 = X$ and let $j = 1$, then
 $$W_j = B_j V_{j-1} \text{ reduces to } W_1 = B_1 V_0 = B_1 X = W_1 X$$
 because B_1 has the same definition as W_1
- likewise, when $j = 1$,
 $$V_j = A_j V_{j-1} \text{ reduces to } V_1 = A_1 V_0 = A_1 X = V_1 X$$
 because A_1 has the same definition as V_1

Formation of Submatrices of \mathcal{W}: I

- using $V_j = A_j V_{j-1}$ repeatedly and $V_1 = A_1 X$, can write
 $$W_j = B_j V_{j-1}$$
 $$= B_j A_{j-1} V_{j-2}$$
 $$= B_j A_{j-1} A_{j-2} V_{j-3}$$
 $$= B_j A_{j-1} A_{j-2} \cdots A_1 X \equiv W_j X,$$
 where W_j is $\frac{N}{2^j} \times N$ submatrix of \mathcal{W} responsible for W_j
- likewise, can get $1 \times N$ submatrix V_j responsible for V_j
 $$V_j = A_j V_{j-1}$$
 $$= A_j A_{j-1} V_{j-2}$$
 $$= A_j A_{j-1} A_{j-2} V_{j-3}$$
 $$= A_j A_{j-1} A_{j-2} \cdots A_1 X \equiv V_j X$$
- V_j is the last row of \mathcal{W}, & all its elements are equal to $1/\sqrt{N}$

Formation of Submatrices of \mathcal{W}: II

- have now constructed all of DWT matrix:
 $$\mathcal{W} = \begin{bmatrix}
 W_1 \\
 W_2 \\
 W_3 \\
 \vdots \\
 W_j \\
 \vdots \\
 W_n
 \end{bmatrix} = \begin{bmatrix}
 B_1 \\
 B_2 A_1 \\
 B_3 A_2 A_1 \\
 \vdots \\
 B_j A_{j-1} \cdots A_1 \\
 \vdots \\
 A_j A_{j-1} \cdots A_1
 \end{bmatrix}$$

Examples of \mathcal{W} and its Partitioning: I

- $N = 16$ case for Haar DWT matrix \mathcal{W}

- above agrees with qualitative description given previously
Examples of \mathcal{W} and its Partitioning: II

- $N = 16$ case for D(4) DWT matrix \mathcal{W}
- \mathcal{W}_1, \mathcal{W}_2, \mathcal{W}_3, \mathcal{W}_4
- note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed

Partial DWT: I

- J repetitions of pyramid algorithm for X of length $N = 2^J$ yields ‘complete’ DWT, i.e., $W = WX$
- can choose to stop at $J_0 < J$ repetitions, yielding a ‘partial’ DWT of level J_0:

\[
\begin{bmatrix}
\mathcal{W}_1 \\
\mathcal{W}_2 \\
\mathcal{W}_3 \\
\mathcal{W}_4 \\
\mathcal{W}_{J_0} \\
\mathcal{V}_{J_0}
\end{bmatrix}
= \begin{bmatrix}
B_1 & B_2 A_1 \\
B_2 & B_3 A_2 A_1 \\
& \ddots & \ddots & \ddots \\
& & & \ddots & B_J A_{J-1} \cdots A_1 \\
& & & & B_{J_0} A_{J_0-1} \cdots A_{J_0-1} A_{J_0-1} A_{J_0-2} \cdots A_1
\end{bmatrix}
\begin{bmatrix}
X \\
\mathcal{W}_{J_0} \\
\mathcal{V}_{J_0}
\end{bmatrix}
\]

- \mathcal{V}_{J_0} is $N/2^{J_0} \times N$, yielding $N/2^{J_0}$ coefficients for scale $\lambda_{J_0} = 2^{J_0}$

Partial DWT: II

- only requires N to be integer multiple of 2^{J_0}
- partial DWT more common than complete DWT
- choice of J_0 is application dependent
- multiresolution analysis for partial DWT:

$$X = \sum_{j=1}^{J_0} D_j + S_{J_0}$$

S_{J_0} represents averages on scale $\lambda_{J_0} = 2^{J_0}$ (includes \bar{X})

- analysis of variance for partial DWT:

$$\sigma^2_X = \frac{1}{N} \sum_{j=1}^{J_0} \|W_j\|^2 + \frac{1}{N} \|V_{J_0}\|^2 - \bar{X}^2$$

Example of $J_0 = 4$ Partial Haar DWT

- oxygen isotope records X from Antarctic ice core

\[X\]

\[W_1\]

\[W_2\]

\[W_3\]

\[W_4\]

\[V_1\]
Example of MRA from $J_0 = 4$ Partial Haar DWT

- oxygen isotope records X from Antarctic ice core

Example of Variance Decomposition

- decomposition of sample variance from $J_0 = 4$ partial DWT

$$\sigma_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \frac{1}{N} \sum_{j=1}^{4} \|W_j\|^2 + \frac{1}{N} \|V_4\|^2 - \bar{X}^2$$

- Haar-based example for oxygen isotope records
 - 0.5 year changes: $\frac{1}{N} \|W_1\|^2 \approx 0.295$ ($\approx 9.2\%$ of σ_X^2)
 - 1.0 years changes: $\frac{1}{N} \|W_2\|^2 \approx 0.464$ ($\approx 14.5\%$)
 - 2.0 years changes: $\frac{1}{N} \|W_3\|^2 \approx 0.652$ ($\approx 20.4\%$)
 - 4.0 years changes: $\frac{1}{N} \|W_4\|^2 \approx 0.846$ ($\approx 26.4\%$)
 - 8.0 years averages: $\frac{1}{N} \|V_4\|^2 - \bar{X}^2 \approx 0.947$ ($\approx 29.5\%$)
 - sample variance: $\sigma_X^2 \approx 3.204$

Haar Equivalent Wavelet & Scaling Filters

- $\{h_l\}$ $L = 2$
- $\{h_{2,l}\}$ $L_2 = 4$
- $\{h_{3,l}\}$ $L_3 = 8$
- $\{h_{4,l}\}$ $L_4 = 16$
- $\{g_l\}$ $L = 2$
- $\{g_{2,l}\}$ $L_2 = 4$
- $\{g_{3,l}\}$ $L_3 = 8$
- $\{g_{4,l}\}$ $L_4 = 16$

- $L_j = 2^j$ is width of $\{h_{j,l}\}$ and $\{g_{j,l}\}$
- note: convenient to define $\{h_{1,l}\}$ to be same as $\{h_l\}$

D(4) Equivalent Wavelet & Scaling Filters

- $\{h_l\}$ $L = 4$
- $\{h_{2,l}\}$ $L_2 = 10$
- $\{h_{3,l}\}$ $L_3 = 22$
- $\{h_{4,l}\}$ $L_4 = 46$
- $\{g_l\}$ $L = 4$
- $\{g_{2,l}\}$ $L_2 = 10$
- $\{g_{3,l}\}$ $L_3 = 22$
- $\{g_{4,l}\}$ $L_4 = 46$

- L_j dictated by general formula $L_j = (2^j - 1)(L - 1) + 1$
 - but can argue that effective width is 2^j (same as Haar L_j)
LA(8) Equivalent Wavelet & Scaling Filters

\{h_i\}
\{h_2\}
\{h_4\}
\{h_6\}
\{g\}
\{g_2\}
\{g_4\}
\{g_6\}

\(L = 8 \) \(L_2 = 22 \) \(L_4 = 50 \) \(L_6 = 106 \) \(L = 8 \) \(L_2 = 22 \) \(L_4 = 50 \) \(L_6 = 106 \)

Quick Comparison of the MODWT to the DWT

- unlike the DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- unlike the DWT, MODWT is defined naturally for all samples sizes (i.e., \(N \) need not be a multiple of a power of two)
- similar to the DWT, can form multiresolution analyses (MRAs) using MODWT with certain additional desirable features; e.g., unlike the DWT, MODWT-based MRA has details and smooths that shift along with \(X \) (if \(X \) has detail \(\tilde{D}_j \), then \(T^mX \) has detail \(T^m\tilde{D}_j \), where \(T^m \) circularly shifts \(X \) by \(m \) units)
- similar to the DWT, an analysis of variance (ANOVA) can be based on MODWT wavelet coefficients
- unlike the DWT, MODWT discrete wavelet power spectrum same for \(X \) and its circular shifts \(T^mX \)

Maximal Overlap Discrete Wavelet Transform

- abbreviation is MODWT (pronounced ‘mod WT’)
- transforms very similar to the MODWT have been studied in the literature under the following names:
 - undecimated DWT (or nondecimated DWT)
 - stationary DWT
 - translation invariant DWT
 - time invariant DWT
 - redundant DWT
- also related to notions of ‘wavelet frames’ and ‘cycle spinning’
- basic idea: use values removed from DWT by downsampling

Definition of MODWT Coefficients: I

- define MODWT filters \(\{\tilde{h}_{j,l}\} \) and \(\{\tilde{g}_{j,l}\} \) by renormalizing the DWT filters:
 \[
 \tilde{h}_{j,l} = h_{j,l}/2^{j/2} \quad \text{and} \quad \tilde{g}_{j,l} = g_{j,l}/2^{j/2}
 \]
- level \(j \) MODWT wavelet and scaling coefficients are defined to be output obtaining by filtering \(X \) with \(\{\tilde{h}_{j,l}\} \) and \(\{\tilde{g}_{j,l}\} \):
 \[
 X \rightarrow \{\tilde{h}_{j,l}\} \rightarrow \tilde{W}_j \quad \text{and} \quad X \rightarrow \{\tilde{g}_{j,l}\} \rightarrow \tilde{V}_j
 \]
- compare the above to its DWT equivalent:
 \[
 X \rightarrow \{h_{j,l}\} \rightarrow W_j \quad \text{and} \quad X \rightarrow \{g_{j,l}\} \rightarrow V_j
 \]
- level \(J_0 \) MODWT consists of \(J_0 + 1 \) vectors, namely, \(\tilde{W}_1, \tilde{W}_2, \ldots, \tilde{W}_{J_0} \) and \(\tilde{V}_{J_0} \), each of which has length \(N \)
Definition of MODWT Coefficients: II

- MODWT of level J_0 has $(J_0 + 1)N$ coefficients, whereas DWT has N coefficients for any given J_0.
- whereas DWT of level J_0 requires N to be integer multiple of 2^{J_0}, MODWT of level J_0 is well-defined for any sample size N.
- when N is divisible by 2^{J_0}, we can write

$$W_{j,t} = \sum_{l=0}^{L_j-1} h_{j,t}X_{2^j(t+1)-1-l \mod N} \quad \& \quad \tilde{W}_{j,t} = \sum_{l=0}^{L_j-1} \tilde{h}_{j,t}X_{t-l \mod N},$$

and we have the relationship

$$W_{j,t} = 2^{j/2}\tilde{W}_{j,2^j(t+1)-1} \quad \& \quad V_{J_0,t} = 2^{J_0/2}\tilde{V}_{J_0,2^{J_0}(t+1)-1}$$

(here $W_{j,t}$ & $\tilde{W}_{j,t}$ denote the tth elements of W_j & \tilde{W}_{J_0}).

Example of $J_0 = 4$ LA(8) MODWT

- oxygen isotope records X from Antarctic ice core

![MODWT Example](image)

Properties of the MODWT

- as was true with the DWT, we can use the MODWT to obtain
 - a scale-based additive decomposition (MRA):
 $$X = \sum_{j=1}^{J_0} \tilde{P}_j + \tilde{S}_{J_0}$$
 - a scale-based energy decomposition (basis for ANOVA):
 $$\|X\|^2 = \sum_{j=1}^{J_0} \|\tilde{W}_j\|^2 + \|\tilde{V}_{J_0}\|^2$$

- in addition, the MODWT can be computed efficiently via a pyramid algorithm.

Relationship Between MODWT and DWT

- bottom plot shows W_4 from DWT after circular shift T^{-3} to align coefficients properly in time.
- top plot shows \tilde{W}_4 from MODWT and subsamples that, upon rescaling, yield W_4 via $W_{4,t} = 4\tilde{W}_{4,16(t+1)-1}$.
Example of $J_0 = 4$ LA(8) MODWT MRA

- oxygen isotope records X from Antarctic ice core

![Graph showing MODWT decomposition]

Summary of Key Points about the DWT: I

- the DWT W is orthonormal, i.e., satisfies $W^T W = I_N$
- construction of W starts with a wavelet filter $\{h_l\}$ of even length L that by definition
 1. sums to zero; i.e., $\sum h_l = 0$;
 2. has unit energy; i.e., $\sum h_l^2 = 1$; and
 3. is orthogonal to its even shifts; i.e., $\sum h_l h_{l+2n} = 0$
- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum g_l h_{l+2n} = 0$
- while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter

Summary of Key Points about the DWT: II

- $\{h_l\}$ and $\{g_l\}$ work in tandem to split time series X into
 - wavelet coefficients W_1 (related to changes in averages on a unit scale) and
 - scaling coefficients V_1 (related to averages on a scale of 2)
- $\{h_l\}$ and $\{g_l\}$ are then applied to V_1, yielding
 - wavelet coefficients W_2 (related to changes in averages on a scale of 2) and
 - scaling coefficients V_2 (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients V_{j-1} at level $j - 1$ are transformed into wavelet and scaling coefficients W_j and V_j of scales $\tau_j = 2^{j-1}$ and $\lambda_j = 2^j$

Example of Variance Decomposition

- decomposition of sample variance from MODWT
 \[
 \sigma_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \sum_{j=1}^{4} \frac{1}{N} \| \tilde{W}_j \|^2 + \frac{1}{N} \| \tilde{V}_4 \|^2 - \bar{X}^2
 \]
- LA(8)-based example for oxygen isotope records
 - 0.5 year changes: $\frac{1}{N} \| \tilde{W}_1 \|^2 \approx 0.145 (\approx 4.5\% \text{ of } \sigma_X^2)$
 - 1.0 years changes: $\frac{1}{N} \| \tilde{W}_2 \|^2 \approx 0.500 (\approx 15.6\%)$
 - 2.0 years changes: $\frac{1}{N} \| \tilde{W}_3 \|^2 \approx 0.751 (\approx 23.4\%)$
 - 4.0 years changes: $\frac{1}{N} \| \tilde{W}_4 \|^2 \approx 0.839 (\approx 26.2\%)$
 - 8.0 years averages: $\frac{1}{N} \| \tilde{V}_4 \|^2 - \bar{X}^2 \approx 0.969 (\approx 30.2\%)$
 - sample variance: $\sigma_X^2 \approx 3.204$
Summary of Key Points about the DWT: III

• after J_0 repetitions, this ‘pyramid’ algorithm transforms time series X whose length N is an integer multiple of 2^J_0 into DWT coefficients $W_1, W_2, \ldots, W_{J_0}$ and V_{J_0} (sizes of vectors are $N/2^J, N/2^{J-1}, \ldots, N/2^{J_0}$, for a total of N coefficients in all)
• DWT coefficients lead to two basic decompositions
• first decomposition is additive and is known as a multiresolution analysis (MRA), in which X is reexpressed as
 \[X = \sum_{j=1}^{J_0} D_j + S_{J_0}, \]
 where D_j is a time series reflecting variations in X on scale τ_j, while S_{J_0} is a series reflecting its λ_{J_0} averages

Summary of Key Points about the MODWT

• similar to the DWT, the MODWT offers
 – a scale-based multiresolution analysis
 – a scale-based analysis of the sample variance
 – a pyramid algorithm for computing the transform efficiently
• unlike the DWT, the MODWT is
 – defined for all sample sizes (no ‘power of 2’ restrictions)
 – unaffected by circular shifts to X in that coefficients, details and smooths shift along with X
 – highly redundant in that a level J_0 transform consists of $(J_0 + 1)N$ values rather than just N
• MODWT can eliminate ‘alignment’ artifacts, but its redundancies are problematic for some uses

WMTSA: 150–156	1–93
WMTSA: 150–156	1–94
WMTSA: 159–160	1–95