Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images (mostly)
- following work on continuous wavelet transform by Morlet and co-workers in 1983, Daubechies, Mallat and others introduced discrete wavelet transform (DWT) in 1988
- begin with qualitative description of the DWT
- discuss two key descriptive capabilities of the DWT:
 - multiresolution analysis (an additive decomposition)
 - wavelet variance or spectrum (decomposition of sum of squares)
- look at how DWT is formed based on a wavelet filter
- discuss maximal overlap DWT (MODWT)
Qualitative Description of DWT: I

- let \(\mathbf{X} = [X_0, X_1, \ldots, X_{N-1}]^T \) be a vector of \(N \) time series values (note: ‘\(T \)’ denotes transpose; i.e., \(\mathbf{X} \) is a column vector)

- assume initially \(N = 2^J \) for some positive integer \(J \) (will relax this restriction later on)

- example of time series with \(N = 16 = 2^4 \):

\[
\mathbf{X} = \begin{bmatrix}
0.2, & -0.4, & -0.6, & -0.5, & -0.8, & -0.4, & -0.9, & 0.0, \\
-0.2, & 0.1, & -0.1, & 0.1, & 0.7, & 0.9, & 0.0, & 0.3
\end{bmatrix}^T
\]
Qualitative Description of DWT: II

- DWT is a linear transform of \mathbf{X} yielding N DWT coefficients
- notation: $\mathbf{W} = \mathcal{W}\mathbf{X}$
 - \mathbf{W} is vector of DWT coefficients (jth component is W_j)
 - \mathcal{W} is $N \times N$ orthonormal transform matrix
- orthonormality says $\mathcal{W}^T\mathcal{W} = I_N$ ($N \times N$ identity matrix)
- inverse of \mathcal{W} is just its transpose, so $\mathcal{W}\mathcal{W}^T = I_N$ also
Implications of Orthonormality

- let $\mathcal{W}_{j\bullet}^T$ denote the jth row of \mathcal{W}, where $j = 0, 1, \ldots, N - 1$
- let $\mathcal{W}_{j,l}$ denote lth element of $\mathcal{W}_{j\bullet}$
- consider two rows, say, $\mathcal{W}_{j\bullet}^T$ and $\mathcal{W}_{k\bullet}^T$
- orthonormality says

$$\langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle \equiv \sum_{l=0}^{N-1} \mathcal{W}_{j,l} \mathcal{W}_{k,l} = \begin{cases} 1, & \text{when } j = k, \\ 0, & \text{when } j \neq k \end{cases}$$

- $\langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle$ is inner product of jth & kth rows
- $\langle \mathcal{W}_{j\bullet}, \mathcal{W}_{j\bullet} \rangle = \|\mathcal{W}_{j\bullet}\|^2$ is squared norm (energy) for $\mathcal{W}_{j\bullet}$
Example: the Haar DWT

- $N = 16$ example of Haar DWT matrix \mathcal{W}

- note that rows are orthogonal to each other
Haar DWT Coefficients: I

1. obtain Haar DWT coefficients \(W \) by premultiplying \(X \) by \(W \):
 \[
 W = WX
 \]

2. \(j \)th coefficient \(W_j \) is inner product of \(j \)th row \(W_j^T \) and \(X \):
 \[
 W_j = \langle W_j, X \rangle
 \]

3. can interpret coefficients as difference of averages

4. to see this, let
 \[
 \overline{X}_t(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l} = \text{‘scale } \lambda \text{’ average}
 \]

 – note: \(\overline{X}_t(1) = X_t = \text{scale 1 ‘average’} \)

 – note: \(\overline{X}_{N-1}(N) = \overline{X} = \text{sample average} \)
Haar DWT Coefficients: II

- consider form \(W_0 = \langle \mathcal{W}_0 \bullet, X \rangle \) takes in \(N = 16 \) example:

\[
\begin{align*}
\mathcal{W}_{0,t} & \quad \mathcal{W}_{0,t} X_t \quad \text{sum } \propto \bar{X}_1(1) - \bar{X}_0(1) \\
X_t & \quad \sum \propto \bar{X}_1(1) - \bar{X}_0(1)
\end{align*}
\]

- similar interpretation for \(W_1, \ldots, W_{N/2-1} = W_7 = \langle \mathcal{W}_7 \bullet, X \rangle \):

\[
\begin{align*}
\mathcal{W}_{7,t} & \quad \mathcal{W}_{7,t} X_t \quad \text{sum } \propto \bar{X}_{15}(1) - \bar{X}_{14}(1) \\
X_t & \quad \sum \propto \bar{X}_{15}(1) - \bar{X}_{14}(1)
\end{align*}
\]
Haar DWT Coefficients: III

• now consider form of $W_{N/2} = W_8 = \langle W_{8\cdot}, X \rangle$:

\[
\mathcal{W}_{8,t} \quad \mathcal{W}_{8,t} X_t \quad \text{sum } \propto \overline{X}_3(2) - \overline{X}_1(2)
\]

• similar interpretation for $W_{N/2+1}, \ldots, W_{3N/4-1}$
Haar DWT Coefficients: IV

$W_{3N/4} = W_{12} = \langle \mathcal{W}_{12}, X \rangle$ takes the following form:

\[\mathcal{W}_{8,t} X_t \quad \text{sum } \propto X_7(4) - X_3(4) \]

continuing in this manner, come to $W_{N-2} = \langle \mathcal{W}_{14}, X \rangle$:

\[\mathcal{W}_{14,t} X_t \quad \text{sum } \propto X_{15}(8) - X_7(8) \]
Haar DWT Coefficients: V

- final coefficient $W_{N-1} = W_{15}$ has a different interpretation:

$$W_{15,t} \quad \Quad
Structure of DWT Matrices

- \(\frac{N}{2\tau_j} \) wavelet coefficients for scale \(\tau_j \equiv 2^{j-1}, j = 1, \ldots, J \)
 - \(\tau_j \equiv 2^{j-1} \) is standardized scale
 - \(\tau_j \Delta \) is physical scale, where \(\Delta \) is sampling interval
- each \(W_j \) localized in time: as scale \(\uparrow \), localization \(\downarrow \)
- rows of \(W \) for given scale \(\tau_j \):
 - circularly shifted with respect to each other
 - shift between adjacent rows is \(2\tau_j = 2^j \)
- similar structure for DWTs other than the Haar
- differences of averages common theme for DWTs
 - simple differencing replaced by higher order differences
 - simple averages replaced by weighted averages
Two Basic Decompositions Derivable from DWT

- additive decomposition
 - reexpresses \(\mathbf{X} \) as the sum of \(J + 1 \) new time series, each of which is associated with a particular scale \(\tau_j \)
 - called multiresolution analysis (MRA)

- energy decomposition
 - yields analysis of variance across \(J \) scales
 - called wavelet spectrum or wavelet variance
Partitioning of DWT Coefficient Vector W

• decompositions are based on partitioning of W and V
• partition W into subvectors associated with scale:

$$W = \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_J \\ V_J \end{bmatrix}$$

• W_j has $N/2^j$ elements (scale $\tau_j = 2^{j-1}$ changes)
 note: $\sum_{j=1}^{J} \frac{N}{2^j} = \frac{N}{2} + \frac{N}{4} + \cdots + 2 + 1 = 2^J - 1 = N - 1$
• V_J has 1 element, which is equal to $\sqrt{N \cdot \bar{X}}$ (scale N average)
Example of Partitioning of W

- consider time series X of length $N = 16$ & its Haar DWT W
Partitioning of DWT Matrix \mathcal{W}

- partition \mathcal{W} commensurate with partitioning of \mathcal{W}:

$$
\mathcal{W} = \begin{bmatrix}
\mathcal{W}_1 \\
\mathcal{W}_2 \\
\vdots \\
\mathcal{W}_j \\
\vdots \\
\mathcal{W}_J \\
\mathcal{V}_J
\end{bmatrix}
$$

- \mathcal{W}_j is $\frac{N}{2^j} \times N$ matrix (related to scale $\tau_j = 2^{j-1}$ changes)

- \mathcal{V}_J is $1 \times N$ row vector (each element is $\frac{1}{\sqrt{N}}$)
Example of Partitioning of \mathcal{W}

- $N = 16$ example of Haar DWT matrix \mathcal{W}

- two properties: (a) $\mathbf{W}_j = \mathcal{W}_j \mathbf{X}$ and (b) $\mathcal{W}_j \mathcal{W}_j^T = I_N / 2^j$
DWT Analysis and Synthesis Equations

• recall the DWT analysis equation $W = \mathcal{W}X$
• $\mathcal{W}^T \mathcal{W} = I_N$ because \mathcal{W} is an orthonormal transform
• implies that $\mathcal{W}^T W = \mathcal{W}^T \mathcal{W} X = X$
• yields DWT synthesis equation:

$$X = \mathcal{W}^T W = \begin{bmatrix} \mathcal{W}_1^T, \mathcal{W}_2^T, \ldots, \mathcal{W}_J^T, \mathcal{V}_J^T \end{bmatrix} \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_J \\ V_J \end{bmatrix}$$

$$= \sum_{j=1}^{J} \mathcal{W}_j^T W_j + \mathcal{V}_J^T V_J$$
Multiresolution Analysis: I

• synthesis equation leads to additive decomposition:

\[X = \sum_{j=1}^{J} W_j^T W_j + V_j^T V_J \equiv \sum_{j=1}^{J} \mathcal{D}_j + S_J \]

• \(\mathcal{D}_j \equiv W_j^T W_j \) is portion of synthesis due to scale \(\tau_j \)
• \(\mathcal{D}_j \) is vector of length \(N \) and is called \(j \)th ‘detail’
• \(S_J \equiv V_j^T V_J = X1 \), where \(1 \) is a vector containing \(N \) ones
 (later on we will call this the ‘smooth’ of \(J \)th order)
• additive decomposition called multiresolution analysis (MRA)
Multiresolution Analysis: II

- example of MRA for time series of length $N = 16$

- adding values for, e.g., $t = 14$ in $\mathcal{D}_1, \ldots, \mathcal{D}_4$ & \mathcal{S}_4 yields X_{14}
Energy Preservation Property of DWT Coefficients

- define ‘energy’ in X as its squared norm:

$$
\|X\|^2 = \langle X, X \rangle = X^T X = \sum_{t=0}^{N-1} X_t^2
$$

- energy of X is preserved in its DWT coefficients W because

$$
\|W\|^2 = W^T W = (WX)^T WX \\
= X^T W^T WX \\
= X^T I_N X = X^T X = \|X\|^2
$$

- note: same argument holds for any orthonormal transform
Wavelet Spectrum (Variance Decomposition): I

- let \(\bar{X} \) denote sample mean of \(X_t \)'s:
 \[\bar{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t \]

- let \(\hat{\sigma}_X^2 \) denote sample variance of \(X_t \)'s:
 \[
 \hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 - \bar{X}^2
 \]
 \[
 = \frac{1}{N} \|X\|^2 - \bar{X}^2
 = \frac{1}{N} \|W\|^2 - \bar{X}^2
 \]

- since \(\|W\|^2 = \sum_{j=1}^J \|W_j\|^2 + \|V_J\|^2 \) and \(\frac{1}{N} \|V_J\|^2 = \bar{X}^2 \),
 \[
 \hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^J \|W_j\|^2
 \]
Wavelet Spectrum (Variance Decomposition): II

- define discrete wavelet power spectrum:
 \[P_X(\tau_j) \equiv \frac{1}{N} ||W_j||^2, \text{ where } \tau_j = 2^{j-1} \]

- gives us a scale-based decomposition of the sample variance:
 \[\hat{\sigma}^2_X = \sum_{j=1}^{J} P_X(\tau_j) \]

- in addition, each \(W_{j,t} \) in \(W_j \) associated with a portion of \(X \); i.e., \(W_{j,t}^2 \) offers scale- & time-based decomposition of \(\hat{\sigma}^2_X \)
Wavelet Spectrum (Variance Decomposition): III

- wavelet spectra for time series X and Y of length $N = 16$, each with zero sample mean and same sample variance.
Defining the Discrete Wavelet Transform (DWT)

- can formulate DWT via elegant ‘pyramid’ algorithm
- defines \mathcal{W} for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using $O(N)$ multiplications
 - ‘brute force’ method uses $O(N^2)$ multiplications
 - faster than celebrated algorithm for fast Fourier transform!
 (this uses $O(N \cdot \log_2(N))$ multiplications)
- can formulate algorithm using linear filters or matrices
 (two approaches are complementary)
- need to review ideas from theory of linear (time-invariant) filters
Fourier Theory for Sequences: I

- Let \(\{a_t\} \) denote a real-valued sequence such that \(\sum_t a_t^2 < \infty \)
- Discrete Fourier transform (DFT) of \(\{a_t\} \):
 \[
 A(f) \equiv \sum_t a_t e^{-i2\pi ft}
 \]
- \(f \) called frequency: \(e^{-i2\pi ft} = \cos(2\pi ft) - i \sin(2\pi ft) \)
- \(A(f) \) defined for all \(f \), but \(0 \leq f \leq 1/2 \) is of main interest:
 - \(A(\cdot) \) periodic with unit period, i.e., \(A(f + 1) = A(f) \), all \(f \)
 - \(A(-f) = A^*(f) \), complex conjugate of \(A(f) \)
 - Need only know \(A(f) \) for \(0 \leq f \leq 1/2 \) to know it for all \(f \)
- ‘Low frequencies’ are those in lower range of \([0, 1/2]\)
- ‘High frequencies’ are those in upper range of \([0, 1/2]\)
Fourier Theory for Sequences: II

- can recover (synthesize) \(\{a_t\} \) from its DFT:

\[
\int_{-1/2}^{1/2} A(f)e^{i2\pi ft} df = a_t;
\]

left-hand side called inverse DFT of \(A(\cdot) \)

- \(\{a_t\} \) and \(A(\cdot) \) are two representations for one ‘thingy’

- large \(|A(f)| \) says \(e^{i2\pi ft} \) important in synthesizing \(\{a_t\} \); i.e.,

\(\{a_t\} \) resembles some combination of \(\cos(2\pi ft) \) and \(\sin(2\pi ft) \)
Convolution of Sequences

• given two sequences \(\{a_t\} \) and \(\{b_t\} \), define their convolution by

\[
c_t \equiv \sum_{u=-\infty}^{\infty} a_u b_{t-u}
\]

• DFT of \(\{c_t\} \) has a simple form, namely,

\[
\sum_{t=-\infty}^{\infty} c_t e^{-i2\pi ft} = A(f)B(f),
\]

where \(A(\cdot) \) is the DFT of \(\{a_t\} \), and \(B(\cdot) \) is the DFT of \(\{b_t\} \); i.e., just multiply two DFTs together!!!
Basic Concepts of Filtering

• convolution & linear time-invariant filtering are same concepts:
 – \(\{b_t\} \) is input to filter
 – \(\{a_t\} \) represents the filter
 – \(\{c_t\} \) is filter output

• flow diagram for filtering: \(\{b_t\} \longrightarrow \{a_t\} \longrightarrow \{c_t\} \)

• \(\{a_t\} \) is called impulse response sequence for filter

• its DFT \(A(\cdot) \) is called transfer function

• in general \(A(\cdot) \) is complex-valued, so write \(A(f) = |A(f)|e^{i\theta(f)} \)
 – \(|A(f)| \) defines gain function
 – \(A(f) \equiv |A(f)|^2 \) defines squared gain function
 – \(\theta(\cdot) \) called phase function (well-defined at \(f \) if \(|A(f)| > 0 \)
Example of a Low-Pass Filter

- consider \(b_t = \frac{3}{16} \left(\frac{4}{5} \right) |t| + \frac{1}{20} \left(-\frac{4}{5} \right) |t| \) & \(a_t = \begin{cases} \frac{1}{2}, & t = 0 \\ \frac{1}{4}, & t = -1 \text{ or } 1 \\ 0, & \text{otherwise} \end{cases} \)

- note: \(A(\cdot) \) & \(B(\cdot) \) both real-valued \((A(\cdot) = \text{its gain function}) \)
Example of a High-Pass Filter

- consider same \(\{b_t\} \), but now let \(a_t = \begin{cases}
\frac{1}{2}, & t = 0 \\
-\frac{1}{4}, & t = -1 \text{ or } 1 \\
0, & \text{otherwise}
\end{cases} \)

- note: \(\{a_t\} \) resembles some wavelet filters we’ll see later
The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let \{h_l : l = 0, \ldots, L - 1\} be a real-valued filter of width \(L\)
 - both \(h_0\) and \(h_{L-1}\) must be nonzero
 - for convenience, will define \(h_l = 0\) for \(l < 0\) and \(l \geq L\)
 - \(L\) must be even \((2, 4, 6, 8, \ldots)\) for technical reasons (hence ruling out \(\{a_t\}\) on the previous overhead)
The Wavelet Filter: II

• \{h_l\} called a wavelet filter if it has these 3 properties

 1. summation to zero:

 \[
 \sum_{l=0}^{L-1} h_l = 0
 \]

 2. unit energy:

 \[
 \sum_{l=0}^{L-1} h_l^2 = 1
 \]

 3. orthogonality to even shifts: for all nonzero integers \(n\), have

 \[
 \sum_{l=0}^{L-1} h_lh_{l+2n} = 0
 \]

• 2 and 3 together are called the **orthonormality property**
The Wavelet Filter: III

- summation to zero and unit energy relatively easy to achieve
- orthogonality to even shifts is key property & hardest to satisfy
- define transfer and squared gain functions for wavelet filter:

\[H(f) \equiv \sum_{l=0}^{L-1} h_le^{-i2\pi fl} \quad \text{and} \quad \mathcal{H}(f) \equiv |H(f)|^2 \]

- orthonormality property is equivalent to

\[\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2 \quad \text{for all } f \]

(an elegant – but not obvious! – result)
Haar Wavelet Filter

- simplest wavelet filter is Haar ($L = 2$): $h_0 = \frac{1}{\sqrt{2}}$ & $h_1 = -\frac{1}{\sqrt{2}}$
- note that $h_0 + h_1 = 0$ and $h_0^2 + h_1^2 = 1$, as required
- orthogonality to even shifts also readily apparent
D(4) Wavelet Filter: I

- next simplest wavelet filter is D(4), for which $L = 4$:
 \[h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}}, \quad h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}}, \quad h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \quad h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}} \]

- ‘D’ stands for Daubechies
- $L = 4$ width member of her ‘extremal phase’ wavelets
- computations show $\sum_l h_l = 0$ & $\sum_l h_l^2 = 1$, as required
- orthogonality to even shifts apparent except for ±2 case:
D(4) Wavelet Filter: II

• Q: what is rationale for D(4) filter?

• consider $X_t^{(1)} \equiv X_t - X_{t-1} = a_0 X_t + a_1 X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter:

$$\{X_t\} \longrightarrow \{1, -1\} \longrightarrow \{X_t^{(1)}\}$$

 - Haar wavelet filter is normalized 1st difference filter
 - $X_t^{(1)}$ is difference between two ‘1 point averages’

• consider filter ‘cascade’ with two 1st difference filters:

$$\{X_t\} \longrightarrow \{1, -1\} \longrightarrow \{1, -1\} \longrightarrow \{X_t^{(2)}\}$$

• by considering convolution of $\{1, -1\}$ with itself, can reexpress the above using a single ‘equivalent’ (2nd difference) filter:

$$\{X_t\} \longrightarrow \{1, -2, 1\} \longrightarrow \{X_t^{(2)}\}$$
D(4) Wavelet Filter: III

- renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

\[a_t = \begin{cases}
\frac{1}{2}, & t = 0 \\
-\frac{1}{4}, & t = -1 \text{ or } 1 \\
0, & \text{otherwise}
\end{cases} \]

- consider ‘2 point weighted average’ followed by 2nd difference:

\[\{X_t\} \rightarrow \{a, b\} \rightarrow \{1, -2, 1\} \rightarrow \{Y_t\} \]

- convolution of \(\{a, b\} \) and \(\{1, -2, 1\} \) yields an equivalent filter, which is how the D(4) wavelet filter arises:

\[\{X_t\} \rightarrow \{h_0, h_1, h_2, h_3\} \rightarrow \{Y_t\} \]
D(4) Wavelet Filter: IV

- using conditions
 - 1. summation to zero: \(h_0 + h_1 + h_2 + h_3 = 0 \)
 - 2. unit energy: \(h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1 \)
 - 3. orthogonality to even shifts: \(h_0 h_2 + h_1 h_3 = 0 \)

 can solve for feasible values of \(a \) and \(b \)

- one solution is \(a = \frac{1+\sqrt{3}}{4\sqrt{2}} \approx 0.48 \) and \(b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \approx 0.13 \)

 (other solutions yield essentially the same filter)

- interpret D(4) filtered output as changes in weighted averages
 - ‘change’ now measured by 2nd difference (1st for Haar)
 - average is now 2 point weighted average (1 point for Haar)
 - can argue that effective scale of weighted average is one
Another Popular Daubechies Wavelet Filter

- LA(8) wavelet filter (‘LA’ stands for ‘least asymmetric’)

- resembles three-point high-pass filter \{-\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}\} (somewhat)

- can interpret this filter as cascade consisting of
 - 4th difference filter
 - weighted average filter of width 4, but effective width 1

- filter output can be interpreted as changes in weighted averages
First Level Wavelet Coefficients: I

- given wavelet filter \(\{ h_l \} \) of width \(L \) & time series of length \(N = 2^J \), obtain first level wavelet coefficients as follows
- *circularly* filter \(X \) with wavelet filter to yield output
 \[
 \sum_{l=0}^{L-1} h_l X_{t-l} = \sum_{l=0}^{L-1} h_l X_{t-l \mod N}, \quad t = 0, \ldots, N - 1;
 \]
i.e., if \(t - l \) does not satisfy \(0 \leq t - l \leq N - 1 \), interpret \(X_{t-l} \) as \(X_{t-l \mod N} \); e.g., \(X_{-1} = X_{N-1} \) and \(X_{-2} = X_{N-2} \)
- take every other value of filter output to define
 \[
 W_{1,t} \equiv \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}, \quad t = 0, \ldots, \frac{N}{2} - 1;
 \]
 \(\{ W_{1,t} \} \) formed by *downsampling* filter output by a factor of 2
First Level Wavelet Coefficients: II

- example of formation of $\{W_{1,t}\}$
First Level Wavelet Coefficients: II

- example of formation of $\{W_{1,t}\}$

\[h_l^\circ X_{1-l \mod 16} \sum = \]
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_l^\circ X_{2-l \mod 16} \quad \sum = \quad \text{graphical representation}
\]
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
\begin{align*}
\sum = \frac{\partial}{\partial X_{3-l \mod 16}} h_l \cdot X_{3-l \mod 16}
\end{align*}
\]
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_l^\circ \quad h_l^\circ X_{4-l \mod 16} \quad \sum =
\]

\[
X_{4-l \mod 16}
\]
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_l^o \quad h_l^o X_{5-l \mod 16} \quad \sum = \quad \]

\(X_{5-l \mod 16} \)
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)
First Level Wavelet Coefficients: II

- example of formation of $\{W_{1,t}\}$
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)
First Level Wavelet Coefficients: II

- example of formation of \{W_{1,t}\}
First Level Wavelet Coefficients: II

- example of formation of $\{W_{1,t}\}$
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
\begin{align*}
X_{12 - l \mod 16} & \cdot h_l^o X_{12 - l \mod 16} \quad \sum = \quad h_l^o
\end{align*}
\]
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_l \circ X_{14-l \mod 16} \sum = \]

WMTSA: 70
I–41
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
h_{l} \circ X_{15-l \mod 16} \sum = \]

WMTSA: 70
First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)

\[
\begin{align*}
&h_l^\circ \quad h_l^\circ X_{15-l \mod 16} \quad \sum = \\
&X_{15-l \mod 16} \quad \downarrow 2
\end{align*}
\]

- \(\{W_{1,t}\} \) are unit scale wavelet coefficients – these are the elements of \(\mathbf{W}_1 \) and first \(N/2 \) elements of \(\mathbf{W} = \mathbf{W}_1 \mathbf{X} \)

- also have \(\mathbf{W}_1 = \mathbf{W}_1 \mathbf{X} \), with \(\mathbf{W}_1 \) being first \(N/2 \) rows of \(\mathbf{W} \)

- hence elements of \(\mathbf{W}_1 \) dictated by wavelet filter
Upper Half \mathcal{W}_1 of Haar DWT Matrix \mathcal{W}

- Consider Haar wavelet filter ($L = 2$): $h_0 = \frac{1}{\sqrt{2}}$ & $h_1 = -\frac{1}{\sqrt{2}}$

- When $N = 16$, \mathcal{W}_1 looks like

$$
\begin{bmatrix}
 h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 \ h_0 \\
\end{bmatrix}
$$

- Rows obviously orthogonal to each other
Upper Half \mathcal{W}_1 of D(4) DWT Matrix \mathcal{W}

- when $L = 4$ & $N = 16$, \mathcal{W}_1 looks like

\[
\begin{bmatrix}
 h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 \\
 h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 \\
\end{bmatrix}
\]

- rows orthogonal because $h_0h_2 + h_1h_3 = 0$

- note: $\langle \mathcal{W}_0, X \rangle$ yields $W_0 = h_1X_0 + h_0X_1 + h_3X_{14} + h_2X_{15}$

- unlike other coefficients from above, this ‘boundary’ coefficient depends on circular treatment of X (a curse, not a feature!)
Orthonormality of Upper Half of DWT Matrix: I

- can show that, for all L and even N,
 \[W_{1,t} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}, \]
 or, equivalently, \(W_1 = \mathcal{W}_1 X \)
 forms half an orthonormal transform; i.e.,
 \[\mathcal{W}_1 \mathcal{W}_1^T = I_{N/2} \]
- Q: how can we construct the other half of \mathcal{W}?
The Scaling Filter: I

- create scaling (or ‘father wavelet’) filter \(\{g_l\} \) by reversing \(\{h_l\} \) and then changing sign of coefficients with even indices

\[
\begin{align*}
\{h_l\} & \quad \{h_l\} \text{ reversed} & \quad \{g_l\} \\
\text{Haar} & \quad \quad & \quad \\
\text{D(4)} & \quad \quad & \quad \\
\text{LA(8)} & \quad \quad & \quad \\
\end{align*}
\]

- 2 filters related by \(g_l \equiv (-1)^{l+1} h_{L-1-l} \) & \(h_l = (-1)^l g_{L-1-l} \)
The Scaling Filter: II

- \{g_l\} is ‘quadrature mirror’ filter corresponding to \{h_l\}
- properties 2 and 3 of \{h_l\} are shared by \{g_l\}:
 2. unit energy:
 \[
 \sum_{l=0}^{L-1} g_l^2 = 1
 \]
 3. orthogonality to even shifts: for all nonzero integers \(n\), have
 \[
 \sum_{l=0}^{L-1} g_l g_{l+2n} = 0
 \]
- scaling & wavelet filters both satisfy orthonormality property
First Level Scaling Coefficients: I

- orthonormality property of \(\{h_l\} \) is all that is needed to prove \(\mathcal{W}_1 \) is half of an orthonormal transform (never used \(\sum_l h_l = 0 \))
- going back and replacing \(h_l \) with \(g_l \) everywhere yields another half of an orthonormal transform
- circularly filter \(\mathbf{X} \) using \(\{g_l\} \) and downsample to define

\[
V_{1,t} \equiv \sum_{l=0}^{L-1} g_l X_{2t+1-l \mod N}, \quad t = 0, \ldots, \frac{N}{2} - 1
\]

- \(\{V_{1,t}\} \) called scaling coefficients for level \(j = 1 \)
- place these \(N/2 \) coefficients in vector called \(\mathbf{V}_1 \)
First Level Scaling Coefficients: III

- define \mathcal{V}_1 in a manner analogous to \mathcal{W}_1 so that $\mathbf{V}_1 = \mathcal{V}_1 \mathbf{X}$
- when $L = 4$ and $N = 16$, \mathcal{V}_1 looks like

\[
\begin{pmatrix}
 g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
 g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & g_3 & g_2 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & g_3 & g_2 \\
\end{pmatrix}
\]

- \mathcal{V}_1 obeys same orthonormality property as \mathcal{W}_1:

 similar to $\mathcal{W}_1 \mathcal{W}_1^T = I_{N \over 2}$, have $\mathcal{V}_1 \mathcal{V}_1^T = I_{N \over 2}$
Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: I

- Q: how does \mathcal{V}_1 help us?
- A: rows of \mathcal{V}_1 and \mathcal{W}_1 are pairwise orthogonal!
- readily apparent in Haar case:

\[
\begin{align*}
g_l & \\ h_l & \end{align*}
\]

\[
\begin{align*}
g_l h_l & \quad \text{sum} = 0
\end{align*}
\]
Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: II

• let’s check that orthogonality holds for $D(4)$ case also:

\[g_l, h_l, h_{l-2} \]
\[g_l h_l \quad \text{sum} = 0 \]
\[g_l h_{l-2} \quad \text{sum} = 0 \]
Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: III

• implies that

$$\mathcal{P}_1 \equiv \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix}$$

is an $N \times N$ orthonormal matrix since

$$\mathcal{P}_1 \mathcal{P}_1^T = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \begin{bmatrix} \mathcal{W}_1^T & \mathcal{V}_1^T \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \mathcal{W}_1^T & \mathcal{W}_1 \mathcal{V}_1^T \\ \mathcal{V}_1 \mathcal{W}_1^T & \mathcal{V}_1 \mathcal{V}_1^T \end{bmatrix} = \begin{bmatrix} I_N^2 & 0_N^2 \\ 0_N^2 & I_N^2 \end{bmatrix} = I_N$$

• if $N = 2$ (not of too much interest!), in fact $\mathcal{P}_1 = \mathcal{W}$

• if $N > 2$, \mathcal{P}_1 is an intermediate step: \mathcal{V}_1 spans same subspace as lower half of \mathcal{W} and will be further manipulated
Interpretation of Scaling Coefficients: I

• consider Haar scaling filter ($L = 2$): $g_0 = g_1 = \frac{1}{\sqrt{2}}$

• when $N = 16$, matrix \mathcal{V}_1 looks like

$$
\begin{bmatrix}
g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0
\end{bmatrix}
$$

• since $\mathbf{V}_1 = \mathcal{V}_1 \mathbf{X}$, each $V_{1,t}$ is proportional to a 2 point average:

$$V_{1,0} = g_1 X_0 + g_0 X_1 = \frac{1}{\sqrt{2}} X_0 + \frac{1}{\sqrt{2}} X_1 \propto \overline{X}_1(2)$$

and so forth
Interpretation of Scaling Coefficients: II

- reconsider shapes of $\{g_l\}$ seen so far:

 Haar

 D(4)

 LA(8)

- for $L > 2$, can regard $V_{1,t}$ as proportional to weighted average

- can argue that effective width of $\{g_l\}$ is 2 in each case; thus scale associated with $V_{1,t}$ is 2, whereas scale is 1 for $W_{1,t}$
Frequency Domain Properties of Scaling Filter

- define transfer and squared gain functions for \(\{g_l\} \)

\[
G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi f l} \quad \& \quad \mathcal{G}(f) \equiv |G(f)|^2
\]

- can argue that \(\mathcal{G}(f) = \mathcal{H}(f + \frac{1}{2}) \), which, combined with

\[
\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2,
\]

yields

\[
\mathcal{H}(f) + \mathcal{G}(f) = 2
\]
Frequency Domain Properties of \{h_l\} and \{g_l\}

- since W_1 & V_1 contain output from filters, consider their squared gain functions, recalling that $H(f) + G(f) = 2$
- example: $H(\cdot)$ and $G(\cdot)$ for Haar & D(4) filters

$\{h_l\}$ is high-pass filter with nominal pass-band $[1/4, 1/2]$

$\{g_l\}$ is low-pass filter with nominal pass-band $[0, 1/4]$
Frequency Domain Properties of \{h_l\} and \{g_l\}

- since W_1 & V_1 contain output from filters, consider their squared gain functions, recalling that $\mathcal{H}(f) + \mathcal{G}(f) = 2$
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & LA(8) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band $[1/4, 1/2]$
- $\{g_l\}$ is low-pass filter with nominal pass-band $[0, 1/4]$
Example of Decomposing X into W_1 and V_1: I

- oxygen isotope records X from Antarctic ice core
Example of Decomposing X into W_1 and V_1: II

- oxygen isotope record series X has $N = 352$ observations
- spacing between observations is $\Delta \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients V_1 related to averages on scale of 2Δ
- wavelet coefficients W_1 related to changes on scale of Δ
- coefficients $V_{1,t}$ and $W_{1,t}$ plotted against mid-point of years associated with X_{2t} and X_{2t+1}
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway
Reconstructing X from W_1 and V_1

- in matrix notation, form wavelet & scaling coefficients via

$$
\begin{bmatrix}
W_1 \\
V_1
\end{bmatrix}
=
\begin{bmatrix}
W_1X \\
V_1X
\end{bmatrix}
=
\begin{bmatrix}
W_1 \\
V_1
\end{bmatrix}
X
= P_1X
$$

- recall that $P_1^T P_1 = I_N$ because P_1 is orthonormal

- since $P_1^T P_1 X = X$, premultiplying both sides by P_1^T yields

$$
P_1^T \begin{bmatrix}
W_1 \\
V_1
\end{bmatrix}
= \begin{bmatrix}
W_1^T & V_1^T
\end{bmatrix}
\begin{bmatrix}
W_1 \\
V_1
\end{bmatrix}
= W_1^T W_1 + V_1^T V_1 = X
$$

- $D_1 \equiv W_1^T W_1$ is the first level detail

- $S_1 \equiv V_1^T V_1$ is the first level ‘smooth’

- $X = D_1 + S_1$ in this notation
Example of Synthesizing X from D_1 and S_1

- Haar-based decomposition for oxygen isotope records X
First Level Variance Decomposition: I

- recall that ‘energy’ in \mathbf{X} is its squared norm $\|\mathbf{X}\|^2$
- because \mathcal{P}_1 is orthonormal, have $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ and hence
 \[\|\mathcal{P}_1 \mathbf{X}\|^2 = (\mathcal{P}_1 \mathbf{X})^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2 \]
- can conclude that $\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$ because
 \[\mathcal{P}_1 \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} \]
 and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$
- leads to a decomposition of the sample variance for \mathbf{X}:

\[
\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \frac{1}{N} \|\mathbf{X}\|^2 - \bar{X}^2
\]
\[
= \frac{1}{N} \|\mathbf{W}_1\|^2 + \frac{1}{N} \|\mathbf{V}_1\|^2 - \bar{X}^2
\]
First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_X^2$ into two pieces:
 1. $\frac{1}{N}||W_1||^2$, attributable to changes in averages over scale 1
 2. $\frac{1}{N}||V_1||^2 - \bar{X}^2$, attributable to averages over scale 2
- Haar-based example for oxygen isotope records
 - first piece: $\frac{1}{N}||W_1||^2 \doteq 0.295$
 - second piece: $\frac{1}{N}||V_1||^2 - \bar{X}^2 \doteq 2.909$
 - sample variance: $\hat{\sigma}_X^2 \doteq 3.204$
 - changes on scale of $\Delta \doteq 0.5$ years account for 9% of $\hat{\sigma}_X^2$
 (standardized scale 1 corresponds to physical scale Δ)
Summary of First Level of Basic Algorithm

- transforms \(\{X_t : t = 0, \ldots, N - 1\} \) into 2 types of coefficients
- \(N/2 \) wavelet coefficients \(\{W_{1,t}\} \) associated with:
 - \(W_1 \), a vector consisting of first \(N/2 \) elements of \(W \)
 - changes on scale 1 and nominal frequencies \(\frac{1}{4} \leq |f| \leq \frac{1}{2} \)
 - first level detail \(D_1 \)
 - \(W_1 \), an \(\frac{N}{2} \times N \) matrix consisting of first \(\frac{N}{2} \) rows of \(W \)
- \(N/2 \) scaling coefficients \(\{V_{1,t}\} \) associated with:
 - \(V_1 \), a vector of length \(N/2 \)
 - averages on scale 2 and nominal frequencies \(0 \leq |f| \leq \frac{1}{4} \)
 - first level smooth \(S_1 \)
 - \(V_1 \), an \(\frac{N}{2} \times N \) matrix spanning same subspace as last \(N/2 \) rows of \(W \)
Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as ‘one point’ averages $\overline{X}_t(1)$ over scale of 1
- first level of basic algorithm transforms X of length N into
 - $N/2$ wavelet coefficients $W_1 \propto$ changes on a scale of 1
 - $N/2$ scaling coefficients $V_1 \propto$ averages of X_t on a scale of 2
- in essence basic algorithm takes length N series X related to scale 1 averages and produces
 - length $N/2$ series W_1 associated with the same scale
 - length $N/2$ series V_1 related to averages on double the scale
Constructing Remaining DWT Coefficients: II

• Q: what if we now treat V_1 in the same manner as X?

• basic algorithm will transform length $N/2$ series V_1 into
 – length $N/4$ series W_2 associated with the same scale (2)
 – length $N/4$ series V_2 related to averages on twice the scale

• by definition, W_2 contains the level 2 wavelet coefficients

• Q: what if we treat V_2 in the same way?

• basic algorithm will transform length $N/4$ series V_2 into
 – length $N/8$ series W_3 associated with the same scale (4)
 – length $N/8$ series V_3 related to averages on twice the scale

• by definition, W_3 contains the level 3 wavelet coefficients
Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W} = \mathcal{W} \mathbf{X}$ is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_j and \mathbf{V}_j from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of \mathbf{V}_j given by $N/2^j$
- since $N = 2^J$, length of \mathbf{V}_J is 1, at which point we must stop
- J applications of the basic algorithm defines the remaining subvectors $\mathbf{W}_2, \ldots, \mathbf{W}_J, \mathbf{V}_J$ of DWT coefficient vector \mathbf{W}
- overall scheme is known as the ‘pyramid’ algorithm
Scales Associated with DWT Coefficients

- jth level of algorithm transforms scale 2^{j-1} averages into
 - differences of averages on scale 2^{j-1}, i.e., wavelet coefficients W_j
 - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., scaling coefficients V_j

- $\tau_j \equiv 2^{j-1}$ denotes scale associated with W_j
 - for $j = 1, \ldots, J$, takes on values $1, 2, 4, \ldots, N/4, N/2$

- $\lambda_j \equiv 2^j = 2\tau_j$ denotes scale associated with V_j
 - takes on values $2, 4, 8, \ldots, N/2, N$
Matrix Description of Pyramid Algorithm: I

- form $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$ matrix \mathcal{B}_j in same way as $\frac{N}{2} \times N$ matrix \mathcal{W}_1
- when $L = 4$ and $N/2^{j-1} = 16$, have

$$\mathcal{B}_j = \begin{bmatrix}
h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 \\
h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}$$

- matrix gets us jth level wavelet coefficients via $\mathcal{W}_j = \mathcal{B}_j \mathcal{V}_{j-1}$
Matrix Description of Pyramid Algorithm: II

- form $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$ matrix A_j in same way as $\frac{N}{2} \times N$ matrix V_1
- when $L = 4$ and $N/2^{j-1} = 16$, have

$$A_j = \begin{bmatrix}
g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & g_3 & g_2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & g_3 & g_2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}$$

- matrix gets us jth level scaling coefficients via $V_j = A_j V_{j-1}$
Matrix Description of Pyramid Algorithm: III

- if we define $V_0 = X$ and let $j = 1$, then
 \[W_j = B_j V_{j-1} \] reduces to $W_1 = B_1 V_0 = B_1 X = W_1 X$
 because B_1 has the same definition as W_1
- likewise, when $j = 1$,
 \[V_j = A_j V_{j-1} \] reduces to $V_1 = A_1 V_0 = A_1 X = V_1 X$
 because A_1 has the same definition as $V_1
Formation of Submatrices of \mathcal{W}: I

- using $\mathbf{V}_j = \mathbf{A}_j \mathbf{V}_{j-1}$ repeatedly and $\mathbf{V}_1 = \mathbf{A}_1 \mathbf{X}$, can write

 $\mathbf{W}_j = \mathbf{B}_j \mathbf{V}_{j-1}$

 $= \mathbf{B}_j \mathbf{A}_{j-1} \mathbf{V}_{j-2}$

 $= \mathbf{B}_j \mathbf{A}_{j-1} \mathbf{A}_{j-2} \mathbf{V}_{j-3}$

 $= \mathbf{B}_j \mathbf{A}_{j-1} \mathbf{A}_{j-2} \cdots \mathbf{A}_1 \mathbf{X} \equiv \mathbf{W}_j \mathbf{X}$, where \mathbf{W}_j is $\frac{N}{2^j} \times N$ submatrix of \mathcal{W} responsible for \mathbf{W}_j

- likewise, can get $1 \times N$ submatrix \mathbf{V}_J responsible for \mathbf{V}_J

 $\mathbf{V}_J = \mathbf{A}_J \mathbf{V}_{J-1}$

 $= \mathbf{A}_J \mathbf{A}_{J-1} \mathbf{V}_{J-2}$

 $= \mathbf{A}_J \mathbf{A}_{J-1} \mathbf{A}_{J-2} \mathbf{V}_{J-3}$

 $= \mathbf{A}_J \mathbf{A}_{J-1} \mathbf{A}_{J-2} \cdots \mathbf{A}_1 \mathbf{X} \equiv \mathbf{V}_J \mathbf{X}$

- \mathbf{V}_J is the last row of \mathcal{W}, & all its elements are equal to $1/\sqrt{N}$
Formation of Submatrices of \mathcal{W}: II

• have now constructed all of DWT matrix:

$$\mathcal{W} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \mathcal{W}_3 \\ \mathcal{W}_4 \\ \vdots \\ \mathcal{W}_j \\ \vdots \\ \mathcal{W}_J \\ \mathcal{V}_J \end{bmatrix} = \begin{bmatrix} \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \mathcal{B}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \mathcal{B}_4 \mathcal{A}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \\ \mathcal{A}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \end{bmatrix}$$
Examples of \mathcal{W} and its Partitioning: I

- $N = 16$ case for Haar DWT matrix \mathcal{W}

- above agrees with qualitative description given previously
Examples of \mathcal{W} and its Partitioning: II

- $N = 16$ case for D(4) DWT matrix \mathcal{W}

 \[\mathcal{W}_1 \]

 - \mathcal{W}_2
 - \mathcal{W}_3
 - \mathcal{W}_4
 - \mathcal{V}_4

 - note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed
Partial DWT: I

• J repetitions of pyramid algorithm for \mathbf{X} of length $N = 2^J$ yields ‘complete’ DWT, i.e., $\mathbf{W} = \mathcal{W}\mathbf{X}$

• can choose to stop at $J_0 < J$ repetitions, yielding a ‘partial’ DWT of level J_0:

\[
\begin{bmatrix}
\mathcal{W}_1 \\
\mathcal{W}_2 \\
\vdots \\
\mathcal{W}_j \\
\vdots \\
\mathcal{W}_{J_0} \\
\mathcal{V}_{J_0}
\end{bmatrix}
\mathbf{X} =
\begin{bmatrix}
\mathcal{B}_1 \\
\mathcal{B}_2 \mathcal{A}_1 \\
\vdots \\
\mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1 \\
\vdots \\
\mathcal{B}_{J_0} \mathcal{A}_{J_0-1} \cdots \mathcal{A}_1 \\
\mathcal{A}_{J_0} \mathcal{A}_{J_0-1} \cdots \mathcal{A}_1
\end{bmatrix}
\begin{bmatrix}
\mathbf{W}_1 \\
\mathbf{W}_2 \\
\vdots \\
\mathbf{W}_j \\
\vdots \\
\mathbf{W}_{J_0} \\
\mathbf{V}_{J_0}
\end{bmatrix}
\]

• \mathcal{V}_{J_0} is $\frac{N}{2^{J_0}} \times N$, yielding $\frac{N}{2^{J_0}}$ coefficients for scale $\lambda_{J_0} = 2^{J_0}$
Partial DWT: II

- only requires N to be integer multiple of 2^{J_0}
- partial DWT more common than complete DWT
- choice of J_0 is application dependent
- multiresolution analysis for partial DWT:

$$X = \sum_{j=1}^{J_0} D_j + S_{J_0}$$

S_{J_0} represents averages on scale $\lambda_{J_0} = 2^{J_0}$ (includes \overline{X})

- analysis of variance for partial DWT:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J_0} \|W_j\|^2 + \frac{1}{N} \|V_{J_0}\|^2 - \overline{X}^2$$
Example of $J_0 = 4$ Partial Haar DWT

- oxygen isotope records \mathbf{X} from Antarctic ice core
Example of $J_0 = 4$ Partial Haar DWT

- oxygen isotope records X from Antarctic ice core
Example of MRA from $J_0 = 4$ Partial Haar DWT

- oxygen isotope records X from Antarctic ice core
Example of Variance Decomposition

• decomposition of sample variance from $J_0 = 4$ partial DWT

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \sum_{j=1}^{4} \frac{1}{N} \| W_j \|^2 + \frac{1}{N} \| V_4 \|^2 - \bar{X}^2$$

• Haar-based example for oxygen isotope records

 - 0.5 year changes: \[\frac{1}{N} \| W_1 \|^2 \doteq 0.295 \text{ (\doteq 9.2\% of } \hat{\sigma}_X^2) \]
 - 1.0 years changes: \[\frac{1}{N} \| W_2 \|^2 \doteq 0.464 \text{ (\doteq 14.5\%) } \]
 - 2.0 years changes: \[\frac{1}{N} \| W_3 \|^2 \doteq 0.652 \text{ (\doteq 20.4\%) } \]
 - 4.0 years changes: \[\frac{1}{N} \| W_4 \|^2 \doteq 0.846 \text{ (\doteq 26.4\%) } \]
 - 8.0 years averages: \[\frac{1}{N} \| V_4 \|^2 - \bar{X}^2 \doteq 0.947 \text{ (\doteq 29.5\%) } \]
 - sample variance: \[\hat{\sigma}_X^2 \doteq 3.204 \]
Haar Equivalent Wavelet & Scaling Filters

\[\{h_l\} \quad L = 2 \]
\[\{h_{2,l}\} \quad L_2 = 4 \]
\[\{h_{3,l}\} \quad L_3 = 8 \]
\[\{h_{4,l}\} \quad L_4 = 16 \]
\[\{g_l\} \quad L = 2 \]
\[\{g_{2,l}\} \quad L_2 = 4 \]
\[\{g_{3,l}\} \quad L_3 = 8 \]
\[\{g_{4,l}\} \quad L_4 = 16 \]

- \(L_j = 2^j \) is width of \(\{h_{j,l}\} \) and \(\{g_{j,l}\} \)
- note: convenient to define \(\{h_{1,l}\} \) to be same as \(\{h_l\} \)
D(4) Equivalent Wavelet & Scaling Filters

<table>
<thead>
<tr>
<th>Filter</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>({h_i})</td>
<td>(L = 4)</td>
</tr>
<tr>
<td>({h_{2,i}})</td>
<td>(L_2 = 10)</td>
</tr>
<tr>
<td>({h_{3,i}})</td>
<td>(L_3 = 22)</td>
</tr>
<tr>
<td>({h_{4,i}})</td>
<td>(L_4 = 46)</td>
</tr>
<tr>
<td>({g_i})</td>
<td>(L = 4)</td>
</tr>
<tr>
<td>({g_{2,i}})</td>
<td>(L_2 = 10)</td>
</tr>
<tr>
<td>({g_{3,i}})</td>
<td>(L_3 = 22)</td>
</tr>
<tr>
<td>({g_{4,i}})</td>
<td>(L_4 = 46)</td>
</tr>
</tbody>
</table>

- \(L_j \) dictated by general formula \(L_j = (2^j - 1)(L - 1) + 1 \),
 but can argue that *effective* width is \(2^j \) (same as Haar \(L_j \))
LA(8) Equivalent Wavelet & Scaling Filters

\[
\begin{align*}
\{h_1\} & \quad L = 8 \\
\{h_{2,1}\} & \quad L_2 = 22 \\
\{h_{3,1}\} & \quad L_3 = 50 \\
\{h_{4,1}\} & \quad L_4 = 106 \\
\{g_1\} & \quad L = 8 \\
\{g_{2,1}\} & \quad L_2 = 22 \\
\{g_{3,1}\} & \quad L_3 = 50 \\
\{g_{4,1}\} & \quad L_4 = 106
\end{align*}
\]
Squared Gain Functions for Filters

- squared gain functions give us frequency domain properties:
 \[\mathcal{H}_j(f) \equiv |H_j(f)|^2 \text{ and } \mathcal{G}_j(f) \equiv |G_j(f)|^2 \]
- example: squared gain functions for LA(8) \(J_0 = 4 \) partial DWT
Maximal Overlap Discrete Wavelet Transform

- abbreviation is MODWT (pronounced ‘mod WT’)
- transforms very similar to the MODWT have been studied in the literature under the following names:
 - undecimated DWT (or nondecimated DWT)
 - stationary DWT
 - translation invariant DWT
 - time invariant DWT
 - redundant DWT
- also related to notions of ‘wavelet frames’ and ‘cycle spinning’
- basic idea: use values removed from DWT by downsampling
Quick Comparison of the MODWT to the DWT

- unlike the DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- unlike the DWT, MODWT is defined naturally for all samples sizes (i.e., \(N \) need not be a multiple of a power of two)
- similar to the DWT, can form multiresolution analyses (MRAs) using MODWT with certain additional desirable features; e.g., unlike the DWT, MODWT-based MRA has details and smooths that shift along with \(\mathbf{X} \) (if \(\mathbf{X} \) has detail \(\tilde{D}_j \), then \(\mathcal{T}^m \mathbf{X} \) has detail \(\mathcal{T}^m \tilde{D}_j \), where \(\mathcal{T}^m \) circularly shifts \(\mathbf{X} \) by \(m \) units)
- similar to the DWT, an analysis of variance (ANOVA) can be based on MODWT wavelet coefficients
- unlike the DWT, MODWT discrete wavelet power spectrum same for \(\mathbf{X} \) and its circular shifts \(\mathcal{T}^m \mathbf{X} \)
Definition of MODWT Coefficients: I

- define MODWT filters \(\{\tilde{h}_{j,l}\} \) and \(\{\tilde{g}_{j,l}\} \) by renormalizing the DWT filters:
 \[
 \tilde{h}_{j,l} = \frac{h_{j,l}}{2^j/2} \quad \text{and} \quad \tilde{g}_{j,l} = \frac{g_{j,l}}{2^j/2}
 \]

- level \(j \) MODWT wavelet and scaling coefficients are defined to be output obtaining by filtering \(X \) with \(\{\tilde{h}_{j,l}\} \) and \(\{\tilde{g}_{j,l}\} \):

\[
X \rightarrow \{\tilde{h}_{j,l}\} \rightarrow \tilde{W}_j \quad \text{and} \quad X \rightarrow \{\tilde{g}_{j,l}\} \rightarrow \tilde{V}_j
\]

- compare the above to its DWT equivalent:

\[
X \rightarrow \{h_{j,l}\} \downarrow 2^j \rightarrow W_j \quad \text{and} \quad X \rightarrow \{g_{j,l}\} \downarrow 2^j \rightarrow V_j
\]

- level \(J_0 \) MODWT consists of \(J_0 + 1 \) vectors, namely,
 \(\tilde{W}_1, \tilde{W}_2, \ldots, \tilde{W}_{J_0} \) and \(\tilde{V}_{J_0} \),
 each of which has length \(N \)
Definition of MODWT Coefficients: II

- MODWT of level J_0 has $(J_0 + 1)N$ coefficients, whereas DWT has N coefficients for any given J_0
- whereas DWT of level J_0 requires N to be integer multiple of 2^{J_0}, MODWT of level J_0 is well-defined for any sample size N
- when N is divisible by 2^{J_0}, we can write

$$W_{j,t} = \sum_{l=0}^{L_j-1} h_{j,l} X_{2^{j}(t+1) - 1 - l \mod N} \quad \& \quad \tilde{W}_{j,t} = \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t - l \mod N}$$

and we have the relationship

$$W_{j,t} = 2^{j/2} \tilde{W}_{j,2^{j}(t+1)-1} \quad \& \quad V_{J_0,t} = 2^{J_0/2} \tilde{V}_{J_0,2^{J_0}(t+1)-1}$$

(here $\tilde{W}_{j,t}$ & $\tilde{V}_{J_0,t}$ denote the tth elements of \tilde{W}_j & \tilde{V}_{J_0})
Properties of the MODWT

- as was true with the DWT, we can use the MODWT to obtain
 - a scale-based additive decomposition (MRA):
 \[X = \sum_{j=1}^{J_0} \tilde{D}_j + \tilde{S}_{J_0} \]
 - a scale-based energy decomposition (basis for ANOVA):
 \[\|X\|^2 = \sum_{j=1}^{J_0} \|\tilde{W}_j\|^2 + \|\tilde{V}_{J_0}\|^2 \]
- in addition, the MODWT can be computed efficiently via a pyramid algorithm
Example of $J_0 = 4$ LA(8) MODWT

- oxygen isotope records \mathbf{X} from Antarctic ice core
Relationship Between MODWT and DWT

- bottom plot shows W_4 from DWT after circular shift \mathcal{T}^{-3} to align coefficients properly in time
- top plot shows $\sim W_4$ from MODWT and subsamples that, upon rescaling, yield W_4 via $W_4,t = 4\sim W_{4,16(t+1)} - 1$
Example of $J_0 = 4$ LA(8) MODWT MRA

- oxygen isotope records \mathbf{X} from Antarctic ice core

\begin{align*}
\mathbf{X} &\rightarrow \tilde{\mathbf{D}}_1 \\
&\rightarrow \tilde{\mathbf{D}}_2 \\
&\rightarrow \tilde{\mathbf{D}}_3 \\
&\rightarrow \tilde{\mathbf{D}}_4 \\
&\rightarrow \tilde{\mathbf{S}}_4
\end{align*}

(year)

1800 1850 1900 1950 2000
Example of Variance Decomposition

• decomposition of sample variance from MODWT

\[\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \sum_{j=1}^{4} \frac{1}{N} \| \tilde{W}_j \|^2 + \frac{1}{N} \| \tilde{V}_4 \|^2 - \overline{X}^2 \]

• LA(8)-based example for oxygen isotope records

 – 0.5 year changes: \(\frac{1}{N} \| \tilde{W}_1 \|^2 \doteq 0.145 (\doteq 4.5\% \text{ of } \hat{\sigma}_X^2) \)

 – 1.0 years changes: \(\frac{1}{N} \| \tilde{W}_2 \|^2 \doteq 0.500 (\doteq 15.6\%) \)

 – 2.0 years changes: \(\frac{1}{N} \| \tilde{W}_3 \|^2 \doteq 0.751 (\doteq 23.4\%) \)

 – 4.0 years changes: \(\frac{1}{N} \| \tilde{W}_4 \|^2 \doteq 0.839 (\doteq 26.2\%) \)

 – 8.0 years averages: \(\frac{1}{N} \| \tilde{V}_4 \|^2 - \overline{X}^2 \doteq 0.969 (\doteq 30.2\%) \)

 – sample variance: \(\hat{\sigma}_X^2 \doteq 3.204 \)
Summary of Key Points about the DWT: I

• the DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^T \mathcal{W} = I_N$

• construction of \mathcal{W} starts with a wavelet filter $\{h_l\}$ of even length L that by definition
 1. sums to zero; i.e., $\sum_l h_l = 0$;
 2. has unit energy; i.e., $\sum_l h_l^2 = 1$; and
 3. is orthogonal to its even shifts; i.e., $\sum_l h_l h_{l+2n} = 0$

• 2 and 3 together called orthonormality property

• wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$

• scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$

• while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter
Summary of Key Points about the DWT: II

• \{h_l\} and \{g_l\} work in tandem to split time series \(\mathbf{X}\) into
 – wavelet coefficients \(\mathbf{W}_1\) (related to changes in averages on a unit scale) and
 – scaling coefficients \(\mathbf{V}_1\) (related to averages on a scale of 2)
• \{h_l\} and \{g_l\} are then applied to \(\mathbf{V}_1\), yielding
 – wavelet coefficients \(\mathbf{W}_2\) (related to changes in averages on a scale of 2) and
 – scaling coefficients \(\mathbf{V}_2\) (related to averages on a scale of 4)
• continuing beyond these first 2 levels, scaling coefficients \(\mathbf{V}_{j-1}\) at level \(j - 1\) are transformed into wavelet and scaling coefficients \(\mathbf{W}_j\) and \(\mathbf{V}_j\) of scales \(\tau_j = 2^{j-1}\) and \(\lambda_j = 2^j\)
Summary of Key Points about the DWT: III

• after J_0 repetitions, this ‘pyramid’ algorithm transforms time series \mathbf{X} whose length N is an integer multiple of 2^{J_0} into DWT coefficients $\mathbf{W}_1, \mathbf{W}_2, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J_0}}$ and $\frac{N}{2^{J_0}}$, for a total of N coefficients in all)

• DWT coefficients lead to two basic decompositions

• first decomposition is additive and is known as a multiresolution analysis (MRA), in which \mathbf{X} is reexpressed as

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0},$$

where \mathcal{D}_j is a time series reflecting variations in \mathbf{X} on scale τ_j, while \mathcal{S}_{J_0} is a series reflecting its λ_{J_0} averages
Summary of Key Points about the DWT: IV

- second decomposition reexpresses the energy (squared norm) of X on a scale by scale basis, i.e.,

$$\|X\|^2 = \sum_{j=1}^{J_0} \|W_j\|^2 + \|V_{J_0}\|^2,$$

leading to an analysis of the sample variance of X:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2$$

$$= \frac{1}{N} \sum_{j=1}^{J_0} \|W_j\|^2 + \frac{1}{N} \|V_{J_0}\|^2 - \bar{X}^2$$
Summary of Key Points about the MODWT

• similar to the DWT, the MODWT offers
 — a scale-based multiresolution analysis
 — a scale-based analysis of the sample variance
 — a pyramid algorithm for computing the transform efficiently
• unlike the DWT, the MODWT is
 — defined for all sample sizes (no ‘power of 2’ restrictions)
 — unaffected by circular shifts to \mathbf{X} in that coefficients, details and smooths shift along with \mathbf{X}
 — highly redundant in that a level J_0 transform consists of $(J_0 + 1)N$ values rather than just N
• MODWT can eliminate ‘alignment’ artifacts, but its redundancies are problematic for some uses