Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images (mostly)
- following work on continuous wavelet transform by Morlet and co-workers in 1983, Daubechies, Mallat and others introduced discrete wavelet transform (DWT) in 1988
- begin with qualitative description of the DWT
- discuss two key descriptive capabilities of the DWT:
 - multiresolution analysis (an additive decomposition)
- wavelet variance or spectrum (decomposition of sum of squares)
- look at how DWT is formed based on a wavelet filter
- discuss maximal overlap DWT (MODWT)

I-1

Qualitative Description of DWT: II

- \bullet DWT is a linear transform of **X** yielding N DWT coefficients
- ullet notation: $\mathbf{W} = \mathcal{W}\mathbf{X}$
- **W** is vector of DWT coefficients (jth component is W_j)
- -W is $N \times N$ orthonormal transform matrix
- orthonormality says $\mathcal{W}^T \mathcal{W} = I_N \ (N \times N \ \text{identity matrix})$

I-3

• inverse of \mathcal{W} is just its transpose, so $\mathcal{W}\mathcal{W}^T = I_N$ also

Qualitative Description of DWT: I

- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ be a vector of N time series values (note: 'T' denotes transpose; i.e., \mathbf{X} is a column vector)
- assume initially $N = 2^J$ for some positive integer J (will relax this restriction later on)
- example of time series with $N = 16 = 2^4$:

$$\mathbf{X} = \begin{bmatrix} 0.2, -0.4, -0.6, -0.5, -0.8, -0.4, -0.9, & 0.0, \\ -0.2, & 0.1, -0.1, & 0.1, & 0.7, & 0.9, & 0.0, & 0.3 \end{bmatrix}^T$$

$$X_t$$

WMTSA: 57, 53

I-2

Implications of Orthonormality

- let $\mathcal{W}_{j\bullet}^T$ denote the jth row of \mathcal{W} , where $j = 0, 1, \dots, N-1$
- let $W_{j,l}$ denote lth element of $W_{j\bullet}$
- \bullet consider two rows, say, $\mathcal{W}_{j\bullet}^T$ and $\mathcal{W}_{k\bullet}^T$
- \bullet orthonormality says

$$\langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle \equiv \sum_{l=0}^{N-1} \mathcal{W}_{j,l} \mathcal{W}_{k,l} = \begin{cases} 1, & \text{when } j = k, \\ 0, & \text{when } j \neq k \end{cases}$$

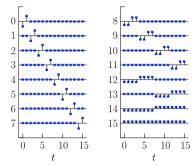
- $-\langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle$ is inner product of jth & kth rows
- $-\langle \mathcal{W}_{i\bullet}, \mathcal{W}_{i\bullet} \rangle = ||\mathcal{W}_{i\bullet}||^2$ is squared norm (energy) for $\mathcal{W}_{i\bullet}$

WMTSA: 57, 53

WMTSA: 57, 42

Example: the Haar DWT

• N = 16 example of Haar DWT matrix W



• note that rows are orthogonal to each other

WMTSA: 57

Haar DWT Coefficients: II

I-5

• consider form $W_0 = \langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$ takes in N = 16 example:

• similar interpretation for $W_1, \ldots, W_{\frac{N}{2}-1} = W_7 = \langle \mathcal{W}_{7 \bullet}, \mathbf{X} \rangle$:

$$\mathcal{W}_{7,t}$$
 \longrightarrow X_t \longrightarrow $X_{15}(1) - \overline{X}_{14}(1)$

WMTSA: 58 I-7

Haar DWT Coefficients: I

 \bullet obtain Haar DWT coefficients **W** by premultiplying **X** by \mathcal{W} :

$$\mathbf{W} = \mathcal{W}\mathbf{X}$$

• jth coefficient W_j is inner product of jth row $\mathcal{W}_{j \bullet}^T$ and \mathbf{X} :

$$W_j = \langle \mathcal{W}_{j\bullet}, \mathbf{X} \rangle$$

- can interpret coefficients as difference of averages
- to see this, let

$$\overline{X}_t(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l} = \text{`scale } \lambda \text{' average}$$

- note: $\overline{X}_t(1) = X_t = \text{scale 1 'average'}$
- note: $\overline{X}_{N-1}(N) = \overline{X} = \text{sample average}$

WMTSA: 58

Haar DWT Coefficients: III

• now consider form of $W_{\frac{N}{2}} = W_8 = \langle \mathcal{W}_{8 \bullet}, \mathbf{X} \rangle$:

 \bullet similar interpretation for $W_{\frac{N}{2}+1}, \dots, W_{\frac{3N}{4}-1}$

WMTSA: 58

I–8

Haar DWT Coefficients: IV

• $W_{\frac{3N}{4}} = W_{12} = \langle \mathcal{W}_{12\bullet}, \mathbf{X} \rangle$ takes the following form:

$$\mathcal{W}_{8,t}$$
 $\overline{\mathbf{X}_{t}}$ $\mathbf{W}_{8,t}X_{t}$ $\mathbf{W}_{8,t}X_{t}$ $\mathbf{W}_{8,t}X_{t}$ $\mathbf{W}_{8,t}X_{t}$ $\mathbf{W}_{8,t}X_{t}$

• continuing in this manner, come to $W_{N-2} = \langle \mathcal{W}_{14\bullet}, \mathbf{X} \rangle$:

$$\mathcal{W}_{14,t}$$
 $\overline{\mathcal{W}}_{14,t}$ $\mathcal{W}_{14,t}X_t$ $\overline{\mathcal{W}}_{15}(8) - \overline{X}_{7}(8)$

WMTSA: 58

Structure of DWT Matrices

- $\frac{N}{2\tau_j}$ wavelet coefficients for scale $\tau_j \equiv 2^{j-1}, j = 1, \dots, J$
- $-\tau_j \equiv 2^{j-1}$ is standardized scale
- $-\tau_i \Delta$ is physical scale, where Δ is sampling interval
- each W_i localized in time: as scale \uparrow , localization \downarrow
- rows of W for given scale τ_i :
- circularly shifted with respect to each other
- shift between adjacent rows is $2\tau_i = 2^j$
- similar structure for DWTs other than the Haar
- differences of averages common theme for DWTs
- simple differencing replaced by higher order differences

I-11

- simple averages replaced by weighted averages

Haar DWT Coefficients: V

• final coefficient $W_{N-1} = W_{15}$ has a different interpretation:

$$\mathcal{W}_{15,t}$$
 $\mathcal{W}_{15,t}X_t$ $\mathrm{sum} \propto \overline{X}_{15}(16)$

- ullet structure of rows in ${\mathcal W}$
 - first $\frac{N}{2}$ rows yield W_j 's \propto changes on scale 1
 - -next $\frac{N}{4}$ rows yield W_j 's \propto changes on scale 2
 - next $\frac{N}{8}$ rows yield W_j 's \propto changes on scale 4
 - next to last row yields $W_j \propto change$ on scale $\frac{N}{2}$
 - last row yields $W_i \propto average$ on scale N

WMTSA: 58-59

Two Basic Decompositions Derivable from DWT

- additive decomposition
 - reexpresses **X** as the sum of J+1 new time series, each of which is associated with a particular scale τ_i
 - called multiresolution analysis (MRA)
- ullet energy decomposition
 - yields analysis of variance across J scales
 - called wavelet spectrum or wavelet variance

WMTSA: 61–66 I–12

WMTSA: 59-61

Partitioning of DWT Coefficient Vector W

- ullet decompositions are based on partitioning of ${f W}$ and ${\cal W}$
- partition **W** into subvectors associated with scale:

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_j \\ \vdots \\ \mathbf{W}_J \\ \mathbf{V}_J \end{bmatrix}$$

- \mathbf{W}_j has $N/2^j$ elements (scale $\tau_j=2^{j-1}$ changes) note: $\sum_{j=1}^J \frac{N}{2^j} = \frac{N}{2} + \frac{N}{4} + \cdots + 2 + 1 = 2^J 1 = N-1$
- \mathbf{V}_J has 1 element, which is equal to $\sqrt{N} \cdot \overline{X}$ (scale N average)

WMTSA: 61-62 I-13

Partitioning of DWT Matrix \mathcal{W}

• partition \mathcal{W} commensurate with partitioning of \mathbf{W} :

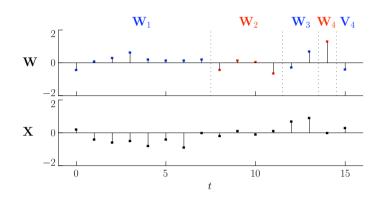
$$\mathcal{W} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \vdots \\ \mathcal{W}_j \\ \vdots \\ \mathcal{W}_J \\ \mathcal{V}_J \end{bmatrix}$$

- W_j is $\frac{N}{2^j} \times N$ matrix (related to scale $\tau_j = 2^{j-1}$ changes)
- \mathcal{V}_J is $1 \times N$ row vector (each element is $\frac{1}{\sqrt{N}}$)

WMTSA: 63 I-15

Example of Partitioning of W

• consider time series **X** of length N = 16 & its Haar DWT **W**

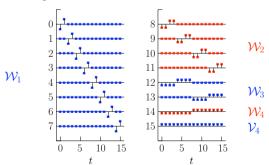


WMTSA: 62, 42

I-14

Example of Partitioning of W

• N=16 example of Haar DWT matrix \mathcal{W}



• two properties: (a) $\mathbf{W}_j = \mathcal{W}_j \mathbf{X}$ and (b) $\mathcal{W}_j \mathcal{W}_j^T = I_{\frac{N}{2^j}}$

WMTSA: 57, 64

DWT Analysis and Synthesis Equations

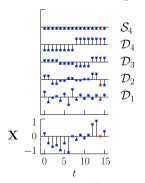
- ullet recall the DWT analysis equation $\mathbf{W} = \mathcal{W} \mathbf{X}$
- $\mathcal{W}^T \mathcal{W} = I_N$ because \mathcal{W} is an orthonormal transform
- implies that $\mathcal{W}^T \mathbf{W} = \mathcal{W}^T \mathcal{W} \mathbf{X} = \mathbf{X}$
- yields DWT synthesis equation:

$$\mathbf{X} = \mathcal{W}^T \mathbf{W} = \begin{bmatrix} \mathcal{W}_1^T, \mathcal{W}_2^T, \dots, \mathcal{W}_J^T, \mathcal{V}_J^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_J \\ \mathbf{V}_J \end{bmatrix}$$
$$= \sum_{j=1}^J \mathcal{W}_j^T \mathbf{W}_j + \mathcal{V}_J^T \mathbf{V}_J$$

WMTSA: 63 I-17

Multiresolution Analysis: II

• example of MRA for time series of length N=16



• adding values for, e.g., t = 14 in $\mathcal{D}_1, \ldots, \mathcal{D}_4 \& \mathcal{S}_4$ yields X_{14}

Multiresolution Analysis: I

• synthesis equation leads to additive decomposition:

$$\mathbf{X} = \sum_{j=1}^{J} \mathcal{W}_{j}^{T} \mathbf{W}_{j} + \mathcal{V}_{J}^{T} \mathbf{V}_{J} \equiv \sum_{j=1}^{J} \mathcal{D}_{j} + \mathcal{S}_{J}$$

- $\mathcal{D}_j \equiv \mathcal{W}_j^T \mathbf{W}_j$ is portion of synthesis due to scale τ_j
- \mathcal{D}_{j} is vector of length N and is called jth 'detail'
- $S_J \equiv V_J^T \mathbf{V}_J = \overline{X} \mathbf{1}$, where $\mathbf{1}$ is a vector containing N ones (later on we will call this the 'smooth' of Jth order)
- additive decomposition called multiresolution analysis (MRA)

I-18

WMTSA: 64-65

Energy Preservation Property of DWT Coefficients

• define 'energy' in **X** as its squared norm:

$$\|\mathbf{X}\|^2 = \langle \mathbf{X}, \mathbf{X} \rangle = \mathbf{X}^T \mathbf{X} = \sum_{t=0}^{N-1} X_t^2$$

 \bullet energy of ${\bf X}$ is preserved in its DWT coefficients ${\bf W}$ because

$$\begin{aligned} \|\mathbf{W}\|^2 &= \mathbf{W}^T \mathbf{W} = (\mathcal{W} \mathbf{X})^T \mathcal{W} \mathbf{X} \\ &= \mathbf{X}^T \mathcal{W}^T \mathcal{W} \mathbf{X} \\ &= \mathbf{X}^T I_N \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2 \end{aligned}$$

• note: same argument holds for any orthonormal transform

I-20

WMTSA: 64 I-19 WMTSA: 43

Wavelet Spectrum (Variance Decomposition): I

- let \overline{X} denote sample mean of X_t 's: $\overline{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$
- let $\hat{\sigma}_X^2$ denote sample variance of X_t 's:

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 - \overline{X}^2$$
$$= \frac{1}{N} ||\mathbf{X}||^2 - \overline{X}^2$$
$$= \frac{1}{N} ||\mathbf{W}||^2 - \overline{X}^2$$

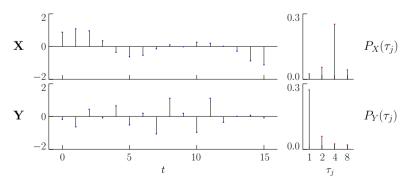
• since $\|\mathbf{W}\|^2 = \sum_{j=1}^J \|\mathbf{W}_j\|^2 + \|\mathbf{V}_J\|^2$ and $\frac{1}{N} \|\mathbf{V}_J\|^2 = \overline{X}^2$,

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J} \|\mathbf{W}_j\|^2$$

WMTSA: 62 I-21

Wavelet Spectrum (Variance Decomposition): III

• wavelet spectra for time series \mathbf{X} and \mathbf{Y} of length N=16, each with zero sample mean and same sample variance



Wavelet Spectrum (Variance Decomposition): II

• define discrete wavelet power spectrum:

$$P_X(\tau_j) \equiv \frac{1}{N} ||\mathbf{W}_j||^2$$
, where $\tau_j = 2^{j-1}$

• gives us a scale-based decomposition of the sample variance:

$$\hat{\sigma}_X^2 = \sum_{j=1}^J P_X(\tau_j)$$

• in addition, each $W_{j,t}$ in \mathbf{W}_j associated with a portion of \mathbf{X} ; i.e., $W_{j,t}^2$ offers scale- & time-based decomposition of $\hat{\sigma}_X^2$

WMTSA: 62 I-22

Defining the Discrete Wavelet Transform (DWT)

- can formulate DWT via elegant 'pyramid' algorithm
- \bullet defines \mathcal{W} for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using O(N) multiplications
- 'brute force' method uses $O(N^2)$ multiplications
- faster than celebrated algorithm for fast Fourier transform! (this uses $O(N \cdot \log_2(N))$ multiplications)
- can formulate algorithm using linear filters or matrices (two approaches are complementary)
- need to review ideas from theory of linear (time-invariant) filters

WMTSA: 68 I-24

Fourier Theory for Sequences: I

- let $\{a_t\}$ denote a real-valued sequence such that $\sum_t a_t^2 < \infty$
- discrete Fourier transform (DFT) of $\{a_t\}$:

$$A(f) \equiv \sum_{t} a_t e^{-i2\pi f t}$$

- f called frequency: $e^{-i2\pi ft} = \cos(2\pi ft) i\sin(2\pi ft)$
- A(f) defined for all f, but $0 \le f \le 1/2$ is of main interest:
 - $-A(\cdot)$ periodic with unit period, i.e., A(f+1)=A(f), all f
 - $-A(-f) = A^*(f)$, complex conjugate of A(f)
 - need only know A(f) for $0 \le f \le 1/2$ to know it for all f
- \bullet 'low frequencies' are those in lower range of [0,1/2]
- 'high frequencies' are those in upper range of [0, 1/2]

WMTSA: 21–22 I–25

Convolution of Sequences

• given two sequences $\{a_t\}$ and $\{b_t\}$, define their convolution by

$$c_t \equiv \sum_{u=-\infty}^{\infty} a_u b_{t-u}$$

• DFT of $\{c_t\}$ has a simple form, namely,

$$\sum_{t=-\infty}^{\infty} c_t e^{-i2\pi ft} = A(f)B(f),$$

where $A(\cdot)$ is the DFT of $\{a_t\}$, and $B(\cdot)$ is the DFT of $\{b_t\}$; i.e., just multiply two DFTs together!!!

I-27

Fourier Theory for Sequences: II

• can recover (synthesize) $\{a_t\}$ from its DFT:

$$\int_{-1/2}^{1/2} A(f)e^{i2\pi ft} df = a_t;$$

left-hand side called inverse DFT of $A(\cdot)$

- $\{a_t\}$ and $A(\cdot)$ are two representations for one 'thingy'
- large |A(f)| says $e^{i2\pi ft}$ important in synthesizing $\{a_t\}$; i.e., $\{a_t\}$ resembles some combination of $\cos(2\pi ft)$ and $\sin(2\pi ft)$

WMTSA: 22-23

Basic Concepts of Filtering

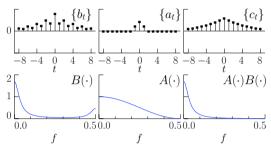
I-26

- \bullet convolution & linear time-invariant filtering are same concepts:
- $-\{b_t\}$ is input to filter
- $-\{a_t\}$ represents the filter
- $-\{c_t\}$ is filter output
- flow diagram for filtering: $\{b_t\} \longrightarrow \overline{\{a_t\}} \longrightarrow \{c_t\}$
- $\{a_t\}$ is called impulse response sequence for filter
- its DFT $A(\cdot)$ is called transfer function
- in general $A(\cdot)$ is complex-valued, so write $A(f) = |A(f)|e^{i\theta(f)}$
- -|A(f)| defines gain function
- $-\mathcal{A}(f) \equiv |A(f)|^2$ defines squared gain function
- $-\theta(\cdot)$ called phase function (well-defined at f if |A(f)| > 0)

WMTSA: 25 I-28

Example of a Low-Pass Filter

• consider
$$b_t = \frac{3}{16} \left(\frac{4}{5}\right)^{|t|} + \frac{1}{20} \left(-\frac{4}{5}\right)^{|t|} \& a_t = \begin{cases} \frac{1}{2}, & t = 0\\ \frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$



• note: $A(\cdot)$ & $B(\cdot)$ both real-valued $(A(\cdot))$ = its gain function

WMTSA: 25-26 I-29

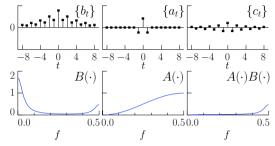
The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let $\{h_l: l=0,\ldots,L-1\}$ be a real-valued filter of width L
- both h_0 and h_{L-1} must be nonzero
- for convenience, will define $h_l=0$ for l<0 and $l\geq L$
- L must be even (2, 4, 6, 8, ...) for technical reasons (hence ruling out $\{a_t\}$ on the previous overhead)

I-31

Example of a High-Pass Filter

• consider same $\{b_t\}$, but now let $a_t = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$



• note: $\{a_t\}$ resembles some wavelet filters we'll see later

WMTSA: 26-27 I-30

The Wavelet Filter: II

- $\{h_l\}$ called a wavelet filter if it has these 3 properties
 - 1. summation to zero:

$$\sum_{l=0}^{L-1} h_l = 0$$

2. unit energy:

$$\sum_{l=0}^{L-1} h_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} h_l h_{l+2n} = 0$$

• 2 and 3 together are called the *orthonormality property*

WMTSA: 69 I-32

WMTSA: 26-27

The Wavelet Filter: III

- summation to zero and unit energy relatively easy to achieve
- orthogonality to even shifts is key property & hardest to satisfy
- define transfer and squared gain functions for wavelet filter:

$$H(f) \equiv \sum_{l=0}^{L-1} h_l e^{-i2\pi f l}$$
 and $\mathcal{H}(f) \equiv |H(f)|^2$

• orthonormality property is equivalent to

$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$$
 for all f

(an elegant – but not obvious! – result)

WMTSA: 69-70 I-33

D(4) Wavelet Filter: I

• next simplest wavelet filter is D(4), for which L=4:

$$h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}}, \ h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}}, \ h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \ h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}}$$

- 'D' stands for Daubechies
- -L=4 width member of her 'extremal phase' wavelets
- computations show $\sum_{l} h_{l} = 0 \& \sum_{l} h_{l}^{2} = 1$, as required
- \bullet orthogonality to even shifts apparent except for ± 2 case:

$$h_{l} = 0$$

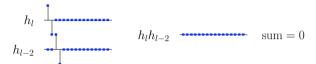
$$h_{l-2} = 0$$

$$h_{l-2} = 0$$

WMTSA: 59 I-35

Haar Wavelet Filter

- simplest wavelet filter is Haar (L=2): $h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}$
- note that $h_0 + h_1 = 0$ and $h_0^2 + h_1^2 = 1$, as required
- orthogonality to even shifts also readily apparent



WMTSA: 69-70

I-34

D(4) Wavelet Filter: II

- Q: what is rationale for D(4) filter?
- consider $X_t^{(1)} \equiv X_t X_{t-1} = a_0 X_t + a_1 X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter:

$$\{X_t\} \longrightarrow \overline{\{1,-1\}} \longrightarrow \{X_t^{(1)}\}$$

- Haar wavelet filter is normalized 1st difference filter
- $-X_t^{(1)}$ is difference between two '1 point averages'
- consider filter 'cascade' with two 1st difference filters:

$$\{X_t\} \longrightarrow \overline{\{1,-1\}} \longrightarrow \overline{\{1,-1\}} \longrightarrow \{X_t^{(2)}\}$$

• by considering convolution of $\{1, -1\}$ with itself, can reexpress the above using a single 'equivalent' (2nd difference) filter:

$$\{X_t\} \longrightarrow \overline{\{1,-2,1\}} \longrightarrow \{X_t^{(2)}\}$$

WMTSA: 60-61

D(4) Wavelet Filter: III

• renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

$$a_t = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$

• consider '2 point weighted average' followed by 2nd difference:

$$\{X_t\} \longrightarrow \overline{\{a,b\}} \longrightarrow \overline{\{1,-2,1\}} \longrightarrow \{Y_t\}$$

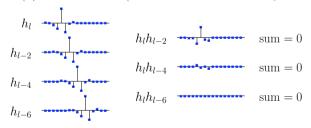
• convolution of $\{a, b\}$ and $\{1, -2, 1\}$ yields an equivalent filter, which is how the D(4) wavelet filter arises:

$$\{X_t\} \longrightarrow \overline{\{h_0, h_1, h_2, h_3\}} \longrightarrow \{Y_t\}$$

WMTSA: 60-61 I-37

Another Popular Daubechies Wavelet Filter

• LA(8) wavelet filter ('LA' stands for 'least asymmetric')



- resembles three-point high-pass filter $\{-\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}\}$ (somewhat)
- can interpret this filter as cascade consisting of
 - 4th difference filter
 - weighted average filter of width 4, but effective width 1
- filter output can be interpreted as changes in weighted averages

I-39

D(4) Wavelet Filter: IV

- ullet using conditions
 - 1. summation to zero: $h_0 + h_1 + h_2 + h_3 = 0$
- 2. unit energy: $h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1$
- 3. orthogonality to even shifts: $h_0h_2 + h_1h_3 = 0$ can solve for feasible values of a and b
- one solution is $a = \frac{1+\sqrt{3}}{4\sqrt{2}} \doteq 0.48$ and $b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \doteq 0.13$ (other solutions yield essentially the same filter)
- interpret D(4) filtered output as changes in weighted averages
- 'change' now measured by 2nd difference (1st for Haar)
- average is now 2 point weighted average (1 point for Haar)
- can argue that effective scale of weighted average is one

I-38

WMTSA: 60-61

First Level Wavelet Coefficients: I

- given wavelet filter $\{h_l\}$ of width L & time series of length $N=2^J$, obtain first level wavelet coefficients as follows
- circularly filter X with wavelet filter to yield output

$$\sum_{l=0}^{L-1} h_l X_{t-l} = \sum_{l=0}^{L-1} h_l X_{t-l \bmod N}, \quad t = 0, \dots, N-1;$$

i.e., if t-l does not satisfy $0 \le t-l \le N-1$, interpret X_{t-l} as $X_{t-l \bmod N}$; e.g., $X_{-1} = X_{N-1}$ and $X_{-2} = X_{N-2}$

• take every other value of filter output to define

$$W_{1,t} \equiv \sum_{l=0}^{L-1} h_l X_{2t+1-l \bmod N}, \quad t = 0, \dots, \frac{N}{2} - 1;$$

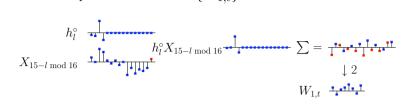
 $\{W_{1,t}\}$ formed by downsampling filter output by a factor of 2

WMTSA: 70 I-40

WMTSA: 108-109

First Level Wavelet Coefficients: II

• example of formation of $\{W_{1,t}\}$



- $\{W_{1,t}\}$ are unit scale wavelet coefficients these are the elements of \mathbf{W}_1 and first N/2 elements of $\mathbf{W} = \mathcal{W} \mathbf{X}$
- also have $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$, with \mathcal{W}_1 being first N/2 rows of \mathcal{W}
- ullet hence elements of \mathcal{W}_1 dictated by wavelet filter

WMTSA: 70 I-41

Upper Half W_1 of D(4) DWT Matrix W

• when L = 4 & N = 16, \mathcal{W}_1 looks like

- rows orthogonal because $h_0h_2 + h_1h_3 = 0$
- note: $\langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$ yields $W_0 = h_1 X_0 + h_0 X_1 + h_3 X_{14} + h_2 X_{15}$
- unlike other coefficients from above, this 'boundary' coefficient depends on circular treatment of **X** (a curse, not a feature!)

Upper Half W_1 of Haar DWT Matrix W

- \bullet consider Haar wavelet filter (L = 2): $h_0 = \frac{1}{\sqrt{2}} \ \& \ h_1 = -\frac{1}{\sqrt{2}}$
- when N = 16, \mathcal{W}_1 looks like

• rows obviously orthogonal to each other

I-42

Orthonormality of Upper Half of DWT Matrix: I

 \bullet can show that, for all L and even N,

$$W_{1,t} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \bmod N}$$
, or, equivalently, $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$

forms *half* an orthonormal transform; i.e.,

$$\mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$$

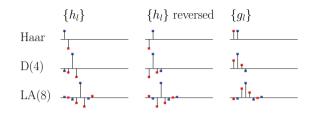
I-44

• Q: how can we construct the other half of \mathcal{W} ?

WMTSA: 81 I-43

The Scaling Filter: I

• create scaling (or 'father wavelet') filter $\{g_l\}$ by reversing $\{h_l\}$ and then changing sign of coefficients with even indices



• 2 filters related by $g_l \equiv (-1)^{l+1} h_{L-1-l} \ \& \ h_l = (-1)^l g_{L-1-l}$

WMTSA: 75 I-45

First Level Scaling Coefficients: I

- orthonormality property of $\{h_l\}$ is all that is needed to prove \mathcal{W}_1 is half of an orthonormal transform (never used $\sum_l h_l = 0$)
- \bullet going back and replacing h_l with g_l everywhere yields another half of an orthonormal transform
- \bullet circularly filter **X** using $\{g_l\}$ and downsample to define

$$V_{1,t} \equiv \sum_{l=0}^{L-1} g_l X_{2t+1-l \bmod N}, \quad t = 0, \dots, \frac{N}{2} - 1$$

I-47

- $\{V_{1,t}\}$ called scaling coefficients for level j=1
- place these N/2 coefficients in vector called \mathbf{V}_1

The Scaling Filter: II

- $\{g_l\}$ is 'quadrature mirror' filter corresponding to $\{h_l\}$
- properties 2 and 3 of $\{h_l\}$ are shared by $\{g_l\}$:
- 2. unit energy:

$$\sum_{l=0}^{L-1} g_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} g_l g_{l+2n} = 0$$

• scaling & wavelet filters both satisfy orthonormality property

I-46

WMTSA: 76

First Level Scaling Coefficients: III

- define \mathcal{V}_1 in a manner analogous to \mathcal{W}_1 so that $\mathbf{V}_1 = \mathcal{V}_1 \mathbf{X}$
- when L=4 and N=16, \mathcal{V}_1 looks like

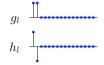
 \bullet \mathcal{V}_1 obeys same orthonormality property as $\mathcal{W}_1:$

similar to
$$\mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$$
, have $\mathcal{V}_1 \mathcal{V}_1^T = I_{\frac{N}{2}}$

WMTSA: 77 I-48

Orthonormality of V_1 and W_1 : I

- Q: how does \mathcal{V}_1 help us?
- A: rows of \mathcal{V}_1 and \mathcal{W}_1 are pairwise orthogonal!
- readily apparent in Haar case:



$$g_l \qquad g_l h_l \qquad \text{sum} = 0$$

WMTSA: 77-78

I-49

Orthonormality of V_1 and W_1 : III

• implies that

$$\mathcal{P}_1 \equiv \left[egin{array}{c} \mathcal{W}_1 \ \mathcal{V}_1 \end{array}
ight]$$

is an $N \times N$ orthonormal matrix since

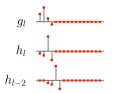
$$\mathcal{P}_{1}\mathcal{P}_{1}^{T} = \begin{bmatrix} \mathcal{W}_{1} \\ \mathcal{V}_{1} \end{bmatrix} \begin{bmatrix} \mathcal{W}_{1}^{T}, \mathcal{V}_{1}^{T} \end{bmatrix}$$

$$= \begin{bmatrix} \mathcal{W}_{1}\mathcal{W}_{1}^{T} & \mathcal{W}_{1}\mathcal{V}_{1}^{T} \\ \mathcal{V}_{1}\mathcal{W}_{1}^{T} & \mathcal{V}_{1}\mathcal{V}_{1}^{T} \end{bmatrix} = \begin{bmatrix} I_{\frac{N}{2}} & 0_{\frac{N}{2}} \\ 0_{\frac{N}{2}} & I_{\frac{N}{2}} \end{bmatrix} = I_{N}$$

- if N=2 (not of too much interest!), in fact $\mathcal{P}_1=\mathcal{W}$
- if N > 2, \mathcal{P}_1 is an intermediate step: \mathcal{V}_1 spans same subspace as lower half of \mathcal{W} and will be further manipulated

Orthonormality of V_1 and W_1 : II

• let's check that orthogonality holds for D(4) case also:



I-50

Interpretation of Scaling Coefficients: I

- consider Haar scaling filter (L=2): $g_0=g_1=\frac{1}{\sqrt{2}}$
- when N=16, matrix \mathcal{V}_1 looks like

• since $V_1 = \mathcal{V}_1 X$, each $V_{1,t}$ is proportional to a 2 point average:

$$V_{1,0} = g_1 X_0 + g_0 X_1 = \frac{1}{\sqrt{2}} X_0 + \frac{1}{\sqrt{2}} X_1 \propto \overline{X}_1(2)$$
 and so forth

Interpretation of Scaling Coefficients: II

• reconsider shapes of $\{g_l\}$ seen so far:

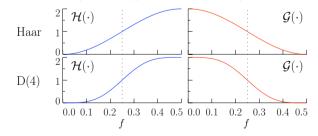
Haar II D(4) II LA(8) II

- for L > 2, can regard $V_{1,t}$ as proportional to weighted average
- can argue that effective width of $\{g_l\}$ is 2 in each case; thus scale associated with $V_{1,t}$ is 2, whereas scale is 1 for $W_{1,t}$

I-53

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$

- since \mathbf{W}_1 & \mathbf{V}_1 contain output from filters, consider their squared gain functions, recalling that $\mathcal{H}(f) + \mathcal{G}(f) = 2$
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(4) filters



- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- \bullet $\{g_l\}$ is low-pass filter with nominal pass-band [0,1/4]

WMTSA: 73 I-55

Frequency Domain Properties of Scaling Filter

• define transfer and squared gain functions for $\{g_l\}$

$$G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi f l} \& \mathcal{G}(f) \equiv |G(f)|^2$$

• can argue that $\mathcal{G}(f) = \mathcal{H}(f + \frac{1}{2})$, which, combined with

$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2,$$

yields

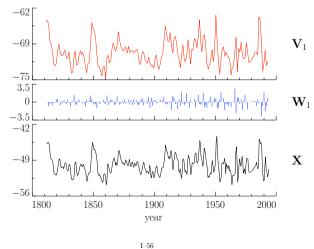
$$\mathcal{H}(f) + \mathcal{G}(f) = 2$$

WMTSA: 76

Example of Decomposing X into W_1 and V_1 : I

I-54

ullet oxygen isotope records ${f X}$ from Antarctic ice core



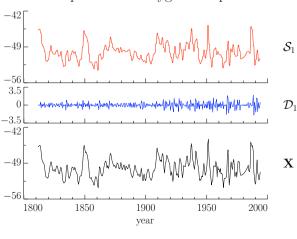
Example of Decomposing X into W_1 and V_1 : II

- oxygen isotope record series **X** has N=352 observations
- spacing between observations is $\Delta \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients V_1 related to averages on scale of 2Δ
- wavelet coefficients \mathbf{W}_1 related to changes on scale of Δ
- ullet coefficients $V_{1,t}$ and $W_{1,t}$ plotted against mid-point of years associated with X_{2t} and X_{2t+1}
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway

I-57

Example of Synthesizing X from \mathcal{D}_1 and \mathcal{S}_1

ullet Haar-based decomposition for oxygen isotope records ${f X}$



I-59

Reconstructing X from W_1 and V_1

• in matrix notation, form wavelet & scaling coefficients via

$$\begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \mathbf{X} \\ \mathcal{V}_1 \mathbf{X} \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \mathbf{X} = \mathcal{P}_1 \mathbf{X}$$

- recall that $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ because \mathcal{P}_1 is orthonormal
- since $\mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}$, premultiplying both sides by \mathcal{P}_1^T yields

$$\mathcal{P}_1^T \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1^T \ \mathcal{V}_1^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1 = \mathbf{X}$$

- $\mathcal{D}_1 \equiv \mathcal{W}_1^T \mathbf{W}_1$ is the first level detail
- $S_1 \equiv V_1^T \mathbf{V}_1$ is the first level 'smooth'
- \bullet $\mathbf{X} = \mathcal{D}_1 + \mathcal{S}_1$ in this notation

WMTSA: 80-81

I-58

First Level Variance Decomposition: I

- recall that 'energy' in **X** is its squared norm $\|\mathbf{X}\|^2$
- because \mathcal{P}_1 is orthonormal, have $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ and hence

$$\|\mathcal{P}_1\mathbf{X}\|^2 = (\mathcal{P}_1\mathbf{X})^T\mathcal{P}_1\mathbf{X} = \mathbf{X}^T\mathcal{P}_1^T\mathcal{P}_1\mathbf{X} = \mathbf{X}^T\mathbf{X} = \|\mathbf{X}\|^2$$

• can conclude that $\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$ because

$$\mathcal{P}_1 \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix}$$
 and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$

 \bullet leads to a decomposition of the sample variance for ${\bf X}:$

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} ||\mathbf{X}||^2 - \overline{X}^2$$
$$= \frac{1}{N} ||\mathbf{W}_1||^2 + \frac{1}{N} ||\mathbf{V}_1||^2 - \overline{X}^2$$

First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_X^2$ into two pieces:
- 1. $\frac{1}{N} \|\mathbf{W}_1\|^2$, attributable to changes in averages over scale 1
- 2. $\frac{1}{N} \|\mathbf{V}_1\|^2 \overline{X}^2$, attributable to averages over scale 2
- Haar-based example for oxygen isotope records
 - first piece: $\frac{1}{N} \|\mathbf{W}_1\|^2 \doteq 0.295$
- second piece: $\frac{1}{N} \|\mathbf{V}_1\|^2 \overline{X}^2 \doteq 2.909$
- sample variance: $\hat{\sigma}_X^2 \doteq 3.204$
- changes on scale of $\Delta \doteq 0.5$ years account for 9% of $\hat{\sigma}_X^2$ (standardized scale 1 corresponds to physical scale Δ)

I-61

Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as 'one point' averages $\overline{X}_t(1)$ over scale of 1
- ullet first level of basic algorithm transforms ${f X}$ of length N into
 - -N/2 wavelet coefficients $\mathbf{W}_1 \propto$ changes on a scale of 1
 - N/2 scaling coefficients $\mathbf{V}_1 \propto$ averages of X_t on a scale of 2
- ullet in essence basic algorithm takes length N series ${f X}$ related to scale 1 averages and produces
- length N/2 series \mathbf{W}_1 associated with the same scale
- length N/2 series \mathbf{V}_1 related to averages on double the scale

Summary of First Level of Basic Algorithm

- transforms $\{X_t: t=0,\ldots,N-1\}$ into 2 types of coefficients
- N/2 wavelet coefficients $\{W_{1,t}\}$ associated with:
- $-\mathbf{W}_1$, a vector consisting of first N/2 elements of \mathbf{W}
- changes on scale 1 and nominal frequencies $\frac{1}{4} \le |f| \le \frac{1}{2}$
- first level detail \mathcal{D}_1
- $-\mathcal{W}_1$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- N/2 scaling coefficients $\{V_{1,t}\}$ associated with:
- $-\mathbf{V}_1$, a vector of length N/2
- averages on scale 2 and nominal frequencies $0 \le |f| \le \frac{1}{4}$
- first level smooth \mathcal{S}_1
- $-\mathcal{V}_1$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last N/2 rows of \mathcal{W}

WMTSA: 86-87

I-62

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat V_1 in the same manner as X?
- basic algorithm will transform length N/2 series \mathbf{V}_1 into
- length N/4 series \mathbf{W}_2 associated with the same scale (2)
- length N/4 series \mathbf{V}_2 related to averages on twice the scale
- \bullet by definition, \mathbf{W}_2 contains the level 2 wavelet coefficients
- Q: what if we treat V_2 in the same way?
- basic algorithm will transform length N/4 series \mathbf{V}_2 into
- length N/8 series \mathbf{W}_3 associated with the same scale (4)
- length N/8 series V_3 related to averages on twice the scale
- ullet by definition, \mathbf{W}_3 contains the level 3 wavelet coefficients

WMTSA: Section 4.5

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W} = \mathcal{W}\mathbf{X}$ is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_j and \mathbf{V}_j from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of \mathbf{V}_j given by $N/2^j$
- since $N = 2^J$, length of \mathbf{V}_J is 1, at which point we must stop
- ullet J applications of the basic algorithm defines the remaining subvectors $\mathbf{W}_2, \ldots, \mathbf{W}_J, \mathbf{V}_J$ of DWT coefficient vector \mathbf{W}
- overall scheme is known as the 'pyramid' algorithm

WMTSA: Section 4.6, 100-101

I-65

Matrix Description of Pyramid Algorithm: I

- form $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$ matrix \mathcal{B}_j in same way as $\frac{N}{2} \times N$ matrix \mathcal{W}_1
- when L = 4 and $N/2^{j-1} = 16$, have

• matrix gets us jth level wavelet coefficients via $\mathbf{W}_{j} = \mathcal{B}_{j} \mathbf{V}_{j-1}$

Scales Associated with DWT Coefficients

- jth level of algorithm transforms scale 2^{j-1} averages into
 - differences of averages on scale 2^{j-1} , i.e., wavelet coefficients \mathbf{W}_j
 - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., scaling coefficients \mathbf{V}_i
- $\tau_i \equiv 2^{j-1}$ denotes scale associated with \mathbf{W}_i
 - for $j=1,\ldots,J$, takes on values $1,2,4,\ldots,N/4,N/2$
- $\lambda_i \equiv 2^j = 2\tau_i$ denotes scale associated with \mathbf{V}_i
 - takes on values $2, 4, 8, \ldots, N/2, N$

WMTSA: 85

I-66

Matrix Description of Pyramid Algorithm: II

- form $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$ matrix \mathcal{A}_j in same way as $\frac{N}{2} \times N$ matrix \mathcal{V}_1
- when L = 4 and $N/2^{j-1} = 16$, have

• matrix gets us jth level scaling coefficients via $V_j = A_j V_{j-1}$

WMTSA: 94 I-68

WMTSA: 94

Matrix Description of Pyramid Algorithm: III

- if we define $\mathbf{V}_0 = \mathbf{X}$ and let j = 1, then $\mathbf{W}_j = \mathcal{B}_j \mathbf{V}_{j-1}$ reduces to $\mathbf{W}_1 = \mathcal{B}_1 \mathbf{V}_0 = \mathcal{B}_1 \mathbf{X} = \mathcal{W}_1 \mathbf{X}$ because \mathcal{B}_1 has the same definition as \mathcal{W}_1
- likewise, when j = 1, $\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$ reduces to $\mathbf{V}_1 = \mathcal{A}_1 \mathbf{V}_0 = \mathcal{A}_1 \mathbf{X} = \mathcal{V}_1 \mathbf{X}$ because \mathcal{A}_1 has the same definition as \mathcal{V}_1

WMTSA: 94 I-69

Formation of Submatrices of W: II

• have now constructed all of DWT matrix:

$$\mathcal{W} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \mathcal{W}_3 \\ \mathcal{W}_4 \\ \vdots \\ \mathcal{W}_j \\ \vdots \\ \mathcal{W}_J \\ \mathcal{V}_J \end{bmatrix} = \begin{bmatrix} \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \mathcal{B}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \mathcal{B}_4 \mathcal{A}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \\ \mathcal{A}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \end{bmatrix}$$

Formation of Submatrices of W: I

• using $\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$ repeatedly and $\mathbf{V}_1 = \mathcal{A}_1 \mathbf{X}$, can write

$$\begin{aligned} \mathbf{W}_{j} &= \mathcal{B}_{j} \mathbf{V}_{j-1} \\ &= \mathcal{B}_{j} \mathcal{A}_{j-1} \mathbf{V}_{j-2} \\ &= \mathcal{B}_{j} \mathcal{A}_{j-1} \mathcal{A}_{j-2} \mathbf{V}_{j-3} \\ &= \mathcal{B}_{j} \mathcal{A}_{j-1} \mathcal{A}_{j-2} \cdots \mathcal{A}_{1} \mathbf{X} \equiv \mathcal{W}_{j} \mathbf{X}, \end{aligned}$$

where W_j is $\frac{N}{2^j} \times N$ submatrix of W responsible for \mathbf{W}_j

• likewise, can get $1 \times N$ submatrix \mathcal{V}_J responsible for \mathbf{V}_J

$$\mathbf{V}_{J} = \mathcal{A}_{J} \mathbf{V}_{J-1}$$

$$= \mathcal{A}_{J} \mathcal{A}_{J-1} \mathbf{V}_{J-2}$$

$$= \mathcal{A}_{J} \mathcal{A}_{J-1} \mathcal{A}_{J-2} \mathbf{V}_{J-3}$$

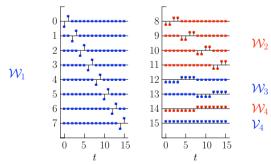
$$= \mathcal{A}_{J} \mathcal{A}_{J-1} \mathcal{A}_{J-2} \cdots \mathcal{A}_{1} \mathbf{X} \equiv \mathcal{V}_{J} \mathbf{X}$$

• \mathcal{V}_J is the last row of \mathcal{W} , & all its elements are equal to $1/\sqrt{N}$

WMTSA: 94

Examples of ${\mathcal W}$ and its Partitioning: I

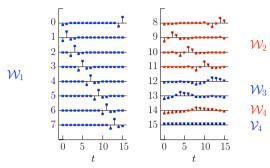
• N = 16 case for Haar DWT matrix W



• above agrees with qualitative description given previously

Examples of W and its Partitioning: II

• N = 16 case for D(4) DWT matrix W



• note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed

I-73

Partial DWT: II

- only requires N to be integer multiple of 2^{J_0}
- partial DWT more common than complete DWT
- \bullet choice of J_0 is application dependent
- multiresolution analysis for partial DWT:

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

 \mathcal{S}_{J_0} represents averages on scale $\lambda_{J_0}=2^{J_0}$ (includes \overline{X})

• analysis of variance for partial DWT:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{i=1}^{J_0} \|\mathbf{W}_i\|^2 + \frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2$$

WMTSA: 104 I-75

Partial DWT: I

- J repetitions of pyramid algorithm for \mathbf{X} of length $N=2^J$ yields 'complete' DWT, i.e., $\mathbf{W}=\mathcal{W}\mathbf{X}$
- can choose to stop at $J_0 < J$ repetitions, yielding a 'partial' DWT of level J_0 :

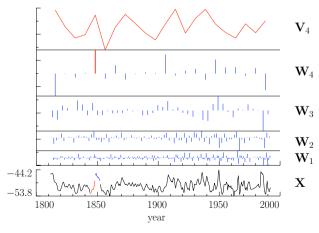
$$\begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \vdots \\ \mathcal{W}_j \\ \vdots \\ \mathcal{W}_{J_0} \\ \mathcal{V}_{J_0} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_{J_0} \mathcal{A}_{J_0-1} \cdots \mathcal{A}_1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_j \\ \vdots \\ \mathbf{W}_{J_0} \\ \mathbf{V}_{J_0} \end{bmatrix}$$

• \mathcal{V}_{J_0} is $\frac{N}{2^{J_0}} \times N$, yielding $\frac{N}{2^{J_0}}$ coefficients for scale $\lambda_{J_0} = 2^{J_0}$

WMTSA: 104

Example of $J_0 = 4$ Partial Haar DWT

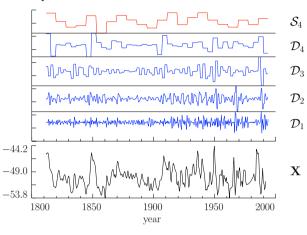
ullet oxygen isotope records ${f X}$ from Antarctic ice core



WMTSA: 104

Example of MRA from $J_0 = 4$ Partial Haar DWT

• oxygen isotope records X from Antarctic ice core



WMTSA: 104 I-77

Haar Equivalent Wavelet & Scaling Filters

- $L_i = 2^j$ is width of $\{h_{i,l}\}$ and $\{g_{i,l}\}$
- \bullet note: convenient to define $\{h_{1,l}\}$ to be same as $\{h_l\}$

Example of Variance Decomposition

• decomposition of sample variance from $J_0 = 4$ partial DWT

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \sum_{j=1}^4 \frac{1}{N} ||\mathbf{W}_j||^2 + \frac{1}{N} ||\mathbf{V}_4||^2 - \overline{X}^2$$

• Haar-based example for oxygen isotope records

-0.5 year changes: $\frac{1}{N} ||\mathbf{W}_1||^2 \doteq 0.295 \ (\doteq 9.2\% \text{ of } \hat{\sigma}_X^2)$

-1.0 years changes: $\frac{1}{N} \|\mathbf{W}_2\|^2 \doteq 0.464 \ (\doteq 14.5\%)$

-2.0 years changes: $\frac{1}{N} ||\mathbf{W}_3||^2 \doteq 0.652 \ (\doteq 20.4\%)$

-4.0 years changes: $\frac{1}{N} \|\mathbf{W}_4\|^2 \doteq 0.846 \ (\doteq 26.4\%)$

- 8.0 years averages: $\frac{1}{N} ||\mathbf{V}_4||^2 - \overline{X}^2 \doteq 0.947 \ (\doteq 29.5\%)$

- sample variance: $\hat{\sigma}_X^2 \doteq 3.204$

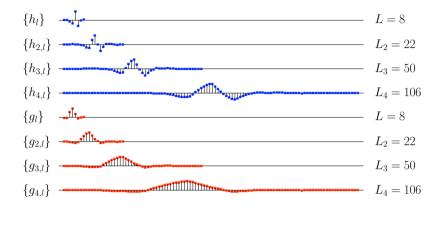
WMTSA: 104 I-78

D(4) Equivalent Wavelet & Scaling Filters

$\{h_l\}$	L=4
$\{h_{2,l}\}$	$L_2 = 10$
{h _{3,l} }	$L_3 = 22$
$\{h_{4,l}\}$	$L_4 = 46$
$\{g_l\}$	L=4
$\{g_{2,l}\}$ illimates	$L_2 = 10$
$\{g_{3,l}\}$	$L_3 = 22$
$\{g_{4,l}\}$	$L_4 = 46$

• L_j dictated by general formula $L_j = (2^j - 1)(L - 1) + 1$, but can argue that *effective* width is 2^j (same as Haar L_j)

LA(8) Equivalent Wavelet & Scaling Filters



WMTSA: 98 I-81

Maximal Overlap Discrete Wavelet Transform

- abbreviation is MODWT (pronounced 'mod WT')
- transforms very similar to the MODWT have been studied in the literature under the following names:
 - undecimated DWT (or nondecimated DWT)
 - stationary DWT
 - translation invariant DWT
 - time invariant DWT
 - redundant DWT
- also related to notions of 'wavelet frames' and 'cycle spinning'
- basic idea: use values removed from DWT by downsampling

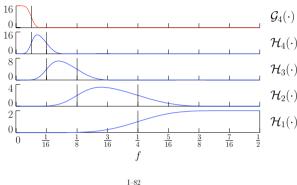
I-83

Squared Gain Functions for Filters

• squared gain functions give us frequency domain properties:

$$\mathcal{H}_j(f) \equiv |H_j(f)|^2$$
 and $\mathcal{G}_j(f) \equiv |G_j(f)|^2$

• example: squared gain functions for LA(8) $J_0 = 4$ partial DWT



WMTSA: 99

Quick Comparison of the MODWT to the DWT

- unlike the DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- unlike the DWT. MODWT is defined naturally for all samples sizes (i.e., N need not be a multiple of a power of two)
- similar to the DWT, can form multiresolution analyses (MRAs) using MODWT with certain additional desirable features; e.g., unlike the DWT, MODWT-based MRA has details and smooths that shift along with **X** (if **X** has detail $\widetilde{\mathcal{D}}_i$, then \mathcal{T}^m **X** has detail $\mathcal{T}^m \widetilde{\mathcal{D}}_i$, where \mathcal{T}^m circularly shifts **X** by m units)
- similar to the DWT, an analysis of variance (ANOVA) can be based on MODWT wavelet coefficients
- unlike the DWT, MODWT discrete wavelet power spectrum same for X and its circular shifts $\mathcal{T}^m X$

WMTSA: 159-160

I-84

Definition of MODWT Coefficients: I

• define MODWT filters $\{\tilde{h}_{j,l}\}$ and $\{\tilde{g}_{j,l}\}$ by renormalizing the DWT filters:

$$\tilde{h}_{j,l} = h_{j,l}/2^{j/2}$$
 and $\tilde{g}_{j,l} = g_{j,l}/2^{j/2}$

• level j MODWT wavelet and scaling coefficients are defined to be output obtaining by filtering **X** with $\{\tilde{h}_{i,l}\}$ and $\{\tilde{g}_{i,l}\}$:

$$\mathbf{X} \longrightarrow \left\lceil \{\widetilde{h}_{j,l}\} \right\rceil \longrightarrow \widetilde{\mathbf{W}}_j \text{ and } \mathbf{X} \longrightarrow \left\lceil \{\widetilde{g}_{j,l}\} \right\rceil \longrightarrow \widetilde{\mathbf{V}}_j$$

• compare the above to its DWT equivalent:

$$\mathbf{X} \longrightarrow \overline{\left\{h_{j,l}\right\}} \xrightarrow{\downarrow 2^j} \mathbf{W}_j \text{ and } \mathbf{X} \longrightarrow \overline{\left\{g_{j,l}\right\}} \xrightarrow{\downarrow 2^j} \mathbf{V}_j$$

• level J_0 MODWT consists of $J_0 + 1$ vectors, namely,

$$\widetilde{\mathbf{W}}_1, \widetilde{\mathbf{W}}_2, \dots, \widetilde{\mathbf{W}}_{J_0}$$
 and $\widetilde{\mathbf{V}}_{J_0}$,

each of which has length N

WMTSA: 169 I-8

Properties of the MODWT

- as was true with the DWT, we can use the MODWT to obtain
- a scale-based additive decomposition (MRA):

$$\mathbf{X} = \sum_{j=1}^{J_0} \widetilde{\mathcal{D}}_j + \widetilde{\mathcal{S}}_{J_0}$$

- a scale-based energy decomposition (basis for ANOVA):

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\widetilde{\mathbf{W}}_j\|^2 + \|\widetilde{\mathbf{V}}_{J_0}\|^2$$

• in addition, the MODWT can be computed efficiently via a pyramid algorithm

I-87

Definition of MODWT Coefficients: II

- MODWT of level J_0 has $(J_0 + 1)N$ coefficients, whereas DWT has N coefficients for any given J_0
- whereas DWT of level J_0 requires N to be integer multiple of 2^{J_0} , MODWT of level J_0 is well-defined for any sample size N
- when N is divisible by 2^{J_0} , we can write

$$W_{j,t} = \sum_{l=0}^{L_j-1} h_{j,l} X_{2^j(t+1)-1-l \bmod N} \& \widetilde{W}_{j,t} = \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l \bmod N},$$

and we have the relationship

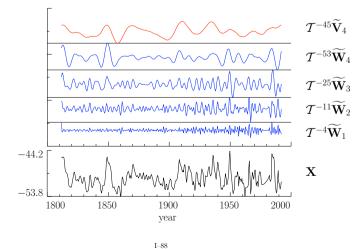
$$W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^j(t+1)-1}$$
 &, likewise, $V_{J_0,t} = 2^{J_0/2} \widetilde{V}_{J_0,2^{J_0}(t+1)-1}$ (here $\widetilde{W}_{j,t}$ & $\widetilde{V}_{J_0,t}$ denote the t th elements of $\widetilde{\mathbf{W}}_j$ & $\widetilde{\mathbf{V}}_{J_0}$)

WMTSA: 96-97, 169, 203

I-86

Example of $J_0 = 4$ LA(8) MODWT

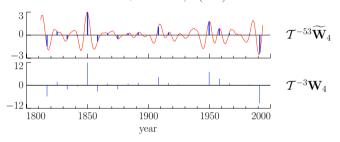
ullet oxygen isotope records ${f X}$ from Antarctic ice core



WMTSA: 159-160

Relationship Between MODWT and DWT

- bottom plot shows \mathbf{W}_4 from DWT after circular shift \mathcal{T}^{-3} to align coefficients properly in time
- top plot shows $\widetilde{\mathbf{W}}_4$ from MODWT and subsamples that, upon rescaling, yield \mathbf{W}_4 via $W_{4,t} = 4\widetilde{W}_{4,16(t+1)-1}$



I-89

Example of Variance Decomposition

• decomposition of sample variance from MODWT

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \sum_{j=1}^4 \frac{1}{N} \|\widetilde{\mathbf{W}}_j\|^2 + \frac{1}{N} \|\widetilde{\mathbf{V}}_4\|^2 - \overline{X}^2$$

• LA(8)-based example for oxygen isotope records

-0.5 year changes: $\frac{1}{N} \|\widetilde{\mathbf{W}}_1\|^2 \doteq 0.145 \ (\doteq 4.5\% \text{ of } \hat{\sigma}_X^2)$

- 1.0 years changes: $\frac{1}{N} \|\widetilde{\mathbf{W}}_2\|^2 \doteq 0.500 \ (\doteq 15.6\%)$

-2.0 years changes: $\frac{1}{N} \|\widetilde{\mathbf{W}}_3\|^2 \doteq 0.751 \ (\doteq 23.4\%)$

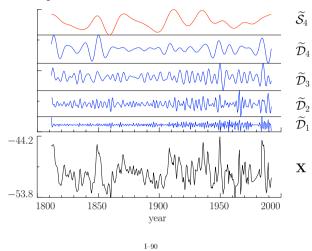
-4.0 years changes: $\frac{1}{N} ||\widetilde{\mathbf{W}}_4||^2 \doteq 0.839 \ (\doteq 26.2\%)$

- 8.0 years averages: $\frac{1}{N} \|\widetilde{\mathbf{V}}_4\|^2 - \overline{X}^2 \doteq 0.969 \ (\doteq 30.2\%)$

- sample variance: $\hat{\sigma}_X^2 \doteq 3.204$

Example of $J_0 = 4$ LA(8) MODWT MRA

• oxygen isotope records **X** from Antarctic ice core



Summary of Key Points about the DWT: I

- the DWT W is orthonormal, i.e., satisfies $W^TW = I_N$
- ullet construction of $\mathcal W$ starts with a wavelet filter $\{h_l\}$ of even length L that by definition
- 1. sums to zero; i.e., $\sum_{l} h_{l} = 0$;
- 2. has unit energy; i.e., $\sum_{l} h_{l}^{2} = 1$; and
- 3. is orthogonal to its even shifts; i.e., $\sum_{l} h_{l} h_{l+2n} = 0$
- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$
- \bullet while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter

I-91

WMTSA: 150-156

Summary of Key Points about the DWT: II

- $\{h_l\}$ and $\{g_l\}$ work in tandem to split time series **X** into
 - wavelet coefficients \mathbf{W}_1 (related to changes in averages on a unit scale) and
- scaling coefficients V_1 (related to averages on a scale of 2)
- ullet $\{h_l\}$ and $\{g_l\}$ are then applied to \mathbf{V}_1 , yielding
- wavelet coefficients \mathbf{W}_2 (related to changes in averages on a scale of 2) and
- scaling coefficients V_2 (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients \mathbf{V}_{j-1} at level j-1 are transformed into wavelet and scaling coefficients \mathbf{W}_j and \mathbf{V}_j of scales $\tau_j = 2^{j-1}$ and $\lambda_j = 2^j$

WMTSA: 150-156 I-93

Summary of Key Points about the DWT: IV

ullet second decomposition reexpresses the energy (squared norm) of ${\bf X}$ on a scale by scale basis, i.e.,

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_{J_0}\|^2,$$

leading to an analysis of the sample variance of X:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2$$

$$= \frac{1}{N} \sum_{j=1}^{J_0} ||\mathbf{W}_j||^2 + \frac{1}{N} ||\mathbf{V}_{J_0}||^2 - \overline{X}^2$$

Summary of Key Points about the DWT: III

- after J_0 repetitions, this 'pyramid' algorithm transforms time series \mathbf{X} whose length N is an integer multiple of 2^{J_0} into DWT coefficients $\mathbf{W}_1, \mathbf{W}_2, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J_0}}$ and $\frac{N}{2^{J_0}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- \bullet first decomposition is additive and is known as a multiresolution analysis (MRA), in which ${\bf X}$ is reexpressed as

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0},$$

where \mathcal{D}_j is a time series reflecting variations in **X** on scale τ_j , while \mathcal{S}_{J_0} is a series reflecting its λ_{J_0} averages

WMTSA: 150-156

Summary of Key Points about the MODWT

- similar to the DWT, the MODWT offers
 - a scale-based multiresolution analysis
 - a scale-based analysis of the sample variance
 - a pyramid algorithm for computing the transform efficiently
- unlike the DWT, the MODWT is
- defined for all sample sizes (no 'power of 2' restrictions)
- unaffected by circular shifts to ${\bf X}$ in that coefficients, details and smooths shift along with ${\bf X}$
- highly redundant in that a level J_0 transform consists of $(J_0 + 1)N$ values rather than just N
- MODWT can eliminate 'alignment' artifacts, but its redundancies are problematic for some uses

I-96

WMTSA: 159-160

WMTSA: 150–156 I–95